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ABSTRACT Modern crop breeding is in constant demand for new genetic diversity as part of the arms race
with genetic gain. The elite gene pool has limited genetic variation and breeders are trying to introduce
novelty from unadapted germplasm, landraces and wild relatives. For polygenic traits, currently available
approaches to introgression are not ideal, as there is a demonstrable bias against exotic alleles during
selection. Here, we propose a partitioned form of genomic selection, called Origin Specific Genomic
Selection (OSGS), where we identify and target selection on favorable exotic alleles. Briefly, within a
population derived from a bi-parental cross, we isolate alleles originating from the elite and exotic parents,
which then allows us to separate out the predicted marker effects based on the allele origins. We validated
the usefulness of OSGS using two nested association mapping (NAM) datasets: barley NAM (elite-exotic) and
maize NAM (elite-elite), as well as by computer simulation. Our results suggest that OSGS works well in its
goal to increase the contribution of favorable exotic alleles in bi-parental crosses, and it is possible to extend
the approach to broader multi-parental populations.
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There is a general concern that the genetic base of elite varieties of
many crops has become very narrow, diminishing the ability of the
farming landscape to respond positively and quickly to new chal-
lenges. To continue to introduce novel, high value genetic variation
into the elite gene pool, breeding programs can select from crosses
between their germplasm and materials from plant genetic resources;
including wild species, landraces, and improved germplasm that are

unadapted to the target environment. In these exotic crosses, marker
assisted selection and backcrossing can effectively track a limited
number of QTL accounting for a large proportion of the genetic
variation for traits such as disease resistances. For highly polygenic
traits, the introgression of novel variation from exotic sources is more
complex for a number of reasons. First, QTL mapping for polygenic
traits is ineffective or may capture only a small proportion of the
genetic variation. Second, the breeding scheme and population size
needed to effectively pyramid many QTL are unmanageable. Third,
loci at which the exotic lines carry a favorable allele are often linked in
repulsion with loci at which the elite lines carry a favorable allele.
Consequently, selection on segregating populations from elite-exotic
crosses tends to select for the elite background and favorable con-
tribution from the exotic may be lost through linkage drag, or
equivalently through hitchhiking. Further, it can be difficult to
phenotype adaptive traits, including yield, in populations with a high
proportion of unadapted/exotic germplasm. For this reason, selection
is often restricted to populations derived from the first or second
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backcross to the elite parent, in which the average exotic contri-
bution is one quarter or one eighth. However, this practice in-
creases further the risk of loss of favorable alleles introduced from
the exotic parent.

To overcome these problems, additional generations of crossing
among progeny prior to selection can be made to reduce repulsion
linkage. Recurrent selection programs have also been proposed to
increase the frequency of favorable alleles from both elite and
exotic donors over several generations (Hallauer and Carena 2012).
Bernardo (2009) proposed genomic recurrent selection starting in
the F2 before deriving recombinant lines and found this to be more
effective than the conventional practice of selecting among lines
derived from the backcross to the elite parent. More recently,
Gorjanc et al. (2016) proposed genomic selection on a population
established among exotic accessions to increase the frequency of
favorable alleles prior to making crosses between the elite and
(improved) exotic population. In simulation, this reduced the loss
of favorable alleles from exotic sources compared to direct crossing.
However, there is a risk that selective effort is wasted in increasing
favorable allele frequencies in the improved exotic pool that are
already at high frequency among elite lines. Ru and Bernardo (2019
and 2020) proposed backcrossing favorable linkage groups instead
of QTL from exotic parent into elite parent using soybean nested
association mapping (NAM) data as an example. Recently, Allier
et al. (2019) proposed treating parental genome contribution as a
trait in its own right, and suggested index or truncation selection
on this and agronomic traits as a means of reducing the loss of
favorable exotic alleles. In addition, Allier et al. (2020) proposed a
method to identify exotic candidates that can provide the most
benefit in elite-exotic crosses through maximizing favorable con-
tributions from exotic parents.

The problems associated with introgression programs for quan-
titative traits also manifest in mainstream breeding programs. In a
cross between two elite inbred lines, the favorable alleles at loci
determining a polygenic trait are unlikely to be distributed equally
between the two parents. For genetic progress, descendant lines must
be selected in which both parents contribute favorable alleles, since
only then can the performance of descendants exceed that of the
best parent. Assuming for simplicity that all gene effects are equal,
the selected line must be fixed for more favorable alleles than the
best parent. However, selection among progeny may still result in a
disproportionate contribution from the genome of the best parent.
For example, Fradgley et al. (2019) found it common for an elite
wheat line to share over 80% of its genetic material with one of its
two elite parents.

In this paper we propose a simple process to quantify and therefore
control the favorable contribution of parents to progeny with a
technique called Origin Specific Genomic Selection (OSGS). We
achieve this by partitioning a genomic prediction equation into two
components: the first component is the contribution from markers
where the favorable allele is carried by the primary (often elite)
parent and the second component is the contribution frommarkers
where the favorable allele is carried by the secondary (often exotic)
parent. We test this method by within-cross prediction in two
NAM datasets. The first is the HEB-25 barley NAM of backcross
derived lines from an elite variety (Barke) and 25 wild barleys
(Maurer et al. 2015). The second is the maize NAM of F2 derived
lines from crosses between the inbred B73 and 25 lines selected to
sample diversity among elite maize germplasm (Yu et al. 2008). We
validate our results by computer simulations and discuss the implica-
tions of our results for introgression and pre-breeding together with

broader applications in plant breeding, including the use of OSGS in
multi-parental populations.

MATERIALS AND METHODS

Genomic Selection (GS) and Origin Specific Genomic
Selection (OSGS)
The mixed linear model commonly used in the training population of
genomic selection (GS) can be generalized as:

y ¼ XbþWuþ e; [1]

where y is a vector of observed trait values for each individual,
X is a design matrix associating fixed effects with trait

observations,
b is a vector of fixed effects,
W is a design matrix associating marker effects with trait

observations,
u is a vector of marker effects with an assumed distribution of

Nð0; Is2
uÞ,

e is a vector of residuals with an assumed distribution ofNð0; Is2
eÞ.

Then, once the marker effects are estimated (û), we can predict
breeding values (â) for genotyped individuals (even non-phenotyped)
as:

â ¼ Wû: [2]

In a bi-parental cross, provided marker data are available on the
parents, marker regression coefficients û can be partitioned into those
that pertain to the favored alleles of the primary parent û1 and those
that pertain to favored alleles of the secondary parent û2 such that
û ¼ û1 þ û2. We define the primary parent as the better performing
line, the elite parent in an introgression program. The prediction
equation [2] can then be partitioned into:

â1 ¼ Wû1; [3]

â2 ¼ Wû2; [4]

and

â ¼ â1 þ â2; [5]

where â1 is the contribution from the primary parent and analogously
â2 is the contribution from the secondary parent.

Among any set of individuals, we can then select based on â, or on
any index of â1 and â2. Thus, we refer to the former method as GS and
the latter method as OSGS. Table 1 provides a simple example of the
computation of â; â1 and â2 in which three favorable alleles out of ten
are contributed by the exotic parent.

Data analysis
No modification of an existing method for genomic prediction is
required for OSGS provided the method estimates u. OSGS requires
only that (i) allele origins are identified and (ii) marker estimates
are partitioned into two classes with favorable alleles carried by the
primary or by secondary parent. If marker genotypes are coded -1,
0, 1 with 0 as the heterozygous class (Figure 1), this partition is
simply on the basis of the sign of the regression coefficients. Also,
identifying allele origin is trivial in plant breeding scenarios with
inbred parents.

Performance differences among various genomic prediction
methods are generally minimal, especially if predictions are among
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closely relatedmaterial over a limited number of generations (Daetwyler
et al. 2013). In this paper therefore, we demonstrate only three standard
methods: ridge regression (Hoerl and Kennard 1976) as implemented in
rrBLUP (Endelman 2011), LASSO (Tibshirani 1996) as imple-
mented in glmnet (Friedman et al. 2010), and BayesCp (Habier
et al. 2011) as implemented in BGLR (Pérez and de los Campos
2014) to test that OSGS is robust to the choice of method. All three
methods are available as R packages and all analyses were performed
with R 3.6.3 (R Core Team 2020).

In genomic selection, regression coefficients are typically estimated
from one population of lines, the training or reference population, and
the prediction equation is applied to a set of candidates with no trait
information. Here, the emphasis is different since we are primarily
interested in partitioning the observed phenotype of individuals into
contributions from the two parents. As such, the question is not about
training and testing, but what are parent contributions. We performed
our analysis of the NAM datasets in two ways: (i) joint analysis of all
25 families, and (ii) independent analysis of all 25 families. The joint

analysis ignores the variations among the 25 families and thus allows us
to test the robustness of OSGS to familial variation. The independent
analysis is limited to variations within each bi-parental cross and thus
provides a good platform for demonstrating the use of OSGS.

For each analysis, we estimated correlation coefficients between
the observed (y2Xb̂) and predicted trait values of â, â1 and â2. â is
estimated from all (A) markers, â1 is estimated from subset of
markers with favorable primary (P) parent alleles, and â2 is estimated
from subset of markers with favorable secondary (S) parent alleles.
The relative importance of the primary and secondary parents as
contributors of favorable genetic variation was quantified by the
correlations between the pairs of â, â1 and â2, and by the number and
distribution of favorable marker effects among the two parents.

In addition, we compared the distributions of favorable primary
(P) and secondary (S) marker effects. We first extracted the P and S
marker effects based on the signs of rrBLUP coefficients and the
favorable direction for each trait. We then converted the marker
effects into absolute values and compared the two distributions using
the Kolmogorov-Smirnov test as implemented in the ks.test function
in R (R Core Team 2020). Results were shown as -log10(p).

To evaluate the potential of OSGS in optimizing favorable pa-
rental contributions to progeny, we compared the simulation out-
comes from selection in the NAMs using OSGS and GS. To begin this
simulation, we took the results from the independent analysis of the
25 NAM families. Within each family, we selected top four lines based
on the estimated breeding values (EBVs) determined by OSGS and
GS. In GS, the EBVs are essentially â. In OSGS, we first ranked â1 and
â2 such that the most favorable â1 and â2 have the highest rank value.
Next, we calculated the EBVs as rankðâ1Þ � vþ rankðâ2Þ � ð12vÞ, in
whichv is the selection weight for P and ranges from 0 to 1.Wemade

all

�
4
2

�
¼ 6 possible crosses among these four selected lines and

generated 10 double haploids (DHs) from each cross. This process
was done using AlphaSim (Faux et al. 2016) to simulate the re-
combination events. We calculated the average fold change in
proportions of favorable primary alleles (P) and favorable secondary
alleles (S) alleles and average normalized change in EBVs before and

n■ Table 1 An example of OSGS for ten unlinked markers segregating among inbred lines derived from the F2 cross of an elite and exotic
parent. At each marker, elite and exotic homozygotes are respectively coded -1 and +1. Negative regression coefficient indicates the
increasing allele for the trait is carried by the elite parent and a positive coefficient that the increasing allele is carried by the exotic parent.
Here, seven favorable alleles originate from the elite and three from the exotic parent. For each individual (ID1-5), the sumof the products of
marker genotypes and regression coefficients gives an estimate of the total breeding value, a

∧
. Totalling products over the first three and last

sevenmarkers partitions the breeding value into contribution respectively from the elite (a∧1) and exotic (a∧2) parent. For the coefficients given,
the expected correlation between a

∧ and a
∧
1is 0.89 and between a

∧ and a
∧
2 is 0.45. The expected correlation between a

∧
1   and  a

∧
2 is zero, since the

markers are not linked in this example

Marker Favored allele Regression coefficient

Marker genotypes

ID1 ID2 ID3 ID4 ID5

M1 Elite 20.95 21 1 1 21 1
M2 Elite 20.34 21 21 1 21 21
M3 Elite 20.47 21 1 21 21 1
M4 Elite 20.11 21 21 21 21 1
M5 Elite 20.49 1 1 21 21 1
M6 Elite 20.63 1 21 21 1 1
M7 Elite 21.24 21 21 1 1 21
M8 Exotic 0.22 1 1 1 1 21
M9 Exotic 0.38 21 21 1 1 21
M10 Exotic 0.82 1 1 1 21 1

Total breeding value (â) 2.65 1.07 0.59 0.27 20.85
Elite contribution (â1) 1.99 0.41 20.83 0.49 21.07
Exotic contribution (â2) 0.66 0.66 1.42 20.22 0.22

Figure 1 Example of recoding marker data for OSGS. SNP markers are
originally coded according to standard IUPAC genetic codes (W = A/T,
K = G/T, R = A/G, S = C/G, Y = C/T). In the phased markers,
homozygous alleles from the primary parent are coded as -1, homo-
zygous alleles from the secondary parent are coded as 1, and het-
erozygotes are coded as 0. Missing data and monomorphic SNPs are
coded as the average between the two flanking, non-missing marker
data.
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after selection. Lastly, we compared these changes between OSGS and
GS across all 25 families.

Barley NAM population
We analyzed two polygenic traits in the HEB-25 barley NAM
population: days to heading (DTH) and yield (YLD), which were
respectively taken from Herzig et al. (2018) and Sharma et al. (2018).
Since only raw data on DTH and YLD were provided, we calculated
the least squares means of DTH and YLD for 1,420 lines based on the
fixed effects of location, nitrogen treatment and year.

We also obtained the accompanying marker genotype data from
Maurer et al. (2015), which consisted of 1,427 lines and 5,709
polymorphic markers. We removed five markers that did not map
to reference genome, resulting in 5,704 markers. The markers were
initially coded as 0 for homozygous elite allele, 1 for heterozygous,
2 for homozygous wild allele and 5 for non-polymorphic within
family. To maintain consistency between the barley and maize NAM
data, we set all the markers coded as 5 to missing and imputed these
missing markers using the same method as for the maize NAM
(Buckler et al. 2009), where any missing data were imputed as an
average of two non-missing flanking markers. Markers with missing
data at the start and end of each chromosome were imputed to be the
same as the nearest markers. Finally, we converted the marker from
0/1/2 to -1/0/1 format.

The trait and marker data combined resulted in 1,371 lines for
analysis.

Maize NAM population
We analyzed two polygenic traits in the maize NAM population that
are comparable to DTH and YLD in the barley NAMpopulation: days
to silking (DTS) and cob length (CL), which were taken from Buckler
et al. (2009) and Brown et al. (2011) respectively. Similar to the barley
NAM trait data, we calculated the least squares means of DTS and CL
for 4,910 and 4,884 lines respectively based on the fixed effects of
location, year, replication within location and block.

We also obtained the accompanying marker genotype data from
McMullen et al. (2009) for 4,699 lines and 1,106 polymorphic markers.
The marker data are fully imputed and phased, so we only converted
the marker format from 0/1/2 to -1/0/1 format.

The trait and marker data combined resulted in 4,697 lines for
analysis.

Computer simulations
For comparison with the barley and maize NAMs, we simulated three
bi-parental populations: (1) F2-derived, (2) BC1-derived and (3)
reverse BC1-derived (secondary line as the recurrent parent), all of
which were selfed for 4 generations prior to GS/OSGS. For each
population, we simulated traits with varying ratios of favorable primary
(P) and secondary (S) QTL (P:S = 50:50, 55:45, 60:40, 70:30, 80:20,
90:10) and with QTL densities of 2cM/QTL or 20cM/QTL. Within
each simulation, same QTL were tested in F2/BC1/rBC1-derived
populations.

We used rrBLUP to calculate the marker effects in the F6, BC1S4
and rBC1S4 generations. These were used for predicting the breeding
values of each line using GS and OSGS methods. Similar weighting
schemes to the NAM simulation were used here to determine
the breeding values in OSGS. We crossed the top 5 lines (identified
by GS/OSGS) in a half diallel and generated 20 double haploids (DHs)
from each cross. Similar to the previous simulation with the NAM
datasets, we compared GS and OSGS impacts on P and S proportions
and EBVs over a single generation of selection. In addition, we chose

the population with P:S = 60:40 andv ¼ 0:5 and performed recurrent
selection for an additional four cycles. We used the previously
calculated marker effects to predict EBVs for selection purposes in
all subsequent generations. Details on the selection process can be
found in Figure S1. All simulations were repeated 100 times.

All simulations were performed in R 3.6.3 (R Core Team 2020), in
which marker data were generated using AlphaSim v0.11.1 (Faux
et al. 2016) and trait data were generated using custom R scripts. For
all populations, we simulated diploid individuals with 10 chromo-
somes and 7,750 markers distributed evenly across a total genetic
distance of 1,550 cM. The markers were coded as -1 for the primary
parent and 1 for the secondary parent. QTL positions were randomly
sampled from a uniform distribution of all markers. QTL effects for
the primary and secondary parent alleles were simulated from a half-
normal distribution such that the QTL marker variances are equal
between primary and secondary parent alleles, and the aggregated
QTL marker variance is equal to p-1, where p is the total number of
QTL (Figure S2A). Markers selected as QTLmarkers were left in these
analyses since their removal with such high marker density would
have little effect, and our purpose is to compare the performance of
OSGS and GS and not to test differences in prediction accuracy due to
marker-QTL linkage. For any generation, the true breeding value of
each line was calculated from its QTL marker genotypes and QTL
effects, and the phenotypic trait value of each line was calculated by
adding residual value drawn from a standard normal distribution
with mean of 0 and variance of 1. Since we fixed the QTL marker
variance and residual variance, the simulated mean trait heritabilities
range from 0.40 to 0.95 depending on the proportion of favorable
primary and secondary parent alleles and number of QTL markers
(Figure S2B).

Data availability
The barley NAM raw DTH, raw YLD and marker genotype data-
sets were downloaded from doi.org/10.5447/IPK/2017/6, doi.org/
10.5447/IPK/2017/21 and Additional File 5 in doi.org/10.1186/
s12864-015-1459-7 respectively. The maize NAM raw DTS, raw CL
and marker genotype datasets were downloaded from the Cyverse
Discovery Environment in the following folders respectively, (1)
/iplant/home/shared/panzea/phenotypes/ Buckler_etal_2009_Science_
flowering_time_data-090807.zip, (2) /iplant/home/shared/panzea/
phenotypes/Brown_etal_2011_PLoSGenet_pheno_data-120523.zip,
(3) /iplant/home/shared/panzea/genotypes/SNPs/ NAM_map_and_
genos-120731.zip. All R scripts used in this manuscript can be
accessed from https://github.com/cjyang-sruc/OSGS. File S1 contains
all the supplemental materials. Supplemental material available at
figshare: https://doi.org/10.25387/g3.12320093.

RESULTS

Maize and barley NAM data analysis
OSGS is robust to the choice of GS methods as shown using three
popular GS methods (rrBLUP, LASSO and BayesCp) (Figure S3 and
Table S1). There were little differences in performances across these
methods, especially in â and â1. However, predictions on â2 appeared
slightly more variable when LASSO is used, which is likely due to a
combination of small family size and fewer favorable exotic alleles in
the barley NAM. In one example, LASSO failed to identify any
favorable secondary parent alleles, resulting in zero prediction from
these alleles (Table S1). In some barley NAM families, the prediction
accuracies of â from rrBLUP are perfect (Table S1), which suggest
overfitting. However, these families also showed high accuracies with
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the LASSO which selects for markers by cross-validation. Nonethe-
less, we are not overly concerned about these perfect predictions since
our interest is to show how favorable alleles can be partitioned in
OSGS. Overall, since there was little difference, we focus all of our
analyses on rrBLUP.

Using YLD in barley NAM family 1 as an example (Figure 2), we
showed the partitioning of all (A) markers into markers carrying

favorable primary (P) and secondary (S) parental alleles based on
their effect signs. Given our marker coding and the favorable di-
rection of YLD, P alleles are represented by markers with negative
effects and S alleles are represented by markers with positive effects.
We observed an uneven distribution of P and S alleles across the
genome (Figure 2A). Overall counts of P and S alleles were unequal
with a slight bias toward more P alleles, as shown in Figure 2B. In our

Figure 2 Partitioning of favorable parental alleles
in OSGS. Here, we took YLD in barley NAM family
1 as an example to illustrate how the markers can
be partitioned into favorable primary (P) and sec-
ondary (S) parental alleles for breeding values
prediction. [A] Marker effects are plotted along
the chromosomes and genetic positions, with the
P alleles colored red and S colored green. [B]
Distribution ofmarker effects shows a bias formore
P (57%) than S (43%), which suggests that the
recurrent parent in barleyNAMhasmore favorable
YLD allele than the donor parent 1. [C] Predicted
breeding values using all markers (â), P-only (â1)
and S-only (â2) are plotted against the observed
trait values, and the correlations are shown in
parentheses.

Figure 3 Prediction accuracies and marker effect
distributions across all 25 NAM families. [A] Pre-
diction accuracies of â, â1 and â2 are shown as
the correlations between the predicted and ob-
served trait values from the joint and indepen-
dent analyses of 25 NAM families. [B] P and S
distributions estimated from the independent
analyses were tested using Kolmogorov-Smirnov
test and the results are shown as -log10(p). The
Bonferroni adjusted threshold of P = 0.05/25 is
shown as a red horizontal line. [C] Correlations
between â1 and â2 represent the potential con-
straints when selecting for both P and S markers
in OSGS, although the lack of strong negative
correlations suggests these are small.
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predictions using A, P or S alleles, i.e., â, â1 and â2, the accuracies
decreased in the order of A, P and S (Figure 2C). Since P and S alleles
are subsets of A, the prediction accuracies from either P or S can never
exceed A’s. Prediction accuracies for all families and traits can be
found in Table S1.

Between our joint and independent analyses of 25 NAM families,
we found higher accuracies, but varying in degrees, in the indepen-
dent analysis over joint analysis across all predictions (Figure 3A). In
barley NAM, the discrepancies between the joint and independent
analyses are less pronounced in â and â1 than â2. In maize NAM, the
discrepancies are relatively similar across â, â1 and â2. This obser-
vation is likely explained by how the NAMs were generated as the
barley NAMs are BC1-derived and the maize NAMs are F2-derived. On
average, the recurrent (common) NAM parent contributes approxi-
mately three-quarter in the BC1 genome but only half in the F2 genome.
Unlike the recurrent parent, the donor parents are distinct and thus
likely possess allelic variations, as shown in previous GWAS analyses
(Buckler et al. 2009; Brown et al. 2011; Herzig et al. 2018; Sharma et al.
2018). Therefore, higher proportion of recurrent parent results in better
predictions in the joint analysis.

The order of â, â1 and â2 accuracies remained similar in all
analyses, although the accuracy gaps among â, â1 and â2 differed
when compared across traits (Figure 3A). Accuracy gaps between â
and â1 are smallest in YLD than the others, while accuracy gaps
between â1 and â2 are largest in YLD, intermediate in DTH and DTS,
and smallest in CL. This observation can be partly attributed to the
NAM population types as previously suggested, however, a more
important factor is likely the difference in distributions of P and S

alleles across traits (Figure 3B). YLD showed the strongest difference
between P and S distributions, followed by DTH, DTS and CL.
Therefore, the greater the imbalance between P and S distributions,
the smaller the gap between â and â1 as â is largely predicted by P.

Distribution of marker effect estimates can inform about the
proportion of favorable alleles contributed by each parent (Figure
2B, Figure S4-7). Late flowering in temperate environment (northern
Europe) and high yield are favored in spring barley, while early
flowering and large ear size are favored in maize, thus favorable DTH,
YLD and CL are represented by positive marker effects and favorable
DTS is represented by negative marker effects. Across all traits, we
found variable proportions of favorable alleles (Table S1). The means
and ranges of P proportions across all 25 families estimated from
rrBLUP were 0.52 and 0.43 – 0.62 for barley DTH, 0.63 and 0.48 – 0.78
for barley YLD, 0.56 and 0.43 – 0.65 for maize DTS and 0.51 and
0.43 – 0.59 for maize CL. In barley, we found that the primary (elite)
parent had slightly more favorable DTH alleles but many more
favorable YLD alleles than the secondary (exotic) parents. In maize,
we found that the primary parent had more favorable DTS alleles
but about equal favorable CL alleles compared to the secondary
parents. Provided that a trait is polygenic, results here suggested that
the distribution of marker effects can be used as a reasonable
approximation to the true proportions of favorable QTL.

In addition, most of the P and S distributions were significantly
different, especially in the barley NAM population (Figure 3B). By
comparing the P and S distributions for each trait and family using a
Kolmogorov-Smirnov test, we found that all 25 barley NAM families
but only about half of the maize NAM families had significant

Figure 4 Performance comparison of OSGS under differentv against GS in NAMs. We simulated a single generation of selection under OSGS/GS
and evaluated the change in estimated breeding value (DEBV ), P proportion (DP) and S proportion (DS). DEBV is calculated as
ðmEBV ;OSGS 2mEBV ;GSÞ=mEBV ;0, where mEBV ;OSGS is the mean EBV of a family selected under OSGS, mEBV ;GS is the mean EBV of a family selected
under GS, and mEBV ;0 is the mean EBV of the initial (pre-selection) NAM family. Similarly, DP is calculated as ðmP;OSGS 2mP;GSÞ=mP;0 and DS is
calculated as ðmS;OSGS 2mS;GSÞ=mS;0. Significance is determined by t-test with Bonferroni correction (P = 0.05/25).
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differences. The strongest difference in the distributions was observed
in barley YLD, followed by barley DTH, maize DTS and maize CL.
The distributions of P and S are more likely to be different in elite-
exotic crosses (barley NAM) than elite-elite crosses (maize NAM).
While rrBLUP assumes a single normal distribution of marker effects,
the model is robust to the violation of the assumption given the good
prediction accuracies from P and S.

There were weak negative correlations between â1 and â2 across all
four traits (Figure 3C). While a strong positive correlation between
the two would be ideal for selection, the lack of strong negative
correlations implies that we can still select for both P and S without
any severe constraints. To do so, we can apply index selection based
on the ranks of â1 and â2 by treating the two predictions as two
separate traits.

To evaluate the usefulness of OSGS in introgressing exotic alleles
in a pre-breeding context, we simulated a single generation of
selection on all four traits (Figure 4). In terms of estimated breeding
values (EBVs), OSGS did not outperform GS in any of the tested
selection weights (v). However, OSGS can increase or decrease P and
S in comparison to GS. As v decreased, P decreased and S increased,
and vice versa. Based on these results, the ideal selection weights
would be those that maximize the increase in S andminimize the EBV
gap. Across all four traits, v of 0.4 to 0.6 appeared reasonable for
efficient introgression of exotic alleles in pre-breeding programs.

Simulated data analysis
First, we evaluated the performance of OSGS under different pro-
portion of P and S QTL and v (Figure 5, S8 and S9), and found that it
can be optimized based on the proportion of P and S. In the case of P:S

= 50:50, OSGS with v of 0.5 resulted in similar true breeding values
(BV) and P:S proportions to GS. As the proportion of P:S increases, a
slight increase in v can minimize the BV gap between OSGS and GS,
and still maintain a higher S proportion in OSGS than GS. Given that
the proportions of estimated P and S marker effects reasonably
approximated the true proportion of P and S QTL (Figure S10),
we can adjust v in OSGS according to the estimated P and S
proportions.

Comparing across F2, BC1 and rBC1-derived populations, OSGS
is best performed in an F2 population as it begins with an equal
proportion of primary and secondary parent alleles (Figure 6 and
S11, Table 2). F2 population provides a good starting ground for
OSGS to elevate S proportion while keeping the BV gap with GS
low. In a BC1 population, there is already a bias in the population
toward primary parent alleles as the population has 75% primary
parent alleles and 25% secondary parent alleles on average. While it
is possible to minimize BV gap between OSGS and GS, there is little
gain in S over multiple generations of recurrent selection. On the other
hand, in a rBC1 population, the BV gap is too large to compensate for
the gain in S. From a different perspective in the absence of OSGS, one is
better off applying GS in a BC1 over an F2 population as it achieves
higher breeding values faster (Figure 6 and S11, Table 2) without losing
much S in the process.

Lastly, comparing between QTL density of 2cM/QTL and 20cM/
QTL, there is more merit to using OSGS when the number of QTL are
large (Figure 6A, 6D and S11). In the case where the QTL density is
low (20cM/QTL), there is little difference between GS and OSGS
(Figure 6D and S11) aside fromOSGS is slightly better in increasing
the S proportion. However, as we increased the QTL density to

Figure 5 Performance comparison of OSGS under different v against GS in simulated F2-derived populations. We applied a single generation
of selection under OSGS/GS on 100 simulated F2-derived populations (2cM/QTL) and evaluated the change in true breeding value (DBV ),
P proportion (DP) and S proportion (DS). Significance is determined by t-test with Bonferroni correction (P = 0.05/25).
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2cM/QTL, we found that OSGS was able to keep the balance
between favorable primary and secondary parent alleles through-
out selection, while GS resulted in a larger discrepancy (Figure 6A
and S11). This highlights the issue with GS in an elite-exotic
population as few exotic alleles manage to enter the final breeding
population. OSGS can be used to address this issue.

DISCUSSION
In the recent years, there has been a growing interest in exploring
ways for efficient introduction of novel genetic variation from exotic
germplasm like landraces and wild relatives into modern breeding
populations (Mascher et al. 2019). Even in elite crosses, current

selection practices can be strongly biased in favor of one parent
(Fradgley et al. 2019), and linkage drag may limit the potential for
favorable alleles to be selected from the phenotypically weaker of
the two genomes. To circumvent this problem, Gorjanc et al. (2016)
suggested an approach to create improved lines from purely
exotic materials prior to crossing with the elite materials. Samayoa
et al. (2018) suggested a slightly different approach where the exotic
improvement is only performed on adaptation-related traits. Alter-
natively, Han et al. (2017) formulated a method to identify candidate
exotic lines for introgressing small numbers of favorable exotic alleles
into elite populations. Allier et al. (2020) further extended this
approach for introgressing a larger number of favorable exotic alleles

Figure 6 Performance comparison ofOSGS
against GS under recurrent selection. We
applied five generations of recurrent se-
lection under OSGS/GS on 100 simulated
F2, BC1 and rBC1-derived populations with
P:S of 60:40. We showed the change in
true breeding value (DBVi ), P proportion
(DPi ) and S proportion (DSi ), where i is
either OSGS with v ¼ 0:5 or GS. DBVi is
calculated as ðmBV ;i 2sBV ;0Þ=mBV ;0, DPi as
mP;i=mP;0 and DSi as mS;i=mS;0. [A] F2 with
2cM/QTL. [B] BC1 with 2cM/QTL. [C] rBC1

with 2cM/QTL. [D] F2 with 20cM/QTL.
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by identifying exotic candidates with higher ratios of favorable over
unfavorable alleles. In a slightly different approach, Allier et al. (2019)
proposed the usefulness criterion parental contribution (UCPC) as
a metric that combines both the usefulness criterion (Schnell and
Utz 1975) and parental genomic contributions in identifying exotic
materials for crossing with elite populations. Ru and Bernardo
(2019 and 2020) proposed introgressing linkage groups over QTL
via targeted recombination.

While these approaches seem promising, none of them directly
addresses the issues of genomic selection in elite-exotic populations.
These approaches focus on identifying the best possible exotic line for
crossing, and none attempts to improve the exotic introgression
potential after crossing exotic and elite lines. Improvement on solely
exotic lines (Gorjanc et al. 2016) may risk selecting for favorable
alleles that are already present in elite populations. Selecting for exotic
lines with the best combination to the target elite lines (Han et al.
2017; Allier et al. 2019; Allier et al. 2020) likely requires accurate
predictions on the crosses performances, which calls for large training
population and/or close relationships among the selected lines that
may not be available.

Here, we propose using OSGS as a generalized framework for
partitioning favorable trait contributions among parents. When
applied on a single elite-exotic cross population, high prediction
accuracies will be possible without requiring a large sized population
for phenotyping (Brandariz and Bernardo 2019). This subsequently
allows us to partition these predictions into favorable primary and
secondary parental contributions with high confidence. OSGS is
flexible with respect to the choice of the exotic genome and is
complementary to any of the previously described approaches to
accommodate those selected exotic lines. In addition, we have
demonstrated that OSGS works using the barley and maize NAMs,
furthering the potential of community-generated genetic resources as
potent breeding tools. Moreover, Bernardo (2009) and our results
suggest that it is likely better to use F2-derived NAMs to backcross-
derived NAMs for this purpose.

In general, OSGS is robust to the choice of a statistical method and
should work for other untested methods provided marker effects can
be estimated and partitioned into two or more classes. However, one

might consider models that are better suited for the presumed trait
genetic architectures. For example, LASSO might be a better option
for traits regulated by few QTL since LASSO reduces the effects of
most markers to zero.

In this paper we have shown that OSGS can maintain the balance
between favorable primary and secondary parent allele proportions
over several generations of selection. Hence, OSGS may also play a
similar role in optimal contribution selection initially suggested by
Meuwissen (1997). Optimal contribution selection aims to maintain
genetic diversity in a population under selection by penalizing the
estimated breeding values with relationships among selected indi-
viduals (Woolliams et al. 2015). In genomic setting this penalty is
based on genomic relationships identified from all markers, which
does not distinguish between favorable primary and secondary parent
alleles. Therefore, OSGS can be complementary to optimal contri-
bution selection as we could partition the kinship matrix into two
matrices based on markers carrying favorable primary or secondary
parent allele effects. Similar approach has been advocated for optimal
contribution selection in rare breeds of livestock in the presence of
introgression from cosmopolitan breeds (Wang et al. 2017a, 2017b
and 2019).

There are several applications of OSGS remaining to be explored.
We found that the distributions of favorable primary and secondary
parent effects are different, especially in elite-exotic crosses. This is
expected because of the joint action of selection and drift during and
after species domestication. OSGS may provide an approach to
studying this effect by comparing distributions across populations
and species. The application of OSGS could be extended to multi-
parental crosses using predictions based on identity-by-descent
relationships due to originating parents. Multi-parent populations
based on two or more elite lines and a single exotic parent are already
in use in pre-breeding (Hao et al. 2019; Singh et al. 2018). There is a
strong risk that phenotypic or genomic selection in these populations
will discriminate against favorable alleles carried by the exotic parent
to an even greater extent than we have shown in bi-parental pop-
ulations (see also simulations by Gorjanc et al. 2016).

There might also be merits in combining OSGS with other
approaches. For example, we can combine the parent selection

n■ Table 2 Consequences of OSGS/GS on the proportions of favorable alleles and breeding values. Using P:S ratio of 60:40 as an example,
we compared the mean proportions of favorable primary (P) and favorable secondary (S), and the true BV after five generations of recurrent
selection. First two rows are the parents, third row is the pre-selected population, and the remaining are selected populations. P and S in
generation 0 are essentially weighted means of P and S in the parents where the weights are the mean proportion of parental markers. For
example, in BC1, P = 0.75 3 0.60 = 0.45 and S = 0.25 3 0.40 = 0.10

Gen v

F2 BC1 rBC1

P S BV P S BV P S BV

P — 0.60 0.00 4.40 0.60 0.00 4.40 0.60 0.00 4.40
S — 0.00 0.40 24.40 0.00 0.40 24.40 0.00 0.40 24.40
0 — 0.30 0.20 0.00 0.45 0.10 2.19 0.15 0.30 22.18
5 0.0 0.11 0.35 21.41 0.25 0.26 1.42 0.03 0.39 23.48
5 0.1 0.21 0.30 1.27 0.36 0.20 3.82 0.09 0.36 21.76
5 0.2 0.28 0.26 3.02 0.42 0.16 4.85 0.14 0.34 20.18
5 0.3 0.31 0.24 3.57 0.45 0.14 5.22 0.17 0.32 0.63
5 0.4 0.34 0.21 4.19 0.47 0.12 5.30 0.20 0.30 1.22
5 0.5 0.36 0.20 4.40 0.49 0.11 5.43 0.22 0.29 1.70
5 0.6 0.39 0.18 4.74 0.51 0.09 5.39 0.24 0.28 2.17
5 0.7 0.41 0.17 5.01 0.52 0.08 5.50 0.27 0.26 2.55
5 0.8 0.44 0.14 5.09 0.54 0.06 5.36 0.30 0.24 3.09
5 0.9 0.49 0.10 5.14 0.57 0.03 5.00 0.36 0.20 3.63
5 1.0 0.54 0.05 4.66 0.59 0.01 4.55 0.43 0.14 3.60
5 GS 0.46 0.13 5.29 0.50 0.10 5.48 0.36 0.19 3.83
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approaches of Allier et al. (2020) with OSGS. This may be particularly
useful for breeding programs that attempt to use elite and exotic lines
with high performance gaps in the traits of interest. In addition, OSGS
can be extended to work with gametic variance-based selection
(Bijma et al. 2020) by maintaining a balance in the parental contri-
butions on gametic variance.

Lastly, the most promising application of OSGS may be its
extension to multi-trait selection. This could be especially useful in
elite-exotic crosses where the traits are not unanimously favorable in
the elite lines. For example, the exotic parent may carry most
favorable alleles for abiotic or biotic stress resistance, but the elite
parent mostly for productivity traits.
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