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ABSTRACT Over the past few decades, obesity has become a public health issue of global concern. Even
though disparities exist between human populations, e.g., the higher liver fat content of the Japanese
despite a lower body mass index (BMI), studies on the genetics of obesity still largely focus on populations
of European descent, leading to a dearth of genetic data on non-European populations. In this context,
this study aimed to establish a broad picture of the genetic attributes of the Japanese population, by
examining a representative sample of 18,889 individuals participating in the Tohoku Medical Megabank
Project cohort. We applied linear mixed model methods to 17 traits related to obesity and associated
diseases to estimate the heritabilities explained by common genetic variants and the genetic correlations
between each pair of traits. These analyses allowed us to quantify the SNP heritability of health indicators
such as BMI (0.2486 0.032) and HDL cholesterol (0.3246 0.031), and to provide one of the few estimates
of the SNP heritability of cystatin C in unrelated individuals (0.260 6 0.025). We discuss potential
differences between the Japanese and people of European ancestry with respect to the genetic
correlations between urinary biomarkers and adiposity traits, for which large estimates were obtained.
For instance, the genetic correlations between urine potassium level and the values for weight, BMI, waist
circumference, and waist-to-height ratio ranged from 0.290 to 0.559, much higher than the corresponding
estimates in the UK Biobank.
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Historically, obesity first emerged as a public health concern in
Western high-income countries (Caballero 2007). Nowadays most
low- and middle-income countries are facing rapid increases in
overweight and obesity prevalence (NCD Risk Factor Collaboration
2016a), and as of 2016, almost 40% of the world’s adult population is
estimated to be overweight, defined as body mass index (BMI) . 25
(World Health Organization 2018). The health problems are expected
to increase further given that waist circumference (WC) has been rising
at each BMI level (Popkin and Slining 2013) and that increases in
abdominal fat have been shown to substantially heighten the risks of
health problems at a given BMI level (Després et al. 2008).

Despite this worrying global trend, there is a gap between the
amount of research conducted on the genetics of obesity in pop-
ulations of European descent and non-European populations (Hruby
and Hu 2015; Akiyama et al. 2017; Stryjecki et al. 2018). Thorough
research in all human populations is warranted given the wide range
of diseases that are affected by obesity, such as hypertension, kidney
disease and type 2 diabetes (Hall 2000; Gansevoort et al. 2013; NCD
Risk Factor Collaboration 2016b), and because the association
between obesity and comorbidities varies across genetic groups
(Setiawan et al. 2016; Heymsfield et al. 2016). For instance, compared
with non-Hispanic whites in the US population, Japanese men are
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more susceptible to fatty liver with small increases in BMI and
generally have higher liver fat content despite their lower BMI
(Azuma et al. 2009).

It is essential to investigate how these differences relate to genetics.
Examining population-level characteristics such as heritability, which
measures the proportion of the total phenotypic variation that is due
to genetic variation, provides insights into this diversity between
populations and key information about the genetic basis of complex
traits. Given that phenotypic variation is strongly dependent on both
environmental and genetic factors, changes in the environment lead
to changes in heritability. Studying heritability is therefore critical
not only because of the genetic diversity that exists between genetic
groups, but also because of the environmental differences that can
be found across the world’s populations, as well as within a given
population over time.

In this study, we focused on the genetic characteristics of the
Japanese population, which is largely understudied compared with
populations of European descent despite obvious genetic and envi-
ronmental differences. By examining 17 traits related to obesity and
associated conditions in a dataset of 18,889 individuals from the
Miyagi and Iwate Prefectures, in Northeast Japan, we aimed to clarify
the genetic correlations between each pair of traits and the SNP
heritability of these traits in the Japanese population. We discuss the
similarities and differences with other populations, such as that of the
UK Biobank cohort.

MATERIALS AND METHODS

Study population
The 23K dataset of the larger 150K Tohoku Medical Megabank
Project (TMM) Community-Based and TMM Birth and Three-
Generation cohorts was used for this study (Kuriyama et al. 2016).
TMMwas launched in the aftermath of the Great East Japan Earthquake
of March 11, 2011, and aims to contribute to the realization of
personalized healthcare and medicine through the construction of an
integrated biobank consisting of clinical information, genome and
omics data, and biospecimens. TMM follows a prospective cohort
design, targeting a total of 150,000 participants from the general
population of the Miyagi and Iwate Prefectures (Hozawa et al. 2020).

Using information on the age and sex of participants, we analyzed
the phenotypes of 17 traits related to obesity and associated condi-
tions: systolic blood pressure (SBP), diastolic blood pressure (DBP),
triglycerides (TG), HDL cholesterol (HDL-C), height, weight, BMI,
WC, waist-to-height ratio (WHtR), urine creatinine (uCre), urine
chloride (uCl), urine potassium (uK), serum cystatin C (CysC), serum
creatinine (SCre), serum uric acid (SUA), blood urea nitrogen (BUN),
and hemoglobin (Hb). For each trait, the number of individuals with
data available is listed in Table 1. These traits were chosen because
they represent a wide range of biomarkers, including cardiovascular

risk factors (SBP, DBP, TG, HDL-C), adiposity traits (weight, BMI,
WC, WHtR), and urinary and blood renal function biomarkers
(uCre, uCl, uK, CysC, SCre, SUA, BUN); these are either used as
a measure of obesity or related to diseases for which obesity status is
highly relevant. In particular, renal function biomarkers are of in-
terest given that the relationship between obesity and chronic kidney
disease (CKD) is known to be complex, obesity paradoxically being
both a risk factor for the onset of CKD and a predictor of greater
survival in CKD patients (Rhee et al. 2016). Associations between
Hb and metabolic syndrome have also been reported (Hashimoto
et al. 2015).

To remove extreme phenotypes, participants with a BMI lower
than 16 (‘severe thinness’ according to the World Health Organiza-
tion international classification of BMI (1995)) were excluded, and in
each sex group, individuals whose phenotypic value lay more than six
standard deviations from the mean were also excluded.

The phenotypes were standardized by regressing the values for
each trait on age in each sex group and converting the resulting
residuals to z-scores (Supplementary Figure 1) (Yang et al. 2013). In
the univariate and bivariate linear mixed models used for estimating
heritabilities and genetic correlations, covariates comprised prefec-
ture, genotyping platform, and the first ten eigenvectors (principal
components) of the genotype data from principal component analysis
(PCA) to adjust for population structure.

Genotyping and quality control
The samples of the 23K dataset provided by the Tohoku Medical
Megabank Organization for this study were genotyped with Japonica
v1 and v2 (Toshiba, Tokyo, Japan), Human Omni 2.5 (Illumina, San
Diego, CA, USA), and OmniExpressExome (Illumina) genotyping
arrays (Nagasaki et al. 2015; Kawai et al. 2015), and imputed with
IMPUTE2 version 2.2.2 (Howie et al. 2009) using a whole-genome
reference panel of 2,049 Japanese individuals (2KJPN) (Kuriyama
et al. 2016). All statistical models used took into account the effect of
genotyping platform, as described below.

Only SNPs that were available on all platforms and had an info
score over 0.5 in each platform were included in our analyses. The
following criteria were applied in PLINK v1.90 (Purcell et al. 2007)
for quality control purposes: individual call rate $ 98%, SNP call
rate $ 98%, minor allele frequency $ 1%, and Hardy-Weinberg
equilibrium (P $ 1026). All individuals with a heterozygosity rate
more than three standard deviations from the mean were removed.

Related individuals were removed based on identity-by-descent
(pi-hat . 0.2), which was calculated after performing linkage
disequilibrium pruning (-indep-pairwise 50 5 0.2); for each pair of
individuals, the individual with the highest genotyping rate was
kept. Pruning was performed again before calculation of the first ten
principal components (-indep-pairwise 50 5 0.2) and to produce the
final dataset (-indep-pairwise 50 5 0.7).

After the quality control and filtering steps, 18,889 individuals and
866,089 autosomal SNPs remained for the downstream analysis.

Statistical analysis
The following univariate linear mixed model was used to estimate the
genome-wide SNP heritabilities.

y ¼ Xbþ uþ e

with Var(u) = Gs2
u and Var(e) = Is2

e ,
where y is a vector that represents the phenotypes (i.e., the sex-

and age-adjusted z-scores), b is a vector of fixed effects (including the
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overall mean, prefecture, genotyping platform, and the first ten
principal components from PCA), u is a vector of random effects
representing the genomic additive effect, and e is a vector of residual
effects. X is the design matrix for the fixed effects, G is the genomic
relationship matrix (GRM), and I is a unit matrix; s2

u and s2
e

represent the genetic and residual variances, respectively.
A bivariate model was used to estimate the genetic correla-

tions between each pair of phenotypes. The bivariate model,
which is a direct extension of the above univariate model, was as
follows.

�
y1
y2

�
¼

�
X1 0
0 X2

��
b1
b2

�
þ
�
u1
u2

�
þ
�
e1
e2

�

With

var

2
64
u1
u2
e1
e2

3
75 ¼

2
664
g11G g12G 0 0
g21G g22G 0 0
0
0

0
0

r11 r12
r21 r22

3
775;

where

�
g11 g12
g21 g22

�
and

�
r11 r12
r21 r22

�
are the variance-covariance

matrices for the genetic effects and residual effects, respectively
(e.g., g12 is the genetic covariance between traits 1 and 2), yi are
n · 1 vectors of observations on the i-th trait (n being the number
of individuals), bi are p · 1 vectors of fixed effects on the i-th trait
(p being the number of levels for fixed effects), Xi are n · p design
matrices relating the bi vectors to the observation vectors yi, ui
are n · 1 vectors of random effects on the i-th trait, and ei refers
to the vectors of random residual effects associated with each
individual on the i-th trait. These methods are described in more
detail elsewhere (Thompson 1973; Szwaczkowski 2003; Lee et al.
2012).

The GRMs were computed with the Genetic Complex Trait
Analysis tool (GCTA) by using all SNPs that passed quality control.
The following equation was used to calculate the genetic relationship
between two individuals j and k (Yang et al. 2011):

fjk ¼ 1
N

XN
i¼1

ðxij 2 2piÞðxik 2 2piÞ
2pið12 piÞ ;

where xij and xik are the genotypes of the j-th and k-th individuals,
respectively, at the i-th SNP; pi is the frequency of the reference allele
at the i-th SNP; and N is the total number of SNPs.

Computer software
GCTA v1.91.4 (ibid.) was used to perform most of the computations
and statistical analyses: i.e., computation of GRMs, PCA, and uni-
variate and bivariate Genomic Restricted Maximum Likelihood
(GREML) analyses. The Average Information Restricted Maximum
Likelihood (AI-REML) procedure was used to estimate variance
components (Gilmour et al. 1995), and PLINK v1.90 (Purcell et al.
2007) was used to perform data filtering and quality control. R version
3.5.0 (Team RC 2019) was used to regress the phenotypes on age in
each sex group and transform the residuals to z-scores, and the ggplot2
v3.1.0 package was used for data visualization (Wickham 2016).

Ethics statement
This project was conducted in accordance with the Japanese National
Ethical Guidelines for Human Genome/Gene Analysis (Ministry of
Education, Culture, Sports, Science and Technology et al. 2013) and
was reviewed and approved by the ethics committee of Tohoku
University. All participants gave their written consent prior to study
enrollment.

Data availability
The analyses presented in this study were based on data accessed
through the Tohoku Medical Megabank Organization (ToMMo)
(https://www.megabank.tohoku.ac.jp/english/). To protect the pri-
vacy of the cohort participants, requests for the use of ToMMo
biobank data for research projects should be made by applying
directly to ToMMo, and are subject to review and approval by the
Sample and Data Access Committee. Supplemental material available
at figshare: https://doi.org/10.25387/g3.11295944

n■ Table 1 Baseline characteristics of the study population

Clinical trait (unit) Males Females

n Mean SD Min. Max. n Mean SD Min. Max.

Age (years) 6,278 60.87 12.19 20 90 12,611 54.32 14.67 17 88
SBP (mmHg) 4,918 130.16 17.23 81 222 8,309 126.17 17.61 77 216
DBP (mmHg) 4,918 78.65 10.05 37 125 8,309 74.24 10.41 36 132
TG (mg/dl) 4,920 147.18 104.94 21 698 8,308 118.73 71.45 18 540
HDL-C (mg/dl) 4,920 57.97 16.15 22 151 8,308 66.21 16.12 22 154
ht (cm) 4,919 165.22 6.41 141.8 189 8,310 153.18 5.94 128.2 177
wt (kg) 4,919 66.22 10.18 38.8 117.9 8,310 54.44 8.96 30.0 104.3
BMI (kg/m2) 4,919 24.23 3.21 16.0 42.3 8,310 23.21 3.67 16.0 45.2
WC (cm) 4,907 85.08 8.63 60.0 130.5 8,291 81.48 9.51 56.7 126
WHtR 4,907 0.515 0.052 0.376 0.821 8,291 0.533 0.066 0.367 0.840
uCre (g/l) 6,157 1.09 0.63 0.07 4.73 11,432 0.80 0.55 0.02 4.01
uCl (g/l) 6,157 5.34 2.08 0.4 12 11,432 4.81 2.19 0.2 14.1
uK (g/l) 6,157 1.66 0.95 0.1 7.1 11,432 1.58 1.00 0.0 7.4
CysC (mg/l) 6,160 0.83 0.24 0.42 2.16 11,445 0.72 0.14 0.37 1.53
SCre (mg/dl) 6,161 0.82 0.34 0.37 2.58 11,445 0.59 0.12 0.22 1.27
SUA (mg/dl) 6,161 5.86 1.29 0.6 12.6 11,445 4.38 1.06 0.0 10.0
BUN (mg/dl) 6,161 16.19 4.45 6 42 11,445 14.26 4.00 3 35
Hb (g/dl) 6,154 14.80 1.21 8.0 19.8 10,700 13.20 1.05 6.9 18.0

BMI, body mass index; BUN, blood urea nitrogen; CysC, cystatin C; DBP, diastolic blood pressure; Hb, Hemoglobin; HDL-C, high-density lipoprotein cholesterol; ht,
height; n, number of individuals; SBP, systolic blood pressure; SCre, serum creatinine; SD, standard deviation; SUA, serum uric acid; TG, triglycerides; uCl, urine chloride;
uCre, urine creatinine; uK, urine potassium; WC, waist circumference; WHtR, waist-to-height-ratio; wt, weight.
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RESULTS

Population characteristics
The main population characteristics are presented in Table 1. At
baseline, the mean (6 SD) age of the participants was 54.32 (6 14.67)
for women and 60.87 (6 12.19) for men. BMI ranged from 16 to
45.2 kg/m2 (mean, 23.21 kg/m2 6 3.67) in women and from 16 to
42.3 kg/m2 (mean, 24.23 kg/m2 6 3.21) in men.

The participants were divided into four BMI categories: ‘thin’
(BMI, 18.5 kg/m2), ‘normal’ (18.5# BMI, 25 kg/m2), ‘overweight’
(25 # BMI , 30 kg/m2), and ‘obese’ (BMI $ 30 kg/m2). Detailed
information on the number of individuals in each BMI category is
provided in Supplementary Table 1. To better visualize the profile of
the target population, we also calculated the mean and standard
deviation of each of the 17 traits in individuals grouped by BMI and
WC category (Supplementary Tables 2 and 3). A large WC was
classed as$85 cm in males and$90 cm in females, and a small WC
was classed as,85 cm in males and,90 cm in females, following the
clinical criteria applied for the diagnosis of metabolic syndrome in
Japan (Ministry of Health, Labor and Welfare 2005).

SNP heritability estimates
For each of the traits examined, we computed the SNP heritability
by performing univariate model analyses (Table 2). Given that these
values only account for the additive effect of common genetic
variants, they are expected to be lower than the heritability estimates
typically available from twin and/or family studies. Apart from uK, all
of the heritability estimates were significant (P , 0.05), indicating
that a substantial share of the phenotypic variation in these complex
human traits is due to common genetic variants in the Japanese
population. The highest heritability estimate (6 SE) was that of
height (0.536 6 0.031), with that of the other traits ranging from
0.033 (6 0.023) to 0.324 (6 0.031).

We also computed the heritabilities by using bivariate models
to compare them with the estimates of the univariate analyses.
Although bivariate models are theoretically more accurate given
that they take into account the information on both traits to
simultaneously estimate the random effects, in practice the dif-
ference in accuracy between the two models was negligible. For
instance, the SNP heritability estimates (6 SE) of height calcu-
lated by using bivariate models ranged from 0.535 (6 0.031) to
0.537 (6 0.031), which was similar to 0.536 6 0.031 in the
univariate model; and those of BMI ranged from 0.245 (6 0.032)
to 0.255 (6 0.032), which was comparable to 0.248 (6 0.032) in the
univariate model. Given the closeness of the results, the heritability
estimates calculated with the bivariate model analyses are not pre-
sented in further detail.

Phenotypic and genetic correlations
Phenotypic and genetic correlations (Figure 1, Table 3) were
calculated for all pairwise combinations of traits (see Supplemen-
tary Table 4 for the covariances) by using bivariate model analysis.
Unsurprisingly, large correlations were found between traits repre-
senting common health markers. For instance, the genetic correla-
tions (6 SE) between BMI andWC (0.8296 0.028) and between BMI
andWHtR (0.8746 0.021), which are indirect measures of adiposity,
were large and significant, as were those between SCre and CysC
(0.6146 0.045) and between TG and HDL-C (-0.4296 0.072). These
figures are largely comparable to the corresponding phenotypic
correlations, which were computed as the Pearson correlation coef-
ficients between the sex- and age-adjusted phenotypes: 0.874 for BMI

vs.WC, 0.890 for BMI vs.WHtR, 0.543 for SCre vs. CysC, and -0.397
for TG vs. HDL-C.

High genetic correlations were also observed among urinary traits,
e.g., uK vs. uCl (0.575 6 0.245). Although this is consistent with the
pattern observed above, it is an interesting result given the low
heritability of these traits. This finding highlights the fact that a
low contribution of genetic components to phenotypic variation for a
given set of traits does not necessarily imply a low genetic correlation
between these traits. On the other hand, the low heritability of these
traits was reflected in the higher standard error of the corresponding
genetic correlation coefficients.

The phenotypic correlations were stronger between CysC and
each of the adiposity traits (weight, BMI, WC, WHtR) and HDL-C
than between SCre and these traits; this result supports previous
research that showed that CysC is more closely associated with
obesity than SCre (Ying et al. 2017). A similar finding was observed
for genetic correlations: significant estimates were detected between
CysC and WHtR and between CysC and HDL-C but not between
SCre and these traits.

DISCUSSION

The effect of WC on health indicators
By dividing the target population by BMI and WC group (Supple-
mentary Tables 2 and 3), we observed that regardless of gender, in
normal weight and overweight individuals, within each BMI category
the subgroups with a large WC displayed significantly higher weight,
WHtR, higher CysC and SUA levels, and a lower HDL-C level than
those with a small WC (P , 0.01 in all subgroups, except SUA in
overweight men for which P , 0.05). When examining women and
men of normal weight only, the subgroups with a large WC also
displayed higher DBP and higher TG and Hb levels (P, 0.01). More
surprisingly, however, overweight men with a small WC displayed
lower CysC levels than men with a normal BMI and a large WC
(P , 0.01). These findings strongly suggest that increases in WC
within each BMI category are associated with a worsening of

n■ Table 2 Summary of the SNP heritabilities estimated by using
univariate model analysis, for all 17 traits

Clinical trait h2 SE P-value

SBP 0.089 0.031 1.54E-03
DBP 0.131 0.031 6.52E-06
TG 0.196 0.031 8.98E-12
HDL-C 0.324 0.031 1.68E-28
ht 0.536 0.031 8.09E-74
wt 0.256 0.032 2.62E-17
BMI 0.248 0.032 3.33E-16
WC 0.209 0.032 9.01E-12
WHtR 0.238 0.032 6.99E-15
uCre 0.044 0.024 3.00E-02
uCl 0.060 0.023 4.29E-03
uK 0.033 0.023 7.11E-02
CysC 0.260 0.025 1.46E-29
SCre 0.252 0.025 2.01E-26
SUA 0.301 0.024 1.99E-40
BUN 0.138 0.024 3.86E-10
Hb 0.204 0.026 5.55E-17

BMI, bodymass index; BUN, blood urea nitrogen; CysC, cystatin C; DBP, diastolic
blood pressure; h2, heritability; Hb, hemoglobin; HDL-C, high-density lipoprotein
cholesterol; ht, height; SBP, systolic blood pressure; SCre, serum creatinine; SE,
standard error; SUA, serum uric acid; TG, triglycerides; uCl, urine chloride; uCre,
urine creatinine; uK, urine potassium; WC, waist circumference; WHtR, waist-to-
height-ratio; wt, weight.
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many health risk indicators in both women and men; they are also
in line with previous research indicating that abdominal fat, as
measured by WC, may represent a substantial health risk factor
independently of BMI, and that WC may be an effective tool for
the detection of at-risk individuals, including normal weight
individuals (Després et al. 2008).

Heritabilities and genetic correlations of the traits in the
Japanese population
The heritability estimates calculated for the Japanese population were
largely comparable to those from previous research conducted in
populations of European descent. For example, in a recent phenome-
wide heritability analysis of the UK Biobank carried out in British
(Caucasian) individuals, the heritability estimates (6 SE) were
0.685 (6 0.004) for height, 0.274 (6 0.004) for BMI, 0.277 (6 0.004)
for weight, 0.155 (6 0.004) for WC, 0.156 (6 0.004) for SBP, and
0.184 (6 0.004) for DBP (Ge et al. 2017). In another study, performed
in the Lifelines Cohort (Netherlands), the heritability estimates
(6 SE) were 0.489 (6 0.032) for height, 0.248 (6 0.032) for BMI,
0.173 (6 0.032) for SBP, 0.170 (6 0.033) for DBP, 0.186 (6 0.034)
for HDL-C, 0.191 (6 0.035) for TG, 0.190 (6 0.032) for Hb, and
0.268 (6 0.032) for SCre (Nolte et al. 2017). Our findings are also
in line with previous estimates of the SNP heritability of CysC
(0.27; 95% CI: 0.15-0.39), SUA (0.1446 0.039), uCre (0.0656 0.003),
and uK (0.042 6 0.002) (Chen et al. 2015; Zanetti et al. 2018;
Nakatochi et al. 2019). This implies that, in spite of the genetic
and environmental differences that exist between European and
Japanese populations, overall the contribution of common ge-
netic variants to phenotype variation between these groups is
comparable.

A major study on BMI in a large Japanese cohort reported the
discovery of dozens of novel loci, highlighting the genetic diversity
between Japanese and European populations (Akiyama et al. 2017).
This led the authors to suggest differences in the causal variants and
their effect sizes as potential explanations for their findings, and to
advocate for more research in diverse ethnic groups to uncover the
genetic processes underlying BMI susceptibility. Although that call
is certainly warranted given the well-established genetic diversity
across human populations, our study of the SNP heritability of
obesity-related traits indicates that the impact of these differences
on phenotypic variation between Japanese and European popula-
tions is likely to be moderate. Conversely, as this example illus-
trates, similarity in heritability estimates does not necessarily imply

similarity in terms of genetic architecture; whether the genetic archi-
tecture of each trait is similar in Japanese and European populations is
an essential research topic that requires further inquiry.

Several observations deserve to be emphasized with respect to
the genetic correlations (Table 3). First, although the phenotypic and
genetic correlations among the three urinary traits examined (uCre,
uCl, and uK) were similar in terms of sign and magnitude, sharp
differences between phenotypic and genetic correlations were ob-
served when comparing this group of urinary traits to the group of
adiposity traits (weight, BMI, WC, and WHtR), as illustrated by
Figure 1: the highest phenotypic correlation between any pair of traits
among these two groups was below 0.1, whereas the corresponding
genetic correlations ranged from 0.164 to 0.559, the highest genetic
correlation being between uK and weight (P , 0.01).

In people of European descent, a recent study in the UK Biobank
has identified a relationship between these two groups of traits, yet
with much lower genetic correlations (e.g., 0.104 between uK and
BMI, vs. 0.380 in our study) (Zanetti et al. 2018). Given the dearth of
research on the genetic architecture governing urinary biomarkers
and their relationship with obesity-related traits, it is difficult to
completely rule out that these discrepancies are caused by differences
in methodology; however, the unmistakable differences that have
been highlighted in the literature between individuals from Japan
and western Europe in the relationship between adiposity, lipid
biomarker data, kidney disease, and cardiovascular risk may in-
dicate that the strength of the correlations between urinary traits
and adiposity traits is specific to the Japanese (Nakamura et al. 2012;
Wanner et al. 2016).

On a different note, significant genetic correlations were found
between HDL-C and adiposity traits (weight, BMI, WC, WHtR),
renal function biomarkers (uCl, uK, CysC, SUA), and cardiovascular
risk factors (TG, SUA). This highlights the complex, intertwined
relationship between these traits, as do the large negative genetic
correlations between SCre and uK and between SCre and uCl (P, 0.01).
Surprisingly, however, despite phenotypic correlations of over 0.2, we
could not reproduce genetic correlations between BMI and SBP, DBP,
TG, or SUA (Kanai et al. 2018), although we found significant genetic
correlations between SUA and HDL-C and between SUA and TG.

Even though the correspondence between phenotypic and genetic
correlation estimates is not a systematic result (Lynch and Walsh
1998), it has been observed previously (Vattikuti et al. 2012). In this
study, we found correspondence between these estimates to a certain
degree. For instance, the absolute value of the maximum difference

Figure 1 Heatmap of the phenotypic
(A) and genetic (B) correlations between
all 17 traits. The green, yellow, and pink
lines correspond to cardiovascular
risk factors, adiposity traits, and renal
function biomarkers, respectively. BMI,
body mass index; BUN, blood urea
nitrogen; CysC, cystatin C; DBP, dia-
stolic blood pressure; Hb, hemoglobin;
HDL-C, high-density lipoprotein cho-
lesterol; ht, height; SBP, systolic blood
pressure; SCre, serum creatinine; SUA,
serum uric acid; TG, triglycerides; uCl,
urine chloride; uCre, urine creatinine;
uK, urine potassium; WC, waist circum-
ference; WHtR, waist-to-height-ratio; wt,
weight.
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between the phenotypic and genetic correlations was below 0.3 for all
traits, excluding the three traits with the lowest heritabilities: uCre,
uCl, and uK. Furthermore, the Pearson correlation coefficient cal-
culated for phenotypic correlation vs. genetic correlation estimates
for the 17 traits was high (0.767). These results therefore seem to
support the view that phenotypic correlations may prove valuable in
the context of linear mixed model methodology, for instance in the
calculation of the preliminary estimates of the parameters used for the
initialization of maximum likelihood procedures.

At the same time, all three traits with low heritability, i.e., the traits
for which environmental factors accounted for almost all of the
variation in phenotype, displayed a difference of over 0.3 between
the phenotypic and genetic correlations with at least one of the other
traits. Figure 2 also indicates much variation between the phenotypic
and genetic correlations for the pairs of traits whose phenotypic
correlation coefficients were close to zero. Although this issue needs
to be examined in more depth to draw a firmer conclusion, our
observation that the differences between phenotypic and genetic
correlations depend on the trait pairs analyzed may partly explain
why there is no consensus on the conformity of the relationship
between phenotypic and genetic correlations, and leads us to rec-
ommend exercising ample caution when using phenotypic corre-
lations as proxies for genetic correlations.

Obesity and biomarkers for obesity-related diseases
A substantial contribution of this study is the estimation of the
genetic correlations between traits associated with obesity and indi-
cators used as health markers for obesity-related diseases. The link
between obesity and obesity-related diseases is often complex, and
furthering our understanding of this relationship requires undertaking
a variety of analyses on awide range of traits and in diverse populations.
This complexity is well illustrated by the case of CKD: despite the
known strong association between metabolic syndrome and CKD, it
has been reported that traditional CKD risk factors (such as diabetes
mellitus and hypertension) may be independent of kidney dysfunction
in obesity, and that kidney dysfunction may appear long before these
factors develop in individuals affected with metabolic syndrome (Singh
and Kari 2013; Sarathy et al. 2016). The large genetic correlations
that we found between adiposity traits and urinary biomarkers (e.g.,
0.436 between BMI and uCl; 0.380 between BMI and uK), as well as
between SBP and uK (-0.555), provide a starting point for further
research into how the genetic architecture of these biomarkers fits
into the broader context of disease onset and etiology.

More broadly, these observations underscore the fact that the
relationship between obesity and obesity-related diseases is not a
simple cause-and-effect relationship, and compel us to revisit and
better quantify the connection between themany associated traits and
biomarkers, even if they typically display a somewhat low heritability
and do not necessarily constitute the deciding factor in terms of
disease diagnosis.

Limitations and strengths of this study
Given that our main objective was to shed light on the genetic
characteristics of the Japanese population, our findings may not be
generalizable to other human populations or age groups. This is partly
due to the diversity found across genetic groups, but it is also a
consequence of the physiological and social differences that exist
between human populations, as illustrated for instance by the
differences in the WC threshold values used for the diagnosis of
metabolic syndrome in Japanese and European populations. Factors
such as smoking, alcohol consumption, and physical activity, as welln
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as potential subgroup effects within the cohort, are also aspects that
have not been addressed in this paper and warrant further research.
When comparing our findings with the results of other studies,
it is also important to keep in mind that the TMM project targets the
regions affected by the Great East Japan Earthquake of March 11,
2011.

On the other hand, this study is one of only a few analyses of
large-scale cohorts that focus on identifying the general genetic
characteristics of the Japanese population; it includes rare and
valuable information, such as one of the few estimates of the SNP
heritability of cystatin C in unrelated individuals, as well as estimates
of the genetic correlations between urinary biomarkers and obesity-
related traits. Also, given that this study was based on high-quality
clinical data, and that participants were recruited as part of the
general population regardless of their medical background, it con-
stitutes a useful point of comparison for similar studies conducted in
the Japanese and other populations.

CONCLUSION
By quantifying the genomic parameters of a large cohort of Japanese
adults, our study provides evidence that the contribution of common
SNPs to phenotype variation is significant in the Japanese for traits
related to obesity and obesity-related diseases, and therefore supports
the assumption that common genetic variants account for a consider-
able share of phenotypic variation. Our study also shows that the
heritability estimates for these traits are similar in magnitude to those
of populations of European descent, and suggests potential differ-
ences with respect to the genetic correlations; however, further
research is needed to compare the genetic architecture of each trait
in these populations. The heritabilities presented in this paper are
useful in that they provide information about the proportion of
phenotypic variance that could be explained by common-variant
GWAS of the traits studied, and the high genetic correlations
estimated for several pairs of traits with low heritabilities un-
derscore that we must be careful not to neglect research on the
genetics of biomarkers with low heritabilities.
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