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Abstract Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary
cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also
been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared ge-
netic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic
aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac
mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well
established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion
currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias
in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural
changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary car-
diomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are
discussed.
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This article is part of the Spotlight Issue on Inherited Conditions of Arrhythmia.

1. Introduction

Cardiac arrhythmias are common and central features of hereditary
cardiomyopathies, regardless of whether the cardiomyopathy is
caused by a genetic mutation (or pathogenic variant) affecting myo-
cyte structural proteins or is secondary to a defect in another com-
ponent of myocytes. Throughout this review, the term mutation is
used when evidence for causality is robust. Otherwise, the term path-
ogenic variant is used to describe genetic variants that are associated
with the phenotype. Hereditary cardiomyopathies by definition are
considered primary diseases of the myocardium and more specifically,
cardiac myocytes. The term cardiomyopathy, however, is loosely ap-
plied to various forms of advanced heart failure resulting from sec-
ondary causes, such as coronary artery disease (CAD). For clarity,
throughout this review, the term cardiomyopathy is used to describe
primary diseases of cardiac myocytes and not heart failure secondary
to external causes, such as CAD or loading conditions. Likewise,

primary ion channel disorders or channelopathies are not considered
as cardiomyopathies and are not covered in this review. Primary
arrhythmogenic diseases are discussed in other articles in the spotlight
issue. To avoid ambiguity in nomenclature, HUGO nomenclature is
used to describe gene names (human genes all in capital letters and
italics). Proteins are named as their corresponding genes in capital let-
ters but not in italics.

2. An overview of hereditary
cardiomyopathies

Common forms of hereditary cardiomyopathies are categorized accord-
ing to their phenotypic features, as hypertrophic cardiomyopathy
(HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomy-
opathy (ACM). Other uncommon forms of hereditary cardiomyopathies
include restrictive cardiomyopathy (RCM), left ventricular non-
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compaction cardiomyopathy (LVNC), amyloid cardiomyopathy, among
others (Figure 1).1 Only common forms are discussed.

2.1 Hypertrophic cardiomyopathy
HCM is characterized by unexplained cardiac hypertrophy, a small left
ventricular (LV) cavity, and a preserved or increased LV ejection fraction
(EF) (reviewed in Ref.2). A notable phenotypic feature of HCM is the
presence of LV outflow tract obstruction, which is detected at rest in ap-
proximately a quarter of patients and could be provoked with exercise
or adrenergic stimulation in one-third of the patients. HCM is a major
cause of sudden cardiac death (SCD) in the young.3–5 The death is typi-
cally due to ventricular fibrillation.

Mutations in genes encoding sarcomere proteins are the main causes,
while mutations in another two dozen genes have been associated with
HCM. MYH7 and MYBPC3, coding for myosin heavy chain 7 (or b myosin
heavy chain) and myosin-binding protein C, respectively, are the two
most common causal genes for HC (reviewed in Ref.2). Approximately
40% of HCM is caused by mutations in one of these two genes. TNNT2
gene-encoding cardiac troponin T is the third most common causal gene
but is responsible for <5% of the HCM cases. Other uncommon causal
genes include TPM1 (a-tropomyosin), TNNI3 (cardiac troponin I), ACTC1
(cardiac a-actin), MYL2 (myosin light chain), MYL3 (myosin light chain 3),
and CSRP3 (muscle LIM protein). Collectively, all known causal genes ac-
count for�50–60% of the HCM cases. The remaining causal genes have
not been identified yet. Overall, the prevalence of each specific mutation
in HCM is low, as the mutations are rare and often private. There is no
clear genotype–phenotype correlation in HCM.

2.2 Dilated cardiomyopathy
DCM is characterized by LV dilatation with an end-diastolic diameter of
>2.7 cm/m2 and a reduced LVEF of <45% (reviewed in Ref.6). Patients
with DCM typically present with symptoms of heart failure but are often
asymptomatic or exhibit reduced exercise tolerance in the early stages
of the disease. Cardiac arrhythmias and SCD are typically the late mani-
festations of the disease and are absent in the early stages of DCM.
Clinical manifestations of DCM commonly present in the third and
fourth decades of life.

DCM is familial in about half of the patients and exhibits an autosomal-
dominant mode of inheritance. DCM occasionally manifests as an X-
linked disease, such as in Duchenne and Becker muscular dystrophies
and Emery-Dreifuss syndrome. DCM is a genetically heterogeneous dis-
ease and mutations in over 50 genes have been associated with DCM.6

TTN, encoding the giant sarcomere protein titin, is the most common
causal gene being responsible for�20% of the DCM cases.7 Mutations in
MYH7, TNNT2, ACTC1 are also important, albeit uncommon, causes of
DCM, indicating a partially shared genetic basis for the two common
forms of hereditary cardiomyopathies, namely HCM and DCM. Overall,
the majority of the known DCM genes code for cytoskeletal proteins.

A subset of DCM is caused by mutations in the LMNA gene, which
encodes the nuclear inner membrane protein lamin A/C (LMNA). The
phenotype, in addition to DCM, is characterized by chronotropic insuffi-
ciency, cardiac conduction defects, bradycardia, atrial fibrillation, and
ventricular arrhythmias.8 Another subset of DCM is caused by mutations
leading to cytoplasmic protein aggregation (proteotoxicity), including
mutations in DES, encoding intermediary filament desmin, and CRYAB,
encoding chaperon protein a/B-crystallin.9 More recently, RBM20 coding
for RNA-binding motif protein 20 has emerged as an important cause of

DCM.10 RBM20 protein regulates RNA splicing and targets sarcomere
genes among others, leading to their dysregulated expressions.

2.3 Arrhythmogenic cardiomyopathy
ACM is an enigmatic form of hereditary cardiomyopathies, whose cardi-
nal manifestations are ventricular arrhythmias, which often are the first
manifestation of the disease preceding pathological and functional abnor-
malities; SCD, and refractory heart failure (reviewed in Ref.11). ACM is
an important cause of SCD in the young.12–14 Both ventricles are typi-
cally involved but a subgroup of ACM classically manifests with predomi-
nant involvement of the right ventricle, particularly in the early stages,
manifesting with cardiac arrhythmias originating from the right ventricle
and fibro-fatty infiltration of the right ventricular myocardium. This sub-
group is referred to arrhythmogenic right ventricular cardiomyopathy
(ARVC).13 An LV-dominant form of ACM also has been described.15

The clinical phenotype of ARVC is also notable for the characteristic
electrocardiographic findings including an epsilon wave, depolarization,
and repolarization abnormalities in the right precordial leads, which are
present in a subset of patients with ACM.16,17

The causal genes for ACM have been partially identified and code for
protein constituents of desmosomes, members of the intercalated discs
(IDs) (reviewed in Ref.11). IDs are responsible for maintaining mechanical
integrity of the myocardium and are signalling hubs for mechano-sensing,
such as the Hippo and the canonical WNT signalling pathways, which
are dysregulated in ACM.18,19 Mutations in PKP2 gene coding for desmo-
some protein plakophilin 2 are the most common causes of ACM.
Likewise, mutations in DSP-encoding desmoplakin, JUP-encoding junction
protein plakoglobin, DSC2-encoding desmocllin 2, and DSG2-encoding
desmoglein 2 are known to cause ACM. Mutations in several other genes
are also implicated in ACM, including TMEM43 gene coding for

Figure 1 Classification of hereditary cardiomyopathies. Major forms
for hereditary cardiomyopathies, which are classified based on their
morphological and physiological features, are depicted. Adult cardiac
myocytes are shown in the background to indicate that hereditary car-
diomyopathies are primary disorders of cardiac myocytes.
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transmembrane protein 43, PLN coding for phospholamban, FLNC-
encoding filamin C, and TTN coding for titin. Mutations in the known
genes are found in�40–50% of the ACM cases.

2.4 Others
Genetic basis of other forms of hereditary cardiomyopathies, such as
RCM and LVNC is not discussed, suffice it to state that there is a partially
shared genetic aetiology among hereditary cardiomyopathies, as muta-
tions in sarcomere genes are also associated with RCM and LVNC.

2.5 Pathogenesis of hereditary
cardiomyopathies
The primary defect in hereditary cardiomyopathies, namely the muta-
tion, provides the stimulus for phenotypic expression of the disease. The
mutation often affects interactions of the mutant protein with its interac-
tome. The interactome might include proteins that are involved in car-
diac conduction and arrhythmias. The early phenotypic responses to
altered protein function commonly entails dysregulation of gene expres-
sion, altering various biological and functional pathways within the car-
diac myocytes. A subset of the dysregulated genes code for proteins that
are secreted from cells (secretome) and function as paracrine factors.
These paracrine factors, emanating from cardiac myocytes, not only af-
fect cardiac myocytes (through autocrine mechanisms) but also other
cell types in the heart, such as fibroblasts and endothelial cells, through
paracrine mechanisms. Collectively, the molecular phenotypes lead to
functional and structural dysregulation of multiple cell types in cardiomy-
opathies, particularly in advanced stages of the disease. Therefore, al-
though cardiomyopathies are primary diseases of cardiac myocytes, the
phenotype is the consequences of complex interactions among multiple
cardiac cell types, through paracrine effects, protein–protein interac-
tions, and other mechanisms. As regards cardiac conduction and
arrhythmias, the prevailing data point to cardiac myocytes and cardiac
conduction cells as the cell sources of cardiac conduction defects and
arrhythmias in cardiomyopathies.

3. Prevalence of cardiac
arrhythmias in hereditary
cardiomyopathies

3.1 Arrhythmogenic cardiomyopathy
Cardiac arrhythmias are relatively common and often the dangerous
manifestations of cardiomyopathies. ACM is the prototypic form of car-
diomyopathies, whose cardinal and typically the first manifestation is ven-
tricular arrhythmia.20,21 Ventricular arrhythmias in ACM occur early,
prior to, and typically in the absence of discernible cardiac dysfunction.
This is in contrast to DCM or ischaemic heart disease, wherein ventricu-
lar arrhythmias typically manifest late in the course of the disease and of-
ten in the context of heart failure. While early ventricular arrhythmias
are the common features of ACM, ventricular arrhythmias also occur
late in advanced stages of ACM in conjunction with cardiac dysfunction,
as in DCM. Approximately half of the patients with the classic form of
ACM, namely ARVC, exhibit non-sustained ventricular tachycardia
(NSVT) and approximately one-third show sustained ventricular tachy-
cardia (VT) upon initial evaluation.22 The incidence of sustained ventricu-
lar arrhythmias in patients with ACM is �5% per year.22 Male patients
are at a higher risk of future ventricular arrhythmias, as are those with a
history of syncope and prior ventricular arrhythmias as well as cardiac

dysfunction.22 Atrial arrhythmias are also common and present in up to
half of the patients with ACM, typically in those with atrial and right ven-
tricular enlargement.23,24

3.2 Hypertrophic cardiomyopathy
Cardiac arrhythmias are also common in HCM, typically occur in the
context of clinical and pathological phenotypes of HCM and seldom are
the sole manifestations. Approximately a quarter of patients with HCM
exhibit NSVT in initial evaluation.25,26 Sustained VT is less common and a
major cause of syncope and sudden cardiac arrest in patients with HCM.
The incidence of atrial fibrillation is �2–3% per year and �25% of
patients with HCM develop atrial fibrillation during the course of the dis-
ease.27–30 Atrial fibrillation with rapid ventricular rate is poorly tolerated
in patients with HCM due to loss of atrial kick and diastolic dysfunc-
tion.27,30,31 Factors associated with increased risk of cardiac arrhythmias
in HCM include cardiac hypertrophy, myocardial fibrosis, LVOT ob-
struction, and left atrial size, the latter for atrial fibrillation.29

3.3 Dilated cardiomyopathy
DCM comprises a heterogeneous group of myocardial diseases charac-
terized by LV dilatation and dysfunction.6 DCM caused by mutations in
the LMNA gene is a prototypic form of DCM that exhibits a high inci-
dence of conduction defect and cardiac arrhythmias.32 Conduction
defects, such as atrioventricular block, sinus node dysfunction, and atrial
fibrillation are common and often the early manifestations of DCM, lead-
ing to placement of a pacemaker in approximately one-third of the
patients.32 Likewise, ventricular arrhythmias develop in the majority of
patients and are responsible for SCD in about half of the DCM patients
with mutations in the LMNA gene.32–34 DCM caused by truncating muta-
tions in the TTN gene, encoding titin protein, is also associated with an in-
creased incidence of ventricular arrhythmias, although this has not been
consistently observed.35,36

A subset of DCM has been associated with pathogenic variants in the
SCN5A gene, which encodes sodium voltage-gated channel alpha subunit
5 (SCN5A), commonly known as Nav1.5, responsible for the fast depo-
larization phase (Phase 0) of the action potential in cardiac myocytes.37

Mutations in the SCN5A gene are associated with a high burden of atrial
and ventricular arrhythmias, cardiac conduction disease, and risk of
SCD.37–39 While mechanisms underlying different electrical phenotypes
have been extensively studied using in vitro and in vivo approaches, little is
known about whether and how sodium channel malfunction leads to
ventricular dysfunction and dilation.38

4. Possible shared genetic basis of
cardiac arrhythmia and hereditary
cardiomyopathies

Shared genetic aetiology has been described for cardiomyopathies, par-
ticularly DCM and cardiac arrhythmias. Several genes implicated in car-
diomyopathies and arrhythmias are discussed in this section.

4.1 SCN5A
The gene codes for SCN5A protein (also known as Nav1.5), which is
predominantly expressed in cardiac myocytes and localizes to plasma
membrane at the IDs. It forms a voltage-sensitive channel that undergoes
conformational changes in response to a shift in transmembrane voltage.
The pore opens in response to rising transmembrane voltage in the early

1602 A.J. Marian et al.
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phase of the action potential, enabling influx of sodium per electrochemi-
cal gradient. The consequent rise in the transmembrane potential results
in closure of the pore, which is then followed by activation of NCX1 to
normalize intracellular Naþ concentration. Thus, this channel is respon-
sible for Phase 0 of the action potential.40

Mutations in SCN5A are major causes of inherited arrhythmia syn-
dromes. Gain-of-function (GoF) mutations in SCN5A cause long QT syn-
drome type 3 whereas loss-of-function (LoF) mutations are major
causes of Brugada syndrome.39,41 SCN5A mutations are also associated
with atrial fibrillation, atrial standstill, cardiac conduction defects, sick si-
nus syndrome, idiopathic ventricular fibrillation, and multifocal ectopic
Purkinje-related premature contractions.41–46

An arrhythmogenic phenotype as a consequence of SCN5A mutations
is in accord with the known biological functions of the sodium channel in
the generation of the action potential. However, unexpectedly, SCN5A
mutations are also associated with DCM.42,47 SCN5A mutations have
been identified in �1.7% of families with DCM.48 Despite the existing
data from several independent studies implicating SCN5A variants as
causes of DCM, the causality of the SCN5A variants in DCM remains
unsettled for various reasons. First, robust genetic evidence, such as co-
segregation data in large DCM families, is lacking. Second, studies per-
formed before the era of large-scale DNA sequencing were not
designed to exclude the presence of concomitant pathogenic variants in
other genes that might cause or contribute to the DCM phenotype.
Thirdly, earlier studies included a rather small number of a control popu-
lation, and therefore, any uncommon or rare variant identified in the
cases was considered pathogenic. Fourth, the phenotype of DCM associ-
ated with the SCN5A mutations is typically reported in conjunction with
conduction defects, supraventricular and ventricular arrhythmias, raising
the possibility that the SCN5A variants were the susceptibility pathogenic
variants for the arrhythmic phenotype and an undetected variant in an-
other gene was responsible for DCM. Finally, both GoF and LoF SCN5A
variants have been associated with DCM, rendering mechanistic explana-
tion challenging.49 Thus, despite the existing data suggesting SCN5A var-
iants as the pathogenic variants in DCM, likely with low penetrance, it is
plausible that SCN5A pathogenic variants predispose to cardiac arrhyth-
mias and/or conduction defects in patients with DCM but are not the di-
rect causes of DCM.

4.2 LMNA
A characteristic phenotypic feature of LMNA mutations is cardiac con-
duction defects, supraventricular and ventricular arrhythmias.8,32 Electric
abnormalities typically occur in the background of DCM but could occur
in isolation and often as the initial manifestations of laminopathies, which
comprise a group of distinct phenotypes associated with the LMNA
mutations.32,50,51 In a subset of laminopathies, neuromuscular involve-
ment precedes cardiac manifestations by a decade.52

LMNA is a ubiquitously expressed nuclear envelope protein that
interacts with chromatin through lamin-associated domains (LADs) to
regulate gene expression.53–55 In human cardiac myocytes, LMNA inter-
acts with �20% of the genome and affects expression of several thou-
sand genes.56 LADs have suppressive effects on gene expression, partly
through increased CpG methylation and partly through recruitment of
suppressive epigenetic markers.56 Consequently, mutations in the LMNA
gene, by shifting LADs to different genomic regions, could suppress ex-
pression of genes involved in cardiac arrhythmias, such as SCN5A.57

Consequently, phenotypic pleiotropy of LMNA mutations is rather
expected, even though specific mechanisms involved have yet to be de-
lineated. Molecular basis of cardiac conduction defects and arrhythmias

in DCM associated with the LMNA mutation is not known, suffice it to
state that apoptosis is implicated in mice heterozygous for the Lmna
gene.58

4.3 TTN
Mutations in the TTN gene are major causes of DCM and responsible for
15–20% of the DCM cases.7,59,60 Because of its enormous size, the TTN
gene carries a very large number of variants, including truncating variants
(TTNtv), and multiple isoforms in the general population.61 Genetic com-
plexity of the TTN gene poses significant challenges in identification of
the pathogenic variants. Despite such complexity, TTNtv have been asso-
ciated with increased risk of ventricular arrhythmias and atrial fibrillation
in patients with DCM.35,62,63 In addition, TTNtv as well as LoF TTN var-
iants have been associated with early-onset familial atrial fibrillation.64,65

Similarly, genome-wide association studies have linked TTN gene variants
with atrial fibrillation.66 Along with these findings, rare coding TTN var-
iants are associated with prolongation of the QT interval in the general
population.67 Furthermore, in the context of DCM, the association of
TTNtv with cardiac arrhythmias seems to be independent of cardiac func-
tion.62,63,68 Collectively, the existing data suggest a pro-arrhythmic effect
of the pathogenic variants in the TTN gene, particularly in susceptibility
to atrial fibrillation. The mechanism(s) responsible for susceptibility to
cardiac arrhythmias, independent of structural remodelling, is unknown.

4.4 FLNC
Filamin C (FLNC) protein is a striated muscle-specific member of a family
of actin-binding proteins. FLNC along with filamin A and filamin B are in-
volved in multiple cellular processes, including cross-linking of cytoskele-
tal actin, mechano-transduction, and mechanical stability of sarcomeres,
the latter through linking Z disc proteins to the dystrophin-associated-
glycoprotein complex and integrins at the cytoplasmic cell
membrane.69,70

Pathogenic variants in the FLNC gene were first shown to cause myofi-
brillar myopathy.71 Although cardiac involvement in myofibrillar myopa-
thy is not uncommon, the first direct evidence linking FLNC mutations to
cardiomyopathies emerged through identification of missense mutations
in multiple small families with HCM and detection of protein aggregation
in the heart.72 FLNC mutations also have been linked to RCM, DCM, and
ACM.73,74 The existing data suggest a high burden of cardiac arrhythmias
in cardiomyopathies associated with the FLNC mutations.75 In addition, a
deletion mutation in the FLNC gene has been associated with familial ven-
tricular arrhythmias and SCD in a sibling with normal cardiac function.76

The mechanisms underlying predisposition to cardiac arrhythmias with
the FLNC mutations remain unknown and expected to be complex given
the diversity of its biological functions. Abnormal trafficking of ion chan-
nel proteins is an unexplored proposed mechanism of cardiac arrhyth-
mias observed in cardiomyopathies associated with FLNC mutations.77

4.5 RYR2
The ryanodine receptor 2 (RYR2), encoded by the RYR2 gene, localizes
to sarcoplasmic reticulum (SR) and plays an essential role in excitation
and contraction coupling in cardiac myocytes.78 During the plateau
phase of the action potential, Ca2þ enters the cell via the L-type voltage-
dependent calcium channel CACNA1C (Cav1.2), which is located on
the transverse tubules. Increased intracellular calcium triggers opening of
the RYR2 channels and release of calcium from SR, a process that is re-
ferred to as Ca2þ-induced-Ca2þ release (CICR). The released calcium
binds to troponin C, which induces conformational changes in the

Arrhythmias in cardiomyopathies 1603
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troponin complex resulting in shifting the inhibitory arm of troponin I
away from the acto-myosin complex. The process leads to flexion of the
global head of the myosin over thin actin filament, resulting in displace-
ment of the actin filament by the myosin head and muscle contraction.
Excess intracellular calcium is then pumped back from the cytosol into
SR by SR Ca2þ ATPase 2 (SERCA2) encoded by ATP2A2 and pumped
out of the cell by cell membrane NCX1, re-establishing the
homoeostasis.79

Mutations in the RYR2 gene are implicated in cardiac arrhythmias as
well as cardiomyopathies, in accord with the prominent role of RYR2 in
the intracellular Ca2þ release and the fundamental role of Ca2þ in regu-
lating cardiac contraction and arrhythmogenesis.80–83 Specifically, RYR2
mutations are established causes of familial catecholaminergic polymor-
phic ventricular tachycardia (CPVT).80,81 Pathogenic variants in the RYR2
gene also have been reported in patients with cardiomyopathies, includ-
ing ACM and LVNC.82,83 As typical to all RYR2-mediated phenotypes,
pathogenic variants in the RYR2 gene confer increased risk of cardiac
arrhythmias prior to and in the absence of measurable structural cardiac
phenotype. A large genomic rearrangement in the RYR2 gene that leads
to loss of exon 3 has been associated with a compound phenotype of si-
noatrial node and atrioventricular node dysfunction, atrial fibrillation,
atrial standstill, and DCM.84 Deletion and pathogenic variants involving
exon 3 have been associated with exercise or stress-induced VT tachy-
cardia as well as LVNC in independent probands and families, supporting
the role of this gene not only in arrhythmogenesis but also in LV compac-
tion during embryonic development.85–87 The pathogenic role of RYR2
variants in CPVT is well established, however, their role as causes of car-
diomyopathies, perhaps with the exception of LVNC, is less certain. In
accord with this notion, knock-in mouse models of RYR2 pathogenic var-
iants identified in CPVT or ACM patients do not exhibit structural
remodelling reminiscent of ACM.88,89 In addition to the genetic variants,
various functional alterations in RYR2 channels have been identified as
contributing to cardiac arrhythmias and dysfunction, as discussed later.

4.6 JPH2
Junctophilin-2 (JPH2) is predominantly expressed in the heart and acts as
a structural protein within the junctional membrane complex that physi-
cally approximates the plasmalemmal L-type Ca2þ channel and RYR2 on
the SR (reviewed in Ref.90). Rare variants in the JPH2 gene have been
identified in patients with HCM and have been shown to impart func-
tional effects, such as cardiac hypertrophy and atrial fibrillation in in vitro
and in vivo studies.91–94 Likewise, a homozygous deletion variant in the
JPH2 gene has been reported in a patient with autosomal-recessive
DCM.95 A proposed mechanism pertains to impaired interaction of the
mutant JPH2 with RYR2 proteins and consequent destabilization of
Ca2þ release from the SR.93

4.7 PLN
PLN codes for a homopentameric protein phospholamban (PLN), which
regulates cardiac contractility/relaxation by targeting ATP2A2 (SERCA2)
in cardiac SR. Unphosphorylated PLN inhibits SERCA2, where its phos-
phorylation by protein kinase A (PKA) in response to cAMP of the adre-
nergic system releases it from SERCA2. The release removes the
inhibitory effect of PLN on SERCA2, thereby facilitating removal of Ca2þ

from the cytosol to SR and enhanced cardiac relaxation or lusitropy, as
observed upon stimulation of the heart with catecholamines.

Mutations in the PLN gene cause DCM and ACM.96–98 The phenotype
is characterized by refractory heart failure and a relatively high

prevalence of ventricular arrhythmias.96–99 The molecular basis of car-
diac arrhythmias in cardiomyopathies associated with the PLN mutations
is largely unknown. Given the major role of PLN protein in regulating in-
tracellular calcium concentration through inhibition of ATP2A2, muta-
tions in the PLN gene are expected to predispose to cardiac arrhythmias
through affecting calcium cycling in cardiac myocytes as in other forms of
heart failure.100

4.8 PKP2
Plakophilin 2 (PKP2) is a desmosome protein located predominantly in
the IDs and involved in mechano-sensing and stabilization of other ID
proteins, including SCN5A and GJA1 (gap junction protein alpha 1 or
connexin 43). Mutations in the PKP2 gene are the most common causes
of ACM.101 Among genes coding for the desmosome proteins, only the
PKP2 gene has been associated with cardiac arrhythmias, independent of
cardiomyopathy, albeit the data are not compelling.102,103 Given co-
localization of PKP2, SCN5A, and GJA1 proteins to the IDs, it is plausible
that PKP2 mutations de-stabilize localization and function of its binding
partners and hence, predispose to cardiac arrhythmias, partially indepen-
dent of cardiac contractile function.19,104,105 Experimental data in murine
models suggest that PKP2 deficiency leads to reduced transcript levels of
genes involved in intracellular calcium handling/cycling, thereby disrupt-
ing intracellular calcium homoeostasis with a consequent increase in
arrhythmogenesis.106

4.9 RBM20
Ribonucleic acid-binding motif protein 20 (RBM20) is a pre mRNA splic-
ing factor that is highly expressed in striated muscle, in particular, cardiac
muscle and regulates splicing of cardiac genes.10 Pathogenic variants in
RBM20 are associated with DCM and ACM.107–109 RBM20 alters splicing
of several genes in cardiac myocytes, in particular, TTN and RYR2, which
have been associated with cardiomyopathies as well as cardiac arrhyth-
mias.10,109 Differential splicing of calcium-handling genes CACNA1C and
CAMK2D have been observed in iPSC-derived cardiac myocytes from
patients with RBM20-associated DCM.110 Data in the Rbm20 knock-out
mice indicate aberrant splicing of Ryr2 and Camk2d genes resulting in in-
creased intracellular Ca2þ overload as a mechanism for the pathogenesis
of ventricular arrhythmias.109 The findings suggest that treatment with an
L-type Ca2þ channel blocker might reduce ventricular arrythmias in this
particular form of cardiomyopathy.109

4.10 HCN4
Hyperpolarization and cyclic nucleotide 4 channel (HCN4) encoded by
the HCN4 gene, transports positively charged ions to cardiac cells
(Figure 2). It is expressed mainly in the sinoatrial node in the adult heart
but during murine embryonic development it is also detectable at a
lower level in the trabecular (subendocardial) layer of myocar-
dium.111,112 The HCN4 channels play a crucial role in the automaticity of
the sinus node through the generation of a slow diastolic depolarization
during the Phase 4 of the cardiac action potential in response to in-
creased intracellular cAMP concentration.113 Expression level of Hcn4
gene is downregulated in response to exercise training in mice, which
may account for training-induced bradycardia.114 Mutations in the HCN4
gene are associated with sinus node dysfunction, sick sinus syndrome,
and inappropriate sinus tachycardia, as well as exercise-induced ventricu-
lar ectopic beats.115,116 In addition, HCN4 mutations have been linked to
LVNC and susceptibility to ventricular fibrillation occurring in conjunc-
tion with sinus bradycardia.117,118 The putative mechanism(s) of LVNC
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caused by the HCN4 mutations relates to expression of this gene in the
early cardiac progenitor cells that give rise to both compact and trabecu-
lar layers of the left ventricle as well as its role in normal compaction of
the human foetal ventricles.111,112

4.11 PRKAG2
The gene codes for gamma 2 subunit of AMP-activate protein kinase,
which sustains metabolism through regulating intracellular ATP concen-
tration.119 Mutations in the PRKAG2 gene lead to glycogen storage in the
heart mimicking HCM and Wolff–Parkinson–White syndrome, atrial fi-
brillation, and progressive infra-His conduction defect.120–122

Pathological examinations of affected human hearts show vacuoles con-
taining amylopectin, a glycogen-related substance.123 Unlike the classic
Wolff–Parkinson–White syndrome, the pre-excitation phenotype and

cardiac arrhythmias in these patients likely result from structural disrup-
tion of annulus fibrosus by excess glycogen-laden cells. Experimental
data suggest that PRKAG2 regulates voltage-gated sodium channels in
rat ventricular myocytes, leading to prolonging action potential duration
and production of arrhythmogenic early after depolarizations (EAD).124

However, data in genetically modified mouse models suggest that pre-
excitation and arrhythmias are direct consequences of glycogen storage
in cardiac myocytes.125

4.12 ABCC9
The encoded ATP-binding cassette subfamily C member 9 (aka sulfonyl-
urea receptor subunit 2A or SUR2) protein is a regulatory subunit of
ATP-sensitive Kþ channel. Mutations in the ABCC9 gene are known to
cause Cantu syndrome, a disease characterized by a number of develop-
mental abnormalities and congenital heart disease.126 ABCC9 mutations
also have been identified in patients with DCM and paroxysmal atrial fi-
brillation.127,128 The causal role of ABCC9 mutations in these phenotypes
remain to be established.

4.13 Other genes
Rare variants in CACNA1C and CALM2, encoding the voltage-dependent
L-type Ca2þ channel subunit a1C and calmodulin 2, respectively, have
been reported in patients with cardiac arrhythmias and cardiomyopa-
thies.129,130 However, the evidence to support the pathogenic role of
these variants in cardiomyopathies is not compelling.

5. Risk factors predisposing to
cardiac arrhythmias in
cardiomyopathies

5.1 Causal genes/mutations
Genotype–phenotype correlation studies in cardiomyopathies have
been compounded by the small sample size of the studies as well as ge-
netic and phenotypic heterogeneity of the disease, rendering firm con-
clusions challenging. Despite these limitations, specific phenotypic
characteristics hint to the underlying causal gene(s) in cardiomyopathies.
For example, conduction defects, including atrial, atrioventricular, and
left bundle branch blocks, supraventricular tachycardia, and ventricular
arrhythmias are often observed in patients with DCM caused by the
LMNA mutations.131,132 Such phenotypic features, however, are not spe-
cific to the LMNA mutations, as they are also observed in Anderson
Fabry disease, amyloidosis, and mitochondrial defects, among others.
Mutations in TTN and desmosome genes are associated with a high inci-
dence of atrial and ventricular arrhythmias as well as poor prognosis as
opposed to those in cytoskeletal protein genes.33,35,62,64,65,68 However,
there is considerable phenotypic variability, as truncating TTN mutations
also have been associated with a relatively mild form of DCM.36 Several
genes are implicated in susceptibility to cardiomyopathies as well as
arrhythmogenic syndromes, as discussed earlier under possible shared
genetic aetiology. Finally, functional genetic variants in genes encoding
protein constituents of ion channels might predispose to cardiac arrhyth-
mias in patients with hereditary cardiomyopathies.

5.2 Biological sex
Patient’s biological sex, partly through the effects of sex hormones on
gene expression and partly because of the differences in external factors,

Figure 2 The HCN4 channel and the topology of the HCN4 muta-
tions associated with left ventricular non-compaction cardiomyopathy.
The upper panel shows the 3D conformational structure of the HCN4
channel. The lower panel shows the liner structure of the HCN4 chan-
nel (two out of four subunits are shown). Each alpha-subunit is com-
posed of six transmembrane helixes (S1–S6), a pore-forming loop, and
intracellular N- and C-termini. The positively charged S4 helix (shown
in purple) is the voltage sensor of the channel. The four S6 segments
(shown in blue) of four-channel monomers together form the ion-con-
ducting passage of the HCN4 channel. The C-terminus comprises of
the C-linker (dotted line) and the cyclic nucleotide-binding domain
(cNBD), which is connected to the channel core and mediates cyclic
AMP-dependent changes in HCN channel gating. cAMP binding causes
a conformation change that leads to the assembly of an active tetramer
and channel opening. Red dots on the alpha-subunit shown on left indi-
cate the sites of mutation associated with left ventricular non-compac-
tion. The dot with a black dash indicates a truncation resulting from an
insertion mutation leading to premature truncation of the protein at
amino acid 695.
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such as physical activity, between males and females, is an important de-
terminant of phenotypic expression of various cardiovascular diseases,
including cardiomyopathies and arrhythmias. Sex-dependent differences
in the phenotypic expression of disease are not because of differences in
the genetic aetiology of cardiomyopathies, as the vast majority of cardio-
myopathies are autosomal and not sex-linked diseases. In general, phe-
notypic expression of cardiomyopathies seems to be more pronounced
in male than female patients, albeit there is considerable variability
among cardiomyopathies as well as inconsistent findings among different
studies.7,133–135 The inconsistencies in findings also seem to be relevant
to sex-dependent predisposition to cardiac arrhythmias in patients with
cardiomyopathies.133,136–138 Overall, ventricular arrhythmias seem to be
more common in male patients with cardiomyopathies and Brugada syn-
drome, whereas female preponderance is well documented in patients
with long QT syndromes.136,137,139,140 In the context of specific cardio-
myopathy genes, ventricular arrhythmias seem to be more common in
male patients who carry mutations in the LMNA or RBM20 gene.34,136,141

5.3 Age
Association of cardiac arrhythmias with age in hereditary cardiomyopa-
thy is influenced by the presence of concomitant conditions as well as
age-dependent expression of other cardiac phenotypes, such as myocar-
dial fibrosis, cardiac hypertrophy, and chamber dilatation, among others.
In addition, a number of molecular and cellular changes occur with ad-
vancing age, such as cell death and inflammation, which affect susceptibil-
ity to cardiac arrhythmias in hereditary cardiomyopathies.

Certain cardiac arrhythmias, such as atrial fibrillation exhibit age-
dependent penetrance, typically occurring in older age, whether in the
context of cardiomyopathies or otherwise.28 In contrast, ventricular
arrhythmias in cardiomyopathies and certain channelopathies typically
occur at a young age and are major causes of SCD in individuals
<40 years of age.142,143 A notable example is HCM, which is considered
among the most common causes of SCD in the young.142 In contrast,
atrial fibrillation, which occurs in about a quarter of the HCM patients,
typically presents late in the course of the disease.28 Ventricular arrhyth-
mias are often the first manifestations of ACM and might indicate dis-
turbed ion channel functions in cardiac myocytes in the presence of
desmosome mutations.103,144,145 The early presentation of cardiac
arrhythmias in ACM, that is cardiac arrhythmias manifesting in the ab-
sence of cardiac dysfunction, suggests a lower threshold for dysregula-
tion of cardiac myocyte electric activity than mechanical function in the
presence of mutations in the desmosome proteins. Alternatively, it is
also possible that early cardiac arrhythmias originate from the non-
myocyte cells in the heart that express the mutant desmosome proteins,
such as the conduction system cells, as suggested by the experimental
data.146 Cardiac arrhythmias also occur late in the course of ACM and
typically in the context of cardiac dysfunction, as in other forms of heart
failure.

Cardiac arrhythmias in patients with DCM typically occur late and in
the presence of cardiac dysfunction. However, DCM associated with
LMNA mutations often exhibits early onset of cardiac conduction defects
and supraventricular arrhythmias at a younger age, preceding the onset
of cardiac dysfunction.8 Likewise, ventricular arrhythmias occur at a rela-
tively young age in patients with DCM associated with PLN, FLNC, and
RBM20 mutations.74,98,108 Because of a relatively high prevalence of ven-
tricular arrhythmias there is considerable phenotypic overlaps between

DCM and ACM in patients with mutations in PLN, FLNC, and RBM20
genes.

5.4 Ethnic background
The prevalence of the underlying causal mutations is not known to differ
significantly among populations with different ethnic backgrounds,
whereas phenotypic expression of cardiomyopathies could vary because
of the modifier effects of the genetic backgrounds as well as environmen-
tal factors. Phenotypic expression of cardiac hypertrophy is more pro-
nounced and the risk of heart failure is higher in African–American
patients with HCM, as compared to Caucasians.147 In contrast, the inci-
dence of atrial fibrillation is lower among the African–American patients
with HCM as compared to Caucasians and that of ventricular arrhyth-
mias does not seem to be different.147

BAG3 mutations have been associated with worse clinical outcomes in
African–American patients with DCM.148 However, association of car-
diac arrhythmias with ethnic background in patients with DCM caused
by BAG3 mutations remains unknown. Likewise, there are ethnic differ-
ences in the prevalence of ACM and SCD in patients with ACM.11,149

Accordingly, ACM is more common in certain regions of Italy where it
accounts for up to 20% of the cases of SCD in athletes.149 It is unclear
whether the differences are reflective of differences in the genetic back-
grounds of the individuals or are secondary to factors that facilitate diag-
nosis of the disease.

5.5 Physical exercise
Observational studies suggest an association between sport activities
and SCD, particularly in young patients with HCM.4 However, a recent
randomized prospective study showed that patients with HCM tolerate
moderate-intensity exercise well without occurrence of significant
arrhythmias.150 Overall, the incidence of serious cardiac arrhythmias or
SCD during physical exercise seems to be relatively low, suggesting that
exercise may not be a major risk factor for induction of serious ventricu-
lar arrhythmias or SCD in HCM.151

Physical exercise is considered a risk factor for cardiac arrhythmias in
ACM, a disease caused primarily by mutations in genes encoding desmo-
some proteins.152–154 In the context of specific mutations, intense exer-
cise in patients with the TMEM43 p. Ser358Leu mutation is associated
with a marked increase in the number of appropriate defibrillator shock,
which is a surrogate indicator of malignant ventricular arrhythmias.154

Multiple mechanisms are likely to be involved in the pathogenesis of
exercise-induced cardiac arrhythmias in cardiomyopathies. For example,
physical exercise by provoking the adrenergic system could activate
cAMP-dependent PKA and subsequent phosphorylation of ion channels,
affecting their function and leading to arrhythmias during exercise.155–157

Likewise, exercise could induce cardiac arrhythmias by activating the
stretch responsive ion channels. Moreover, exercise could alter interac-
tion of the desmosome proteins with a subset of ion channels, such as
SCN5A (Nav1.5) that located at the IDs.158 Chronic exercise could af-
fect susceptibility to cardiac arrhythmias by inducing molecular and
structural remodelling in the heart. In keeping with the beneficial effects
of exercise in other cardiovascular diseases, a recent study in a mouse
model suggested beneficial effects of exercise in reversal of dysregulated
transcriptional pathways in ACM.159

1606 A.J. Marian et al.
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5.6 Other susceptibility factors
Molecular and cellular inflammatory responses are observed in the myo-
cardium of patients with ACM.160 The inflammatory response is likely
due to internal factors but could also be triggered by external factors,
such as viruses. Cardiotropic viruses have been detected in the myocar-
dium of patients with ACM.161 It is unclear whether viruses contribute
to the pathogenesis of cardiac arrhythmias in ACM, although proteolytic
cleavage of dystrophin by coxsackieviruses has been reported to lead to
cardiac dilatation and dysfunction.162

Although the presence of concomitant CAD and myocardial ischae-
mia in patients with HCM is associated with adverse outcomes, its role
in predisposition to cardiac arrhythmias is unclear.163 Finally, presence of
LV systolic dysfunction, represented as elevated plasma levels of bio-
markers of cardiac dysfunction, increases the risk of cardiac arrhythmias
in patients with cardiomyopathies, as in other forms of heart failure with
reduced EF.164,165

6. Mechanisms of cardiac
arrhythmias in hereditary
cardiomyopathies

The underpinning mechanisms of cardiac arrhythmias in hereditary car-
diomyopathies are not distinct from those involved in primary arrhyth-
mia syndromes, suffice it to state that the arrhythmogenic substrates
differ. Mechanisms of cardiac arrhythmias in primary arrhythmia disor-
ders have been covered in other articles in the Spotlight issue.
Therefore, the mechanisms are only briefly mentioned.

Re-entrant circuits and abnormal impulse formation can both contrib-
ute to arrhythmias.166,167 Re-entrant arrhythmias are more likely to oc-
cur in the presence of extensive fibrosis, which contributes to
heterogeneous conduction with slow or discontinuous electrical propa-
gation. This may serve as a substrate for re-entrant ventricular arrhyth-
mias that can originate during normal sinus rhythm.168 In addition to
fibrosis, downregulation of connexins may contribute to conduction
delays, increased heterogeneity in impulse propagation, and an increased
dispersion of action potential durations.169

Abnormal impulse formation represents the second major arrhythmia
mechanism associated with cardiomyopathies, and can be caused by en-
hanced automaticity or triggered activity. Enhanced automaticity is the
result of diastolic depolarizations due to net inward current during
Phase 4 of the action potential. Abnormal automaticity is enhanced by b-
adrenergic stimulation, which is consistent with clinical studies in patients
with HCM showing that greater than half of all ventricular arrhythmias
were associated with moderate to intense physical activity.170 In addi-
tion, triggered activity can result from depolarizations that occur during
or following cardiac action potentials (APs). EADs occur during Phase 2
or 3 of the AP, whereas delayed afterdepolarizations (DADs) occur after
repolarization has been completed. When the amplitude of an EAD or
DAD research membrane threshold potential, a spontaneous action po-
tential referred to as triggered activity can occur.167 The development of
EADs often depends on the reduced availability of repolarizing Kþ cur-
rent.171 DADs on the other hand are mostly observed under conditions
that augment intracellular Ca2þ release and increased sympathetic activ-
ity, as seen in hypertrophied and failing hearts.172 Interestingly, frequent
ventricular premature depolarizations have been associated with cardio-
myopathy adding more complexity to our understanding of arrhythmias
associated with cardiomyopathy.173

7. Pathogenesis of cardiac
arrhythmias in hereditary
cardiomyopathies

The major components involved in the pathogenesis of cardiac arrhyth-
mias in hereditary cardiomyopathy entail two intertwined components
of ion channel abnormalities and pro-arrhythmic structural remodelling,
which are discussed.

7.1 Pro-arrhythmic structural remodelling
in cardiomyopathies
Whereas early cardiac arrhythmias in hereditary cardiomyopathies are
typically due to changes in ion channel functions, as discussed earlier, late
arrhythmias are generally associated with structural remodelling of the
cardiac chambers.

7.1.1 Cardiac hypertrophy
Severe cardiac hypertrophy is considered a risk factor for cardiac
arrhythmias and SCD in patients with HCM.26,174 Cardiac hypertrophy
affects myocardial electric properties, such as voltage amplitude and con-
duction, producing an arrhythmogenic substrate.175 At the molecular
level, increased cytosolic Ca2þ resulting from increased Ca2þ entry
through the L-type calcium channels and reduced exchange through
NCX1 could lead to DADs. The latter is implicated as a mechanism of
cardiac arrhythmias in cardiac hypertrophy associated with HCM.176

7.1.2 Cardiac dilatation
Progressive cardiac dilatation and remodelling in cardiomyopathies is
commonly associated with complex electric remodelling in the heart, in-
volving Kþ, Naþ, and Ca2þ currents, as well as NCX electric properties,
which collectively lead to altered spatiotemporal gradient of repolariza-
tion, prolongation of the action potential duration (APD), and increased
excitability of atrial and ventricular myocytes (reviewed in Ref.177).
Molecular changes, which are mainly documented in heart failure with
reduced EF and in model organisms but largely are expected to pertain
to human DCM as well. Specifically, transcript levels of several genes
coding for the components of Naþ, Kþ, and Ca2þ channels are reduced
in the endomyocardial biopsy samples from patients with DCM and in
model organisms.178–180 In addition, cardiac dilatation and failure is asso-
ciated with activation of a number of kinases such as PKA and CAMK2,
which target ion channel proteins for phosphorylation and affect their
functional properties.181,182

Loss of inactivation of SCN5A (Nav1.5) channels leads to increased
late inward Naþ current, whereas Kþ currents, including Ito, are downre-
gulated, and Ca2þ currents are upregulated in dilated hearts.183–186 The
net result of these alterations is the prolongation of the APD.
Additionally, Calcium calmodulin-dependent protein kinase II (CAMK2)-
mediated phosphorylation of RYR2 in the failing hearts leads to calcium
leak from the SR in the setting of downregulated ATP2A2 protein levels
and reduced Ca2þ-uptake into the SR.187,188 In addition to ion channels
and calcium-handling proteins, disorganization of GJA1 (Cx43), a protein
critical for the normal impulse conduction in the heart, can contribute to
the arrhythmogenicity of failing hearts.189

7.1.3 Myocardial fibrosis
Data on the association of myocardial disarray and fibrosis with cardiac
arrhythmias in HCM are suggestive but not conclusive. Myocardial
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.
fibrosis, assessed by late gadolinium enhancement (LGE), as a surrogate
marker, has been shown to be a modest risk factor for SCD, and hence,
by inference cardiac arrhythmias.190–192 While some studies suggest the
extent of LGE correlates with the risk of SCD in HCM, others suggest
the simple detection of LGE is a risk factor for SCD.190–192

7.1.4 Myocyte disarray
Myocardial disarray, as assessed by diffusion tensor, cardiac magnetic
resonance imaging has been associated with an increased risk of ventric-
ular arrhythmias in HCM.193 Experimentally myocardial disarray has
been linked to altered transmural distribution of connexin 43, providing
a substrate for cardiac arrhythmias in HCM.194

7.2 Functional defects in ion channels in
cardiomyopathies
An exquisite ionic homoeostasis is maintained by a large set of molecules
in cardiac myocytes to orchestrate orderly cycles of excitation and con-
traction throughout life (Figure 3). Consequently, a large array of distur-
bances, whether genetic or otherwise, could disrupt various
components of this delicate balance and lead to dysregulation of
excitation-contraction cycles, affecting both cardiac rhythm as well as
mechanical function. In addition to genetic mutations, which could di-
rectly affect structure and function of the ion channels and therefore,
contribute to cardiac arrhythmias (as discussed in this spotlight issue), a
number of secondary changes, resulting from impaired cardiac function
or altered signalling pathways could also affect ion channel function and
contribute to arrhythmogenesis in cardiomyopathies. Some of the sec-
ondary changes in ion channels, occurring in the context of hereditary
cardiomyopathies, are discussed.

7.2.1 Functional defects in cardiac sodium current
The mechanisms underlying SCN5A-mediated cardiac arrhythmias in
DCM patients are not known. It is plausible that SCN5A LoF variants pro-
mote arrhythmias through slowing the conduction and initiating a re-
entry, whereas GoF mutations induce triggered activity during the repo-
larization or diastolic phase of cardiac cycle.39,41 Whereas the mecha-
nisms responsible for Long QT and Brugada syndromes or conduction
defects caused by SCN5A mutations are partially understood, it is unclear
whether similar or distinct mechanisms are also involved in the patho-
genesis of cardiac arrhythmia occurring in the context of DCM in
patients carrying pathogenic variants in the SCN5A gene.

As discussed earlier, it is unclear whether pathogenic variants in
SCN5A cause DCM and if so, how they lead to cardiac dilatation and dys-
function. Several hypotheses have been proposed and discussed recently
(Figure 4).195 On one end of the spectrum, one may posit that DCM is a
consequence of long-standing cardiac conduction abnormalities and
arrhythmias resulting from SCN5A protein functional abnormalities, as
in ‘tachycardia-induced cardiomyopathy’.195 This hypothesis is supported
by the concomitant presence of cardiac conduction abnormalities and
arrhythmias in the majority of DCM patients carrying pathogenic variants
in the SCN5A gene.47,48 On the opposite end of the spectrum, it is postu-
lated that DCM is a direct consequence of SCN5A channel dysfunction,
meaning that the structural phenotype is primarily driven by electrical
abnormalities. Accordingly, increased Naþ influx into cardiac myocyte
caused by SCN5A GoF mutations could lead to compensatory activation
of the NCX1 or the Naþ/Hþ exchanger, resulting in intracellular Ca2þ

overload or acidification, respectively, and consequent impaired excita-
tion–contraction coupling.196–198 A third hypothesis implicates impaired

subcellular localization and interaction of SCN5A with other structural
proteins, such as PKP2, DSG2, dystrophin, Lim domain binding 3, and
caveolin 3, as the putative mechanism for DCM (reviewed in Ref.199).
Several other putative mechanisms are also considered, including pres-
ence of concomitant pathogenic variants in other genes being responsi-
ble for DCM, effects of mutations on dimerization and post-translational
modifications of SCN5A, such as phosphorylation, acetylation, ubiquiti-
nation, and nitrosylation; as well as disruption of SCN5A trafficking and
function (reviewed in Ref.200).201–205 Given the heterogeneity of the
SCN5A mutations associated with DCM, one could envisage multiple
mechanisms contributing to the pathogenesis of cardiac dilatation and
dysfunction.

The interplay between SCN5A and DCM is further compounded by
the effects of heart failure on SCN5A functions.206 Reduced peak Naþ

current and prolongation of APD in cardiac myocytes are observed in
heart failure models.207–210 Likewise, increased late Naþ current (INaL)
during the plateau phase of action potential resulting from impaired inac-
tivation of the channel is implicated in the prolongation of action poten-
tial and arrhythmogenesis.183 The putative underpinning mechanisms
responsible for altered Naþ current are reduced level of SCN5A pro-
tein, disrupted subcellular localization, deficient glycosylation of SCN5A,
and altered phosphorylation of SCN5A.183,207,209,211,212 Moreover, epi-
genetic suppression of SCN5A gene expression is implicated in reduced
peak INa in an iPSC-cardiomyocyte model of DCM associated with an
LMNA mutation.57 Furthermore, reduced levels of full-length SCN5A
transcript due to aberrant splicing have been observed in the myocar-
dium of patients with HCM caused by the MYPBC3 mutations.213

Moreover, increased INaL has been implicated in the pathogenesis of
HCM.214 However, a clinical trial with ranolazine in humans, an inhibitor
of INaL, did not show significant effect on exercise performance, indices
of diastolic function, NT-proBNP levels, or quality of life, casting doubt
about the pathogenic role of this current in HCM.215 Finally, PKP2 LoF
variants are associated with decreased INa density and voltage-
dependent inactivation properties of SCN5A, providing a potential
mechanism for arrhythmogenesis in ACM.103,216 Mechanistically, re-
duced peak INa current increases the susceptibility to re-entry by slowing
impulse conduction. Increased INaL because of slower rate of inactivation
antagonizes repolarization, causes APD prolongation, and increases sus-
ceptibility to EADs, mechanisms similar to those observed in long QT
syndrome type 3. Thus, in cardiomyopathies, structural and functional
modification of SCN5A secondary to cardiac dysfunction could be re-
sponsible for cardiac arrhythmias.

7.2.2 Functional defects in cardiac calcium current
Cardiac contraction and relaxation are regulated by a delicate set of
channels and pumps that enable balanced influx and efflux of calcium
during a cardiac cycle. Voltage-dependent L-type Ca2þ channels are acti-
vated during depolarization phase of the action potential to enable influx
of Ca2þ into the cytosol. The latter triggers CICR through the RYR2
from the SR, which initiates acto-myosin contraction. This is followed by
efflux of Ca2þ from the cytosol, which is carried out by the NCX1 as
well as sequestration of Ca2þ back into the SR by the ATP2A2
(SERCA2a) pump, mediating dissociation of actin and myosin and muscle
relaxation.79

The role of genetic variants in the components of Ca2þ cycling in car-
diac muscle in susceptibility to cardiac arrhythmias in cardiomyopathies
was discussed earlier. Secondary changes in the component of Ca2þ han-
dling channels and transporters are also implicated in arrhythmogenesis
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.associated with inherited cardiomyopathies (reviewed in Refs217,218).
Mouse models of cardiomyopathies exhibit altered function of the L
type Ca2þ channels leading to excess intracellular Ca2þ load.109,219 The
components of the channels and pumps involved in maintaining Ca2þ

homoeostasis, including the RYR2, are modified upon phosphorylation
by various kinases and oxidative stress, which are often altered in cardio-
myopathies220,221 (reviewed in Ref.222).

CAMK2, a major calcium-handling protein, is activated and contrib-
utes to arrhythmogenesis in cardiomyopathies. Enhanced activation of
results in increased phosphorylation of RYR2 and increased diastolic
RYR2-mediated Ca2þ leak, which are implicated in arrhythmogenic
Ca2þ waves and VT in the mdx mouse model of DCM.223 Likewise, in-
creased CAMK2 activity, hyper-phosphorylation of the RYR2, super

inhibition of ATP2A2, and reduced Ca2þ transients are implicated as the
mechanisms responsible for cardiac arrhythmias in DCM caused by the
PLN mutations.224 Moreover, increased production of reactive oxygen
species, commonly observed in cardiomyopathies, promotes both
CAMK2 activation and enhanced RYR2-mediated Ca2þ leak, promoting
arrhythmogenesis.225 Enhanced CAMK2 activity might induce pro-
arrhythmic changes by targeting SCN5A upon phosphorylation, which
could result in enhanced late depolarization current and prolongation of
action potential duration.226

Cardiac myocytes isolated from human hearts of patients with HCM
exhibit increased late Naþ current, increased L-type Ca2þ current, pro-
longed Ca2þ transients, and higher diastolic Ca2þ concentrations.227 In
accord with these observations, CAMK2 activity and enhanced CAMK2-

Figure 3 Schematic representation of the structural elements of cardiomyocytes implicated in the pathogenesis of arrhythmias in inherited cardiomyopa-
thies. Protein constituents of cardiac myocyte structural proteins and ion channels are depicted to reflect the complexity of the interactions that mediate
maintenance of normal cyclic excitation and contraction cycles throughout life.

Arrhythmias in cardiomyopathies 1609



Figure 4 Graphic illustration of putative mechanisms underlying dilated cardiomyopathy associated with SCN5A mutations. Gain-of-function (GoF)
SCN5A variants are known to cause long QT3 syndrome. GoF variants could also increase INa current and to frequent premature ventricular contractions
or ventricular tachycardia, which might contribute to left ventricular dilatation and dysfunction. Likewise, GoF variants could induce compensatory activation
of the Naþ/Ca2þ exchange protein, resulting in intracellular Ca2þ overload and consequently impaired excitation–contraction coupling and contractile dys-
function. Loss-of-function SCN5A variants are known to cause Brugada syndrome and cardiac conduction defects, the latter could lead to cardiac structural
remodelling. SCN5A pathogenic variants could also result in proton leak into the cytosol, acidify the cytosol, and myocardial dysfunction. Experimental data
to support these hypotheses are scant. INa, inward depolarizing sodium current; NaV1.5, voltage-gated sodium channel a-subunit; NCX, Naþ/Ca2þ ex-
changer; PVC, premature ventricular contractions.
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..mediated phosphorylation of the RYR2 are implicated in an aberrant in-
tracellular Ca2þ handling in a mouse model of HCM caused by a muta-
tion in the TNNT2 gene.228

PKP2, a major causal gene for ACM in humans, is implicated in regulat-
ing expression of several genes involved in Ca2þ homoeostasis, as dele-
tion of Pkp2 gene in mice is associated with downregulation of
expression of Ryr2, Ank2 (encoding ankyrin B), Cacna1c, Trdn (triadin),
and Casq2 (calsequestrin).106 Downregulation of expression of these
genes is associated with a number of changes in Ca2þ homoeostasis,
leading to increase Ca2þ transient amplitude and duration, and early as
well as delayed after transients.106 The data are insufficient to conclude
that the changes are reflective of transcriptional activity of the PKP2
protein.229

Expression level of JPH2, a key junctional membrane protein that is es-
sential for proper intracellular Ca2þ handling in cardiomyocytes, is re-
duced in human heart biopsies obtained from patients with HCM.230

Functionally, experimental downregulation of JPH2 using an RNA inter-
ference is associated with reduced Ca2þ transient, increased Ca2þ store,
impaired cardiac contractility, and increased mortality in a cardiac-
specific Jph2 knockdown mice.230 Whether these changes contribute to
arrhythmogenesis in cardiomyopathies, while expected, remain to be
shown.

Finally, auto-antibodies against the L-type Ca2þ channel have been
identified in a subset of patients with DCM and their presence has shown
to be and independent predictor of VT and SCD.231,232 The findings are
in accord with data showing that anti-Ro antibodies, which are linked to
complete heart block in auto-immune diseases, inhibit L- and T-type cal-
cium channels (reviewed in Ref.233). Observational data suggest prolon-
gation of the QT interval and increased frequency of ventricular ectopic
beats in patients with anti-Ro antibodies.234 Likewise, ex vivo experimen-
tal data show that affinity-purified auto-antibodies prolong the APD and
promote triggered activity due to early afterdepolarizations leading to
VT.231 Whereas the role of auto-antibodies in conduction defects, par-
ticularly congenital AV block, is well established, their role and the perti-
nent mechanisms in the pathogenesis of cardiac arrhythmias in human
hereditary cardiomyopathies remain to be established.

7.2.3 Functional defects in cardiac K1 current
Potassium channels are comprised of tetrameric transmembrane pro-
teins that enable specific permeation of the Kþ ions, but not other ions,
across the cytoplasmic membrane. The Kþ channel units are encoded by
over two dozen genes in the genome, which are ubiquitously expressed
in various cell types, including cardiac myocytes. The primary function of
the Kþ in cardiac myocytes is to restore the membrane potential to its
resting level, that is regulate repolarization (reviewed in Ref.235). The
rapid and slow rectifier Kþ channels, referred to as IKr and IKs, regulate ef-
flux of Kþ during Phase 3 of the action potential in ventricular cardiac
myocytes and are the main determinants of the refractory period and
therefore, the APD. In addition, the inward rectifier channels (IK1), fast
transient outward current (Itof), and slow transient outward current
(Itos) contribute to efflux of Kþ during various phases of action potential.
Genetic variants, transcriptional changes, and post-translational modifi-
cations of various proteins involved in the Kþ currents are expected
to affect susceptibility to cardiac arrhythmias in patients with
cardiomyopathies.

There are scant data on Kþ channel abnormalities in specific forms of
genetic cardiomyopathies. A pathogenic LoF variant in KCNQ1, encoding

a subunit of IKs, has been associated with reduced IKs current and VT in a
patient with DCM.236 In addition, auto-antibodies against KCNQ1 pro-
tein, also known as Kv7.1, have been detected in a subset of patients
with DCM and shown to increase IKs current density and shorten the
QT interval.237

In the setting of heart failure in patients with cardiomyopathies, the
changes are expected to be largely similar to those observed in other
forms of heart hypertrophy and failure. Notably, Kþ currents are re-
duced in the failing myocardium, resulting in slow repolarization and pro-
longation of the APD, setting a pro-arrhythmic substrate.238–241

Likewise, ventricular myocytes isolated from patients with DCM show
prolongation of the APD duration and slower repolarization phase.242

At the current level, IKs, IK1, and Ito are generally suppressed whereas
small calcium-activated Kþ current is increased in heart failure (reviewed
in Ref.238). The changes in the expression level of small calcium-activated
Kþ current proteins have not been consistently observed.243 In conjunc-
tion with suppressed Kþ currents and prolongation of APD, transcript
levels of several genes encoding Kþ channel protein subunits are also re-
duced in cardiac myocytes isolated from experimental models of cardio-
myopathies.179,244 Moreover, changes in Kþ channels in iPSC-
cardiomyocytes generated from patients with cardiomyopathies also
have been reported, albeit the findings are preliminary.245,246

7.2.4 Functional defects in cardiac Cl2 current
Several chloride channels are expressed in the heart including, CFTR,
CIC2, CIC3, CLCA, TMEM16A, and BEST1; and implicated in the regula-
tion of both repolarization and depolarization (reviewed in Ref.247).
Alterations in cardiac chloride channels have been implicated in cardiac
arrhythmia, myocardial hypertrophy, and heart failure.247 For example,
swelling-sensitive Cl- channel (IClswell) is activated in cardiac hypertrophy
and failure and contributes to shortening of the APD, depolarization of
the resting membrane potential, and induction of arrhythmias.248

7.3 Functional defects in cardiac connexins
Gap junctions are comprised of clusters of connexin proteins, which
span the cytoplasmic membrane, form channels, and regulate cell-to-cell
electrical and metabolic coupling (reviewed in Ref.249). Six connexin
molecules assemble to form a connexon (hemichannel), which connects
with the connexon of the neighbouring cardiac myocyte to form a gap
junction in the IDs.249 The human genome codes for 21 connexin pro-
teins with similar structural topology.250 Connexins show tissue and cell
type-specific expression, enabling unique permeability and gating proper-
ties as well as ability to interact with regulatory partners in different tis-
sues.251 GJA1 (gap junction protein alpha 1 or Cx43) is the most
abundantly expression connexin in cardiac myocytes, followed by GJA5
(gap junction protein alpha 5 or Cx40), and GJC1 (gap junction protein
gamma 1 or Cx45).249 In addition, GJB2 (gap junction protein beta 2 or
Cx26) and GJD3 (gap junction protein delta 3 or Cx31.9) are also
expressed in cardiac myocytes, albeit at low levels. GJA1 and GJA5 are
predominantly expressed in ventricular (>90%) and atrial cardiac myo-
cytes, respectively, and less in the cardiac conduction system, whereas
GJC1 expression is found mainly in the cardiac conduction sys-
tem.249,252,253 Diversity in the expression levels and composition of car-
diac connexins leads to homomeric and heteromeric constitution of
connexons with variable biological properties. In addition, connexins un-
dergo considerable remodelling in the heart during cardiac development
and under pathological conditions, both in terms of expression levels as
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well as post-translational modifications, including phosphorylation, which
regulate its gating, trafficking, assembly/disassembly, distribution, and
degradation.254,255

There is no compelling human molecular genetic data to link patho-
genic variants in genes encoding cardiac connexin with cardiomyopathies
and arrhythmias (reviewed in Ref.256). However, molecular remodelling
of the IDs in cardiomyopathies is associated with reduced levels, post-
translational modifications, and localization of connexins in the
heart.19,257–259 The changes are particularly notable for GJA1 (Cx43) in
the advanced stages of ACM, wherein the total level and localization of
GJA1 to IDs are markedly reduced.19,257–259 However, altered expres-
sion and localization of GJA1 are not specific to ACM but are also ob-
served in other forms of heart failure and in cardiomyopathies, including
DCM, HCM, and model organisms of cardiomyopathies.194,243,260–262

The precise functional impacts of altered GJA1 expression and locali-
zation on susceptibility to cardiac arrhythmias are not well established.
Conventionally, alterations in are thought to enhance susceptibility to
cardiac arrhythmias by altering action potential conduction in the heart.
However, part if not the whole effects of connexins might be mediated
through their interactions with SCN5A and electrotonic/ephaptic con-
duction (reviewed in Ref.263).

Atrial fibrillation is associated with changes in the expression level and
location of GJA5 (Cx40) in the atrial tissue and pulmonic veins (reviewed
in Ref.264). However, in the context of cardiomyopathies, the role of
GJA5 in susceptibility to atrial arrhythmias remains unclear.

8. Treatment

Conventional approaches, comprised of pharmacological therapy, radio-
frequency ablation, and implantable cardioverter/defibrillator (ICD) im-
plantation, are applied for the treatment of cardiac arrhythmias in
patients with hereditary cardiomyopathies, and therefore, not discussed.
Nevertheless, it merits noting that because of the presence of an
arrhythmogenic substrate the threshold for implantation of an ICD in
the management of cardiac arrhythmias is relatively low. The notion is
partly reinforced by the success of radiofrequency ablation in reducing
ventricular arrhythmias in patients with ACM and the effectiveness of
ICDs in prevention of SCD in patients with HCM.265–267

9. Concluding remarks

Cardiac arrhythmias are common and dangerous manifestations of he-
reditary cardiomyopathies. ACM is the prototypic form of hereditary
cardiomyopathies wherein ventricular arrhythmias are the cardinal and
early manifestations of the disease, typically occurring prior to the onset
of cardiac dysfunction. Numerous mechanisms are implicated in predis-
position to cardiac arrhythmias in hereditary cardiomyopathies, including
a shared genetic aetiology, pro-arrhythmic structural and molecular
myocardial remodelling, altered mRNA splicing of genes regulating ion
currents, post-translational modifications of ion channels, and trafficking
of proteins involved in electric activity of the heart. Elucidation of the ge-
netic and non-genetic basis of cardiac arrhythmias in hereditary cardio-
myopathies might pave the way for identification of new drug targets and
development of new therapies.
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