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Abstract

The evolution of “informatics” technologies has the potential to generate massive databases, but 

the extent to which personalized medicine may be effectuated depends on the extent to which 

these rich databases may be utilized to advance understanding of the disease molecular profiles 

and ultimately integrated for treatment selection, necessitating robust methodology for dimension 

reduction. Yet, statistical methods proposed to address challenges arising with the high-

dimensionality of omics-type data predominately rely on linear models and emphasize 

associations deriving from prognostic biomarkers. Existing methods are often limited for 

discovering predictive biomarkers that interact with treatment and fail to elucidate the predictive 

power of their resultant selection rules. In this article, we present a Bayesian predictive method for 

personalized treatment selection that is devised to integrate both the treatment predictive and 

disease prognostic characteristics of a particular patient’s disease. The method appropriately 

characterizes the structural constraints inherent to prognostic and predictive biomarkers, and hence 

properly utilizes these complementary sources of information for treatment selection. The 

methodology is illustrated through a case study of lower grade glioma. Theoretical considerations 

are explored to demonstrate the manner in which treatment selection is impacted by prognostic 

features. Additionally, simulations based on an actual leukemia study are provided to ascertain the 

method’s performance with respect to selection rules derived from competing methods.
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1 Introduction

Human diseases can be intrinsically heterogeneous with respect to their pathogenesis among 

patient populations and in some contexts vary in composition among multiple locations 

within a patient. Owing to pharmacogenetic diversities, a particular therapeutic strategy may 

yield very different outcomes among patients with similar diagnoses (Spear et al., 2001). In 

the oncology setting, wherein the majority of definitive comparisons in phase III fail to 

demonstrate the hypothesized extent of benefit for new treatment strategies for solid tumors 

(Amiri-Kordestani and Fojo, 2012), it is widely accepted that the relative utility of a given 

therapy is determined by the confluence of a patient’s particular clinical prognosis as well as 

the tumor’s particular molecular composition. In fact, drug development strategies devised 

to characterize cohort-averaged treatment benefits have largely failed in oncology with only 

34% of confirmatory phase III trials yielding a significant result from 2003 to 2010 (Sutter 

and Lamotta, 2011).

Personalized medicine endeavors to understand the mechanisms of pharmacogenetics and 

ultimately achieve conformality between therapeutic interventions and the individuals being 

treated. With advancements in the understanding of molecular cancer biology, several 

treatment strategies that target specific biomarkers, such as crizotinib for non-small-cell lung 

cancer characterized by an anaplastic lymphoma kinase gene rearrangement, have been 

discovered and translated into clinical practice (Kelloff and Sigman, 2012). Early successes 

of molecularly targeted interventions have to some extent effectuated personalized medicine. 

The successes are limited, however, when one considers the tremendous amount of resources 

heretofore dedicated to precision medicine endeavors (Kuner, 2013).

Inherent to the realization of personalized medicine is the understanding of both predictive 

and prognostic markers (Simon, 2010; Ma et al., 2015). The difference between the two is 

that prognostic biomarkers determine how likely patients will achieve therapeutic responses 

regardless of the types of treatment, while predictive biomarkers determine who are likely/

unlikely to benefit from a particular class of treatment regimes. Statistically, prognostic 

biomarkers are often identified as significant main effects, whereas predictive biomarkers are 

identified as significant interaction effects between a candidate biomarker and the treatment 

(Ternes et al., 2017). As depicted in Figure 1, studies have proposed quantitative biomarkers 

arising from clinical, genomic and recently imaging sources (Yip and Aerts, 2016). For 

examples, several genomic-based biomarkers have been proposed for a variety of tumors 

types (Ballman, 2015), and radiomic-based imaging features have been shown to 

characterize degrees of prognostication for patients with lung cancer (Aerts et al., 2014). 

While the evolution of “informatics” technology has the potential to generate massive 

databases for quantitative-based interrogations (Kelloff and Sigman, 2012) of many 

informatics sources, the extent to which personalized medicine may be effectuated depends 

on the extent to which these rich databases may be utilized to advance understanding of the 

disease molecular profiles and ultimately integrated for treatment selection.

While several statistical methods have been proposed to address challenges arising with the 

high-dimensionality of omics-type data, these methods associate the clinical outcomes with 

genomic features, usually measured on a relatively limited number of patients (Witten and 
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Tibshirani, 2009; Archer and Williams, 2012). These methods, while useful for identifying 

associations deriving from prognostic biomarkers, are often limited for discovering 

predictive biomarkers that interact with treatment and fail to elucidate the predictive power 

of the resultant biomarkers. Ma et al. (2015) provide a survey of statistical methods for 

establishing personalized treatment selection rules that are currently available in the 

statistical literature. Conventional approaches should be considered limited, however, as they 

often rely of assumptions of statistical exchangeability among patients within biomarker 

defined subgroups or rely on linear models despite the presence of large numbers of 

potentially correlated inputs and interaction terms. Recently, Bayesian approaches that 

predict the personalized treatment utility for a given individual’s tumor on the basis of 

measures of inter-patient molecular similarity (Ma et al., 2016, 2017) have been established 

using predictive biomarkers stemming from multi-gene signatures. In both empirical and 

case studies, the Bayesian predictive methods were shown to effectively leverage a large set 

of tumor features and substantially outperformed competing methods based on penalized 

regression (Archer and Williams, 2012; Geng et al., 2015).

In this article, we propose a Bayesian predictive framework for personalized treatment 

selection that is devised to leverage both predictive and prognostic biomarkers. Given a 

genomic signature and a set of prognostic markers, usally selected in previous lab, clinical, 

and/or in silico studies, the methodology endeavors to formulate and test an optimal, 

individualized rule for treatment selection. Following the power prior predictive probability 

modeling framework and adopting the Bayesian discriminant analysis approach with 

prognostic biomarkers, the proposed method appropriately characterizes the structural 

constraints inherent to prognostic and predictive biomarkers, and hence properly utilizes 

these complementary sources of information for treatment selection (Lavine and West, 1992; 

Ma et al., 2016). Specifically, we build upon Ma et al. (2016) and propose a framework that, 

in addition to predictive markers, accounts for prognostic determinants to predict the extent 

to which a given patient is likely to attain a level of clinical response. Predictive markers are 

utilized to extend the prediction beyond prognostication, and adjust the outcome probability 

measures for each candidate therapy in relation to the molecular similarities and clinical 

endpoints of previously treated patients. In this article, we study the effect of prognostic 

markers on treatment selection, both theoretically and empirically, and evaluate the overall 

performances of the proposed treatment selection approach that includes both predictive and 

prognostic markers.

The article is organized as follows. Section 2 describes the methodology as well as explores 

theoretical aspects of the Bayesian predictive method for personalized treatment selection. 

We demonstrate and compare the method’s performance via simulation in Section 3, and 

report results arising from a case study of lower grade glioma in Section 4. Finally we 

conclude in Section 5.

2 Bayesian predictive methodology for treatment selection

Inherently a problem of outcome prediction, approaches to treatment selection can be 

enhanced through strategies that integrate prognostic with predictive characteristics of a 

candidate patient/disease. While intrinsic to the generalized linear model, the belief that 

Ma et al. Page 3

Biom J. Author manuscript; available in PMC 2020 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prognostic features convey no additional information for treatment selection is actually a 

specific manifestation of the linear predictor. As we demonstrate in this section, this premise 

fails for broader classes of modeling strategies based on predictive probability. We formalize 

the integrative treatment selection strategy in three parts. Given a discrete set of ordered 

response-levels describing a spectrum of possible clinical outcomes, Section 2.1 derives 

“baseline” predictive probability measures on the basis of the prognostic determinants of a 

particular patient’s disease profile. Section 2.2 integrates the predictive features to adjust the 

baseline probability measures to reflect current knowledge pertaining to the effectiveness of 

each treatment option for the specific disease characteristics exhibited by the candidate 

patient. Section 2.3 provides rational to further elucidate the manner in which considerations 

of prognostic effects may alter treatment decisions derived from predictive features alone.

2.1 Baseline probability measures derived from prognostic determinants

Assume the existence of a training data set of n patients, (yi, Zi) where i = 1, … , n, for 

which yi denotes a random variable for the ith patient’s outcome (or response) and Zi 

characterizes a d–dimensional vector of prognostic features. Our strategy for treatment 

selection assumes that the effectiveness of any treatment can be described by the probability 

of K ordered response-levels characterizing the range of possible clinical outcomes for the 

particular disease understudy. An assumption that is common to oncology where outcomes 

often characterize varying levels of treatment response in terms of the extent of “residual 

disease” (local as well as distant migration) after a pre-specified, clinically relevant post-

therapy follow-up duration. Letting yi assume a specific response-level, k, we use P(yi = k|

πk) = πk with π = {πk : k = 0, … , K − 1} to denote the probability of observing the K 
response-levels for the ith patient. We start from the Bayesian discriminant analysis model 

(Lavine and West, 1992), that can be written as the following normal-mixture model:

Zi ∣ yi = k, μ, ΣindN μk, Σk

yi ∣ πiid Multinomial(1, π)

μk, Σk
iidp μk, Σk

π p(π),

The joint density function for the training data can be written as

p(Y , Z ∣ μ, Σ, π) = ∏
i = 1

n
p Zi ∣ Y i, μ, Σ P Y i ∣ π . (1)
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Under the assumption that (μ, Σ) is a priori independent of π, the posterior distribution can 

be represented up to proportionality as

p(μ, Σ, π ∣ Y , Z) ∝ ∏
k = 0

K − 1
{ ∏

i = 1

n
p Zi ∣ Y i = k, μk, Σk P Y i = k ∣ πk

I Yi = k }p(π

)p μk, Σk .
(2)

Let i★ index a future, heretofore untreated patient with pre-treatment characteristics Zi⋆. 

The outcome prediction for a future patient on the basis of pre-therapy prognostic 

determinants is intrinsically an evaluation of the following predictive probability measure

P yi⋆ = k ∣ Zi⋆, Y , Z = p Zi⋆ ∣ yi⋆ = k, Y , Z p yi⋆ = k ∣ Y
∑k = 1

K p Zi⋆ ∣ yi⋆ = k, Y , Z p yi⋆ = k ∣ Y
, (3)

where p Zi⋆ ∣ yi⋆ = k, Y , Z = ∫ p Zi⋆ ∣ θk p θk ∣ Y , Z dθk represents the predictive 

distribution for Zi⋆ obtained from a general model with parameters θk = (μk, Σk) that 

determine its conditional distribution under response-level k and P yi⋆ = k ∣ Y  characterizes 

the posterior probability of response-level k. Note that P yi⋆ = k ∣ Y  is specified 

conditionally on Y as P yi⋆ = k ∣ Y = ∫ P yi⋆ = k ∣ π, Y p(π ∣ Y )dπ.

Following the work of (Lavine and West, 1992), we use conjugate priors for the parameters 

of μ, Σ and π, with Dirichlet(α) as the prior for π, where α = {αk : k = 0, 1, … , K − 1}. 

Using nk to denote the number of patients that contribute to response-level k, the posterior 

distribution of p(π|Y, Z) is Dirichlet(α) with α = αk = αk + nk:k = 0, 1, 2, …, K − 1 . In 

addition, we assume that μk, Σk are mutually independent over K response groups with 

conjugate priors of normal-inverse Wishart and hyperparameters (μ0k, Λ0k/k0k;ν0k, Λ0k). 

The joint prior density of Σk InW ν0k Λ0k
−1  and μk|Σk ~ N(μ0k, Λ0k/k0k) is given as

p μk, Σk ∝ |Σk|−
ν0k + d

2 + 1 exp − 1
2tr Λ0kΣk

−1 − κ0k
2 μk − μ0k

TΣk
−1 μk − μ0k

.
(4)

The posterior pf p(μk, Σk|Y, Z) is normal-inverse Wishart μ0k, Λ0k/κ0k; ν0k, Λ0k , such that 

μ0k =
κ0k

κ0k + nk
μ0k +

nk
κ0k + nk

yk, κ0k = κ0k + nk, ν0k = ν0k + nk, 

Λ0k = Λ0k + Sk +
κ0knk

κ0k + nk
Y k − μ0k yk − μ0k

T , and Sk = ∑i = 1
nk yi − yk Y i − yk , where 

yk = 1
nk

∑i = 1
nk yi.

Note that for any given values of the outcome variable, it can be shown that 

Zi⋆ ∣ yi⋆ = k, Y , Z  follows the multivariate Student-t distribution of 
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tν0k − d + 1 μ0k,
Λ0k κ0k + 1

κ0k ν0k − d + 1 , which is used to calculate the predictive density of 

p Zi⋆ ∣ yi⋆ = k, Y , Z  and P yi⋆ = k ∣ Y  can be calculated in closed-form as the expected 

value of a Dirichlet distribution.

2.2 Treatment selection integrating predictive biomarkers

Heretofore, the normal-mixture modeling strategy delineates patient subgroups on the basis 

of their response and assumes that patients in the same response subtypes are statistically 

exchangeable. Yet, underlying the precision medicine paradigm, is the assumption of 

personalized treatment utility. We develop a selection strategy that uses predictive 

biomarkers to determine the extent to which any two patients should be considered 

exchangeable and adjusts the baseline response probability measures accordingly.

Assuming that J candidate therapies have been evaluated in the training dataset with their 

relative effectiveness determined by l predictive covariates denoted by Xl×n. The predictive 

covariates can be incorporated in our framework as defined by the following hierarchical 

model (one for each treatment):

Zi ∣ yi = k, Ai = j, μkj, Σkj
indN μkj, Σkj

yi ∣ πj
iid Multinomial 1, πj

μkj, Σkj
iidp μkj, Σkj

πj  PowerPrior(X),

This Section mostly concern with the definition of a power prior that is a function of the 

predictive covariates, and with the resulting predictive distribution that will be used for 

treatment selection. Under each candidate treatment Ai⋆ = j for j = 1, 2, … , J,, the resulting 

predictive probabilities are

P yi⋆ = k ∣ Zi⋆, Y , Z, Ai⋆ = j, X
= p Zi⋆ ∣ yi⋆ = k, Y , Z P yi⋆ = k ∣ Y , Ai⋆ = j, X

∑k = 1
K p Zi⋆ ∣ yi⋆ = k, Y , Z P yi⋆ = k ∣ Y , Ai⋆ = j, X

, (5)

where X = Xl × n, Xi⋆ . Evaluations of equation (5) depend on the predictive distribution of 

prognostic features p Zi⋆ ∣ yi⋆ = k, Y , Z  as described in Section 2.1, as well as the 

predictive probability of achieving response-level k under treatment assignment j, 
P yi⋆ = k ∣ Y , Ai⋆ = j, X . While various approaches could be used to formulate 

P yi⋆ = k ∣ Y , Ai⋆ = j, X , we utilize the recently developed Bayesian predictive modeling 
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approach of Ma et al. (2016), which treats similarity measures obtained from cluster analysis 

of the high-dimensional predictive features as measures of partial exchangeability. The 

methodology, which was developed in a clinical oncology context, was formulated on the 

assumption that the extent to which a result for any previously treated patient should 

influence the prediction of future success for a new patient should depend upon the extent to 

which their tumors (or disease characteristics more generally) exhibit similarity on the basis 

of current knowledge.

Using the consensus clustering method with the input of X = Xl × n, Xi⋆ , one can obtain a 

(symmetric) similarity matrix, S, characterizing the extent of pairwise similarities between 

any two patients (Monti et al., 2003). We use 0 ≤ S(i★, i) ≤ 1 to denote the specific pairwise 

similarity metric between new patient i★ and the ith patient. Then assume that S(i★, i) 
determines the degree of influence imposed by ith patient in estimating the effectiveness of 

the treatment received for the new patient, which can be achieved via a power prior model 

(Ma et al., 2016, 2017; Ibrahim et al., 2003). Let nj represent the number of previous treated 

patients receiving treatment j. The posterior predictive distribution of response 

yi⋆ ∣ Y , Ai⋆ = j, X, X based on the predictive features can be formulated with a power prior 

model as

P yi⋆ = k ∣ Y , Ai⋆ = j, X ∝ ∫ P yi⋆ = k ∣ πj, Ai⋆ = j ∏
i = 1

nj
P yi ∣ πj

S i⋆, i p

θj dθj,
(6)

where πj = {πj,k : k = 0, 1, 2, … , K − 1 represents model parameters under treatment j, and 

the power prior is ∝ ∏i = 1
nj P yi ∣ πj

S i⋆, i p πj . Thus, each previously treated patient’s 

contribution to inform the outcome prediction for the new patient i★ under treatment j is 

modulated by raising their likelihood contribution to the power of S(i★, i) for i = 1, 2, … , nj. 

Assuming a Dirichlet prior distribution with hyperparameters αj = {αj,k : k = 0, 1, 2, … , K 
− 1} for model parameter θj, yields the following predictive probability of response-level k 
under treatment j

P yi⋆ = k ∣ Y , Ai⋆ = j, X = αjk
∑k = 0

K − 1αjk
, (7)

where αjk = ∑i = 1
nj S i⋆, i Ik yi + αjk. Note that derivation of equation (7) is identical to 

equation (3) in Ma et al. (2016). Thus, the predictive probability of (5) can be evaluated 

using (7) and the density of p Zi⋆ ∣ yi⋆ = k, Y , Z  described in Section 2.1.

Given binary outcomes, equation (5) can be used directly for treatment selection, i.e., 

recommend the treatment j with highest value of P yi⋆ = 1 ∣ Zi⋆, Y , Z, Ai⋆ = j, X , assuming 

that outcome 1 offers better clinical utility than outcome 0. To facilitate treatment selection 

for multinomial ordinal outcomes, one can elicit response utility weights and evaluate its 
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expectation for each candidate therapy (Ma et al., 2016). Using ωk to denote the utility 

assigned to response-level k, the mean “predictive utility” of treatment j for patient i★ is

ϕj i⋆ = ∑
k = 0

K − 1
wk × P yi⋆ = k ∣ Zi⋆, Y , Z, Ai⋆ = j, X (8)

Our Bayesian approach to treatment selection assigns patient i★ to the treatment with the 

largest value of (8), which may be considered as “optimal” among the available therapies 

given the current information. In general, wk is chosen as 0 = ω0 ≤ ωk ≤ ωK−1 = 100 to 

reflect the importance of clinical relevance for each level of the ordinal responses. Section 

4.2 provides additional discussion pertaining to the specification of utility weights.

2.3 Impact of predictive and prognostic determinants on treatment selection

In our framework, both prognostic and predictive markers contribute to determining the 

treatment selection; in contrast, alternative approaches based on linear regression models 

assume that prognostic features have no impact on the treatment selection process (Ma et al., 

2015). While intrinsic to the generalized linear model, this premise fails for broader classes 

of modeling strategies based on predictive probability. Specifically, in our modeling 

framework the optimal treatment is determined with the utility quantity calculated from (5), 

which is a weighted probability of P yi⋆ = k ∣ Y , Ai⋆ = j, X  with the weight of 

p Zi⋆ ∣ yi⋆ = k, Y , Z  for k = 0, 1, 2 … , K − 1 To understand how prognostic features may 

alter the treatment selection, consider the case of two candidate therapies A = (1, 2). Let 

pjk = P yi⋆ = k ∣ Y , Z, Zi⋆, Ai⋆ = j, X  represent the predictive probability of observing 

outcome k for treatment j. When there is no prognostic features incorporated, the mean 

utility can be calculated as ϕ = ω1pj1 + ⋯ + 100pj(K −1) (i★ is dropped for simplicity), 

whereas the mean utility difference is ϕ1 – ϕ2 = ω1(p11 − p21) + ω2(p12 − p22) + ⋯ + 

100(p1(K − 1) – p2(K − 1)) such that treatment 1 is considered to be optimal if this is greater 

than 0. When both the prognostic and predictive features are incorporated it follows that

ϕ1′ − ϕ2′ = w1d1( p11
C1

− p21
C2 ) + w2d2( p12

C1 − p22
C2

) + ⋯

+ 100dK − 1( p1(K − 1)
C1

− p2(K − 1)
C2

),
(9)

where dk = p Zi⋆ ∣ yi⋆ = k, Y , Z > 0, and Cj = ∑k
K − 1dkpjk. Similarly treatment 1 is 

considered as optimal if ϕ1′ − ϕ2′ > 0. Since ϕ1′ − ϕ2′  may differ from the sign of (ϕ – ϕ2), a 

treatment selection decision could be reversed upon leveraging the prognostic determinants.

In fact, the sign of ϕ1′ − ϕ2′  depends on multiple quantities, ωk, pjk and dk. An analytical form 

of its relationship with the sign of (ϕ1 − ϕ2) is mathematically difficult to generalize, 

especially when K is large. To provide insight, in this section we consider fixed values of ωk, 

pjk in the case where K equals 3. Let (p10, p11, p12) equal to (0.2,0.5,0.3), (p20, p21, p22) 

equal to (0.2,0.7,0.1) and (ω0, ω1, ω2) equal to (0,40,100), respectively. The difference in 

mean utility when using only predictive features is ϕ1 − ϕ2 = ω1(p11 − p21)+w2(p12 − p22) = 
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12, hence treatment 1 is considered as optimal. With both prognostic and predicative 

features, the difference of the expected utility is 

ϕ1′ − ϕ2′ =
d0

C1C2
w1d1 p11 − p21 + w2d2 p12 − p22

+
p11p22 − p21p12

C1C2
d1d2 w1 − w2 + d0 w2d2 − w1d1

, where C1 = d0p10 + d1p11 + d2p12 and 

C2 = d0p20 + d1p21 + d2p22 Noting that 

limd2
d0

0,
d2
d1

0
ϕ1′ − ϕ2′

d0d1
=

w1
C1C2

p11 − p21 − p11p22 + p21p12 =
w1

C1C2
× ( − 0.04) < 0, which 

indicates that treatment 2 is optimal in our example. Note that, the conditions of 
d2
d0

0 and 

d2
d1

0 indicate that the probability of observing the outcome of yi⋆ = 2 tends to 0 given the 

data. Practically, in this scenario the treatment with higher probability of observing the 

outcome of yi⋆ = 1 would be considered as optimal, which results from selection based on 

ϕ1′ − ϕ2′  but not ϕ1 − ϕ2.

Section S.1 of the supplementary materials provides more details as well demonstrates the 

scenarios under which the treatment selection is unaltered by the prognostic factors, such as 

in the setting for binary outcomes and for specific combinations of pjks and dks in the 

context of ordinal-valued clinical outcomes. It is worth noting that our framework 

incorporates those proposed by Ma et al. (2016) as special cases when 

p Zi⋆ ∣ yi⋆ = k, Y , Z ∝ 1, where treatment selections are determined by predictive covariates 

only.

3 Simulation study

We evaluated performance via simulation studies based on gene expression data from a 

leukemia study (Golub et al., 1999) with outcome generation based on an ordinal 

continuation-ratio logistic model and outcome prediction based on a leave-one-out cross-

validated (LOOCV) strategy, i.e. we do not simulate from our model. We considered the 

Bayesian predictive strategy integrating predictive with prognostic features based on (8), 

referred to hereafter as BPP, as well as implementation of the Bayesian approach based on 

the predictive features only, or BPO, which neglects to incorporate prognostic characteristics 

into the selection rule. While in principle, similarity measures obtained from any clustering 

method could be utilized, we implemented the Bayesian predictive approaches using three: 

hierarchical (HC), k-means (KM) and partitioning around medoids (PAM), with R package 

ConsensusClusterPlus (Wilkerson and Hayes, 2010).

The Bayesian approaches were compared with selection rules based on linear models with 

estimation using the L1 penalized continuation ratio model (or Lasso) and ridge regression 

(Archer and Williams, 2012). Specifically, using LOOCV separate Lasso/ridge models were 

fitted for each treatment based on the training set to estimate the regression coefficients. We 

refer to these approaches as Lasso and Ridge, respectively. As a frequentist analog to (8), an 

optimal treatment was then selected for each simulated future patient to yield the highest 

treatment utility given the estimated response probability vector and response utilities, ω. 
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Additionally, we evaluated performance for joint fits of the aforementioned penalized 

regression models, with main effects along with treatment-covariate interactions to 

characterize predictive effects. These approaches are denoted LassoInt and RidgeInt, 

respectively. Because the simulation studies compare performance for treatment selection 

given that each feature has been predefined as either predictive or prognostic, estimation 

with the penalized regression models included both main effects and interaction terms for all 

predictive features. Of note, the clustering methods necessitate the specification of ranks. 

Because an optimal rank is unknown in practice, ranks were selected using a nested LOOCV 

analyses for each simulated patient based on the training data. A similar step was necessary 

to effectuate model selection for penalized regression approaches, which we implemented 

based on Akaike’s information criterion (Friedman et al., 2010).

3.1 Simulation design

Patient-level prognostic and predictive features.—Our simulation study was 

devised to emulate the dependence structure observed in a well-known dataset of leukemia 

containing gene expression levels for a total of 5,000 genes across 38 patients (Golub et al., 

1999). To obtain a comparable sample size to that used in our case study presented in 

Section 4 (where n = 158) we expanded the dataset to yield a total of 152 simulated patients 

each with 92 features. We selected the first 90 features as predictive, and reserved the 

remaining 2 as prognostic. More details are provided in Section S.2.

Performance evaluation.—Our simulation study considered two treatments and three 

levels of the ordinal-valued response variable (i.e., K = 3). The optimal treatment for each 

simulated patient is determined as the inner product of their true ordinal response probability 

(ORP) and the response-level utility weights, ω. To reflect the cancer context, wherein tumor 

response is often characterized by progression, partial response, and complete response, ω 
was fixed at ω = (0, 40, 100). We compare methods based on three performance metrics:

• MOT: 0 ≤ MOT ≤ n, where n is the total number of patients evaluated. This 

metric counts the number of patients misassigned to their optimal treatment. The 

smaller the better.

• %ΔMTUg, (%Δg, in short): −1 ≤ %Δg ≤ 1. This metric represent the relative gain 

in treatment utility, respect to the other treatment (it is defined only for the case 

of two alternative treatments). An optimal treatment assignment rule g will 

achieve %Δg, = 1.

• NPC: 0 ≤ NPC ≤ n. This metric counts the number of patients for which the 

model correctly predicted their simulated outcome. The larger the better.

Both MOT and NPC have a straightforward interpretation. The construction of % MTUΔg, 

requires few steps:

• We denote the mean treatment utility of treatment j for patient i by MTU(j, i) and 

denote its difference by DMTU(i) such that negative (positive) values indicate 

that treatment 1 (treatment 2) offers enhanced effectiveness for patient i.
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• For any simulation scenario we can determine the maximum possible gain in 

mean treatment utility that could be achieved upon selecting treatments for all n 
patients as the summed magnitudes of relative differences, 

ΔMTUopt = ∑i = 1
n DMTU i .

• Given assignments obtained from selection rule g, let jg(i) assume value 1 if the 

optimal treatment was recommended for patient i and assume value −1 

otherwise. The total gain in mean treatment utility of selection method g can be 

defined as ΔMTUg = ∑i = 1
n jg i DMTU i .

• To ensure an uniform criteria for methods comparison across simulation 

scenarios with varying ΔMTUopt, we compared selection rules on the basis of 

their achieved proportion of the maximum possible gain in total mean treatment 

utility, or %ΔMTUg = ΔMTUg/ΔMTUopt.

We want to remark that intrinsic to personalized medicine is the assumption that the extent 

to which a particular patient benefits from a given therapeutic strategy is heterogenous. In 

the context of our simulation study, this extent of benefit is determined explicitly for each 

patient by DMTU(i). Tracking the true “utility” of each simulated assignment in relation to 

the extent of differential benefit offers an improved metric for methods comparison. 

%ΔMTUg attains value 1 if selection rule g recommends the optimal treatment for all 

patients and −1 if all patients are recommended to non-optimal treatments. Thus, in our 

simulation study improved method performance is indicated by smaller values of MOT as 

well as larger values of %ΔMTUg and NPC.

Simulation scenarios.—The influence on the ORPs contributed by prognostic effects 

was specified to be moderate in scenario 1 and stronger in scenario 2; whereas identical 

predictive effects were utilized for both scenarios. This yields larger variability in scenario 2 

in the extent of benefit among patients with identical optimal treatments. The average 

DMTU is smaller, however, for many patients in scenario 2 when compared to scenario 1, as 

stronger prognostic effects impact the magnitude DMTU, while not necessarily altering the 

direction of benefit. Additional sensitivity analyses were conducted with respect to the 

prognostic features. Initially, both scenarios were evaluated using the prognostic covariates 

with power transformations. We further implement the simulation studies using prognostic 

covariates (1) of original scale as well as (2) by random sampling from independent normal 

distributions with mean and variance estimated from the original data. We refer to these 

scenarios as 1O, 1N, 2O, and 2N, respectively. Simulation study (1) is designed to test the 

behavior of the proposed approach in settings where the prognostic features are clearly not 

Normally distributed. Prior specification used independent Dirichlet(1/3, 1/3, 1/3) for πj; 

and assumed hyperparameters of ν0k = d + 1, k0k = 1, μ0k = 0 and the identity matrix for 

Λ0k. Further details pertaining to the simulation design are provided in Section S.2 of the 

supplementary materials.

3.2 Simulation results

Ordinal-valued responses for each patient were randomly generated to produce 100 replicate 

data sets for methods comparison. Tables 1–3 provide means and standard deviations (SD) 
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of the performance metrics of NPC, MOT, and %ΔMTUg by method; while Figure 2 

describes their distributions.

In tables 1–4,“HC” stands for hierarchical clustering, “KM” for k-means, “PAM” for 

partitioning around medoids, “BPP” for the proposed Bayesian prediction approach that 

integrate predictive with prognostic features, and “BPO” for the proposed Bayesian 

prediction approach that based only on predictive features. The “Naive” approach (“NS”, in 

Figure 2) assumes that all patients are statistically exchangeable.

On the basis of these results, we have several observations. The proposed Bayesian 

predictive methods with clustering algorithms of HC and KM were found to outperform 

penalized regression based approaches for treatment selection in both simulation scenarios 1 

and 2 (Table 1). Bayesian selection with PAM was comparable to ridge regression in 

scenario 1, but outperformed both ridge and LASSO in the presence of stronger prognostic 

effects in scenario 2. Treatment selection was least effective when based on the linear 

predictor facilitated by LASSO. Moreover, in the simulation scenarios Bayesian approaches 

integrating predictive with prognostic features provided similar results for treatment 

selection based on (MOT and %Δg) to those obtained from selection based on predictive 

features alone.

By way of contrast, performance for outcome prediction, as measured by NPC, varied 

between two simulation scenarios (Table 1). In scenario 1, mean NPC was comparable, with 

lower values for LASSO, LassoInt and RidgeINT methods. In scenario 2, however, each 

integrative Bayesian model (BPP) outperformed the corresponding predictive only (BPO) 

for NPC correctly predicting the outcomes of 78.3 to 84.5 patients (out of 152 total patients) 

on average for BPP versus 73.7 to 74.2 for BPO. Moreover, LASSO outperformed the others 

correctly predicted outcomes 98.8 (SD=10.0) patients out of 152 on average, while yielding 

a low proportion of mean assignment utility (only 47%). This suggests that the contributions 

of predictive features to the linear predictor utilized for treatment assignment were 

attenuated in presence of strong prognostic effects when LASSO was used for treatment 

selection. Figure 2 depicts the entire distributions of these summary measures by selection 

method. For the sake of completeness, we also evaluated selection rules using a naive 

approach which assumed that all patients were statistical exchangeable and thereby failing to 

account for inter-patient prognostic and predictive diversities. Not surprisingly, on the basis 

of all performance measures, this approach yielded the worst performance for treatment 

selection yielding assignments that achieved only 28% of the total mean utility on average.

To elucidate sensitivity to distributional heterogeneity, the simulation studies were repeated 

using un-transformed prognostic covariates on their original scales (scenario 1O and 2O), as 

well as generated from independent normal distributions (scenarios 1N and 2N). Results 

were impacted only slightly for scenarios 1O and 1N when compared to scenario 1. With the 

presence of strong prognostic effects in scenario 2, however, the results for penalized 

regression were impacted by the covariate distributions. Treatment selection based on ridge 

regression performed similarly in scenarios 2 and 2O. Modest improvement was observed 

with Gaussian distribution in scenario 2N for selection rules based on ridge. Performance for 

LASSO was comparable in scenario 2O, but diminished in scenario 2N with considerable 
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reductions in %ΔMTUg and NPC from 0.466 and 98.8 to 0.261 and 62.3, respectively. These 

findings suggest that selection rules based on the proposed Bayesian predictive methods are 

less sensitive to distributional assumptions pertaining to the prognostic features.

Overall, the proposed integrative Bayesian predictive methods yielded selection rules that 

outperformed those obtained from penalized regression with BPP combined with 

hierarchical clustering attaining the highest values of %ΔMTUg ranging from (0.860 – 

0.935) indicating that the resultant assignment rules achieved 86% to 94% of the total 

possible assignment mean utilities, on average. Among the integrative Bayesian predictive 

approaches, BPP with partitioning around medoids yielded the lowest mean values of 

%ΔMTUg ranging from 67% to 80% on average. For comparison, the best performance for 

LASSO derived selection rules achieved only 57% of total mean utility, on average. 

Moreover, performance for LASSO was reduced to as low as 26% in scenario 2N. Ridge 

regression performed better, yielding selection rules that attained as high as 81% of total 

mean utility in scenario 1O and as low as 43% on average in scenario 2O. Lastly, selection 

rules derived from LassoINT were generally comparable or better than those from LASSO, 

while results from RidgeINT were worse than or comparable to those from ridge regression.

Insofar we considered two prognostic and ninety predictive variables for our empirical study. 

To investigate the scale of our approach with relatively large number of prognostic variables, 

we extended simulation scenario 2 to scenario 2.1 with the 2 features and 8 noise random 

variables, and scenario 2.2 with the 2 features and 6 random noise variables. These noise 

variables were generated from normal distribution and were not used to generate the 

outcome variables. Our approach performed well and results from these scenarios are 

comparable to those from scenario 2, except that the NPC are relatively small, 

Supplementary Table S1. In our experience, this is common for high dimensional data with 

some noise variables, and hence data are often pre-processed to improve model accuracy in 

predicting the outcomes (Yu and Liu, 2003). More details in this regard are provided in 

Section 4.3.

4 A case study of lower grade glioma

4.1 TCGA data

Methods for treatment selection were also compared through application to a publicly 

available data of lower grade glioma (LGG) from the TCGA data portal using both clinical 

and level 3 protein expression data from https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. 

Baseline and follow-up information was collected for 411 patients. Exclusions included 18 

patients with missing values of treatments and 68 patients who failed to contribute protein 

expression information. Among the remaining 325 patients, 196 received molecularly 

targeted therapies, 211 received adjuvant radiotherapy, and 79 received “conventional” 

cytotoxic therapies that involved neither targeted nor radiotherapy regimens. Our case study 

considered treatment selection of standard (neither targeted nor radiotherapy, n=79) versus 

advanced treatments (targeted or radiotherapy, n=246). Using the RECIST criteria (http://

www.recist.com/), tumor response was categorized using the four standard ordinal-levels of 

progressive disease (PD), stable disease (SD), partial response (PR) and complete response 

(CR). Among those receiving standard therapy, only 9 patients achieved PR. Therefore, we 
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combined PR and SD to formulate a new category of responders, which we abbreviate as PS, 

yielding three ordinal-levels of the outcome: CR, PS, and PD.

4.2 Matching and utility weight specification

To account for potential select bias, we matched patients on the basis of the baseline 

covariates of tumor grade, gender, age and initial year of pathological diagnosis (IYPD). 

Specifically, 79 pairs of patients were produced using the R package of MatchIt (default 

settings) (Ho et al., 2011); the resultant standardized mean differences were 0.000, −0.050, 

0.051, and 0.162 for tumor grade, gender, age and IYPD, respectively. Reasonably 

satisfactory matches were obtained, as all final standardized mean differences were below 

than the suggested cut-off value of 0.25 (Imai et al., 2008).

Adopting utility based criterion for treatment selection with ordinal outcomes, weights were 

specified for each level of the ordinal responses to account for their relative clinical 

importance using the arbitrary domain of 0 to 100. Without loss of generality, weights 0 and 

100 (ω0 = 0 and ωK−1 = 100) can be assigned to least and most favorable response levels, 

respectively. Following the recommendations of Ma et al. (2016), specification of a weight 

for the intermediate response-level, PS, considered the relative benefit in terms of long-term 

overall survival duration in data analysis using Cox regression. A 120-day landmark analysis 

was used since most responses were observed after two, eight-week treatment cycles 

(Anderson et al., 2008). More specifically, for response level PS we estimated the relative 

risk (with CR as the reference) of 10-year overall survival as 2.46 when adjusted for age, 

gender, tumor grade and IYPD. Thus, the utility weight for PS was defined as (1/2.46)100 ≃ 
41. Note that the TCGA data set includes the short-term clinical outcome of tumor responses 

as well the overall survival data, and the elicited utility weight for PS reflects its relative 

importance in terms of long term benefits. The same procedure may be followed using 

historical data that are obtained from similar populations. Alternatively, we may provide 

physicians the weights of 0 and 100 for the least and most favorable response levels, 

respectively, and ask them to specify the weights for the intermediate response outcomes. 

More details of weight elicitation can be found in Ma et al. (2016).

4.3 Prognostic and predictive features

To identify potential prognostic/predictive features among the 173 protein expressions were 

measured in the LGG data, we fitted univariate logistic regression models with covariates of 

a protein, treatment, and their interaction (R package of MASS (Venables and Ripley, 

2002)). A protein was considered as a potential predictive (prognostic) feature given a p-

value, obtained from Wald’s test, was < 0.1 for the interaction (main) effect. With this 

criteria, we selected 23 proteins as potential predictive features and 5 as potential prognostic 

features. Two prognostic covariates, ACVRL1-R-C and HSP70-R-C, were utilized in the 

application given that they yielded the highest accuracy rate (78/158) in discriminant 

analysis using the 79 pairs of matched data with binary outcomes of PD/SD/PR as 0 and CR 

as 1. It is worthy noting that, to remove noise variables and enhance model performance, 

data pre-processing is commonly applied in high dimensional settings. We here describe a 

straightforward approach to pre-select some features for data analysis, and more advanced 

approaches can be found in (Yu and Liu, 2003) and its references.
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4.4 Summary measures

While summary measure NPC can be calculated same way as in simulation studies, given 

that the true optimal treatments are unknown in the case study precluding MOT and 

%ΔMTUg as measures of performance. Another summary, described in detail by (Ma et al., 

2016) and (Kang et al., 2014), was adopted, however. For a binary outcome variable Y = {0, 

1}, we can define the treatment contrast as Δ(X) = P(Y = 1|A = 1, X) − P (Y = 1|A = 0, X). 

The relative increase in the population response rate attributable to a proposed treatment 

allocation method when compared with randomly allocation can be ascertained through

P(Y = 1 ∣ A = 1, Δ(X) > 0) × P(Δ(X) > 0) +
P(Y = 1 ∣ A = 0, Δ(X) < 0) × P(Δ(X) < 0) − P(Y = 1 ∣ A) .

Several authors have demonstrated estimation of this measure from data (Kang et al., 2014; 

Song and Pepe, 2004), which we refer to hereafter as ESM or empirical summary measure. 

For example, P(Y = 1|A), as the overall response rate under the randomization strategy, can 

be estimated as the sample proportion of responders. Similarly, P(Y = 1|A = 1, Δ(X) > 0) can 

be estimated with the subgroup of n1 patients who would be assigned treatment 1. The 

weight, P(Δ(X) > 0), can be estimated as n1/n. While, treatment assignments were obtained 

for each patient in consideration of the ordinal tumor response-levels (CR, PS, and PD) of 

patients in the training set, in order to use ESM for methods comparison we evaluated the 

resultant assignments with the summary measure based on binary outcomes of constructed 

as responders (CR) and non-responders (PS and PD).

4.5 Results

Table 4 reports NPC and ESM summary measures computed from assignments obtained 

from LOOCV. The Bayesian assignment strategies outperformed the penalized regression 

approaches of ridge and LASSO in terms of the ESM. For example, HC-BPP attained an 

ESM of 0.132 representing a 37% increase in the response rate when compared to 

randomized assignment with a response rate of 58/158 ≈ 0.361; while ESM for ridge 

regression was 0.06 reflecting an increase of only 17%. The penalized regression methods 

tended to perform better for outcome prediction, however, while the Bayesian strategy using 

only predictive features yielded lower NPC on average. These results are quite consistent 

with those obtained from our simulation study of scenario 2, where prognostic features have 

strong coefficient effect.

5 Discussion

The concept of personalizing clinical care, while a topic of recent emphasis, isn’t entirely 

new. Evaluations of individual-level characteristics have long been used to inform treatment 

selection (Byar and Corle, 1977). Recent advances in informatics technologies, however, 

have provided access to enormous databases of clinical, imaging and genomic features 

yielding inputs that facilitate interrogation of therapeutic options at multiple levels and in the 

presence of diverse types of molecular and clinic information. Thus, the current environment 

offers the potential to alter one-fits-all clinical paradigms to effectuate more precise, 

personalized therapeutic strategies.
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In this article, we described a Bayesian power prior predictive modeling framework for 

integrating prognostic and predictive features for treatment selection, which is more suitable 

in the development of personalized medicine using training data. The method assumes that 

patients are nonexchangeable within each subgroup determined by normal-mixture models. 

Given the focus on treatment selection rather than inference on model parameters, conjugate 

priors were assumed for model parameters which resulted in a closed form expressions for 

computing the predictive probability measures and thereby avoided sampling techniques. We 

evaluated the proposed method via empirical studies and compared them with penalized 

regression approaches. In all scenarios, the proposed methods outperformed the penalized 

regression approaches with respect to treatment selection as well as yielded robust results 

when the distribution of the prognostic feature were not correctly specified. Compared to the 

methods by (Ma et al., 2016), the proposed methods demonstrated improved prognostic 

values in predicting clinical outcomes. The utility of the proposed methods was further 

illustrated with an actual study of lower grade glioma using protein expression data, yet the 

method may be easily applied to various types of genomic or imaging features.

From a modeling perspective, the proposed methodology can be extended in several 

directions. For example we assumed that π and (μ, Σ) are independent a priori. This 

common assumption (Lavine and West, 1992) ensure interpretability and closed form 

inference. More flexible modeling approaches may be suitable and better fit the data at hand; 

in our analyses the proposed model worked well and we did not observed any lack of fit or 

any other poor performances indicator. A more flexible modeling strategy may be achieved 

following, for example, some Bayesian nonparametrics techniques, such as the probit-stick 

breaking (Rodriguez and Dunson, 2011) or the product partition model with covariates 

(Mueller et al., 2011); in this case, the flexibility-computational cost trade-off needs to be 

evaluated.

However, it is important to note that we did not attempt to develop prognostic/predictive 

biomarkers but rather use established molecular features for personalized treatment 

selection. Moreover, while we found that the proposed method performed well in a variety 

of scenarios, the quality and reliability of the inputted features will always determine the 

effectiveness of any treatment selection approach. Our empirical evaluations suggested that 

the selection method was robust to the distributional forms of the prognostic features. In our 

previous work (Ma et al., 2016), we investigated the sensitivity to the inclusion of additional 

sets of predictive features: we considered the performance for treatment selection rules 

among 38 patients formulated with the top 100 and 200 varied features (the maximum minus 

the minimum level of observed gene expression) and observed comparable results.

For the case study, we implemented univariate analyses to select a reasonable number of 

prognostic/predictive features. Specifically, we considered features with statistically 

significant main effects as prognostic markers and those with significant interaction effects 

as predictive. This strategy for identifying prognostic and predictive markers is commonly 

employed in practice (Witten and Tibshirani, 2009; Werft et al., 2012; Jenkins et al., 2011; 

Zhao and Zeng, 2013). Alternatively we may investigate signatures that have been reported 

in the literature from different studies. For example, (Ma et al., 2017) investigated several 

literature-reported genomic signatures for patients with lung squamous cell carcinoma, and 
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they found that a 13-gene signature developed by (Kaufman et al., 2014) performed well for 

treatment selection. Thus, the approach is encouraging given that results obtained from these 

signatures are generally robust due to the external cross validation process.

While the potential benefits of such biomarker-guided therapy are seemingly substantial, 

discovery of prognostic and predictive markers from signal in the presence of many noise 

covariates remains a challenge (Food and Drug Administration, 2013). Retrospective 

reviews in oncology are difficult because treatment assignments often depend on prognostic 

characteristics of the treated patients. The result of this is highly biased treatment 

comparisons. Our modeling strategy is devised to acknowledge that prognostic and 

predictive determinants conjointly inform expectations of future response and thus impact 

treatment selection. Several aspects of the feature inputs, such as process or inter-observer 

reproducibility, need to be considered carefully before using the proposed methods for 

personalized selection with large scale genomic, imaging and clinical data. A checklist 

criteria has been developed by the US National Cancer Institute which addresses issues of 

specimens, assays, clinical trial design (McShane et al., 2013). In our case study, we 

matched patients with tumor grade, gender, age and initial year of pathological diagnosis. 

Although this matching seeks to reduce the potential impact of selection bias, the proposed 

method is perhaps most clinically useful when implemented with training data obtained 

from randomized clinical study. In addition, our methods rely on a heuristic measure of 

similarity obtained from clustering methods that often consider only one type of data source 

(Wilkerson and Hayes, 2010). An integrative clustering analysis of multiple data sources 

(e.g., protein, gene expression) may provide a more comprehensive understanding of nature 

of disease heterogeneity (such as (Lock and Dunson, 2013)). Given the potential for 

enhancing the accuracy and robustness of results for treatment selection, which we plan to 

pursue methodology for treatment selection with integrative clustering as a future endeavor.

Moreover, a patient’s experience upon receiving a particular therapeutic strategy is often a 

complex synthesis of measures that describe both the extent of induced-harm as well as 

clinical benefit. Thus, patient response is often difficult to characterize in many cancer 

settings, especially for multi-modal treatment strategies (see e.g. Hobbs et al., 2016). As a 

consequence, most methods for treatment selection implicitly assume that all patients should 

be treated with one of the therapeutic regimes under study (Ma et al., 2015; Geng et al., 

2015). Yet, its important to note that future advances in statistical methods that facilitate 

formal prediction of harm-versus-benefit trade-offs may further elucidate sub-populations 

for which the absence of further clinical intervention provides the best option. This goal can 

be achieved only if prognostic features are integrated into the treatment selection process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Precision medicine in oncology relies on biomarkers deriving from a diverse array of 

sources. Treatment decisions may be based on clinical characteristics of the patient and 

tumor (such as histopathology and cytopathology), genomic-variants (such as somatic 

mutations), or imaging features that describe a tumor tissue’s density, morphology, or 

texture.
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Figure 2. 
Simulation results for scenarios 1 and 2. The boxplot depicts the distributions of mean 

values obtained for the summary measures of %ΔMTUg, MOT, and NPC.
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Table 1

Simulation results for scenarios 1 and 2. The table provides means values and standard deviations (SD) 

obtained for the summary measures of %Δg = %ΔMTUg, MOT, and NPC. Results are based on 100 duplicated 

data sets.

Method Scenario 1 Scenario 2

MOT(SD) %Δg (SD) NPC(SD) MOT(SD) %Δg (SD) NPC(SD)

Naive

45.0 0.284 72.7 (8.5) 45.0 0.278 62.7 (10.8)

HC-BPP 6.0 (3.1) 0.932 (0.04) 79.5 (8.1) 9.0 (8.5) 0.867 (0.13) 84.5 (8.3)

KM-BPP 10.0 (7.5) 0.876 (0.11) 76.6 (8.1) 20.0 (10.7) 0.723 (0.17) 80.1 (9.4)

PAM-BPP 15.0 (3.3) 0.802 (0.05) 77.8 (8.3) 23.0 (9.9) 0.669 (0.15) 78.3 (9.8)

HC-BPO 6.0 (2.7) 0.934 (0.03) 79.4 (8.1) 9.0 (6.6) 0.863 (0.12) 74.2 (8.8)

KM-BPO 10.0 (7.5) 0.871 (0.11) 76.6 (8.2) 20.0 (10.2) 0.692 (0.17) 74.1 (7.4)

PAM-BPO 15.0 (3.1) 0.800 (0.05) 77.9 (8.2) 21.0 (9.1) 0.719 (0.14) 73.7 (7.6)

LASSO 44.0 (9.3) 0.462 (0.12) 69.6 (8.3) 47.0 (9.1) 0.466 (0.12) 98.8 (10.0)

Ridge 15.0 (7.1) 0.801 (0.11) 78.0 (7.1) 28.0 (6.0) 0.578 (0.10) 76.1 (6.5)

LassoINT 36.0 (9.4) 0.556 (0.12) 67.1 (8.0) 44.0 (10.9) 0.440 (0.16) 104.5 (9.3)

RidgeINT 17.0 (7.2) 0.790 (0.09) 70.3 (5.1) 36.0 (9.4) 0.434 (0.17) 76.9 (6.4)
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Table 2

Simulation results for scenario 1 with prognostic covariates considered on their original scales (1O) as well as 

generated from independent normal distributions (1N). The table provides means values and standard 

deviations (SD) obtained for the summary measures of %Δg = %ΔMTUg, MOT, and NPC. Results are based 

on 100 duplicated data sets.

Method Scenario 1O Scenario 1N

MOT(SD) %Δg (SD) NPC(SD) MOT(SD) %Δg (SD) NPC(SD)

HC-BPP 7.0 (2.5) 0.929 (0.03) 76.4 (8.6) 6.0 (2.6) 0.935 (0.03) 78.5 (8.0)

KM-BPP 11.0 (6.9) 0.870 (0.10) 74.4 (9.5) 10.0 (7.0) 0.866 (0.10) 74.6 (8.5)

PAM-BPP 15.0 (4.2) 0.796 (0.06) 75.2 (8.3) 15.0 (3.5) 0.794 (0.05) 76.3 (8.3)

LASSO 44.0 (8.6) 0.450 (0.11) 67.6 (8.3) 44.0 (8.7) 0.433 (0.10) 65.1 (7.9)

Ridge 15.0 (6.9) 0.806 (0.10) 77.9 (7.2) 15.0 (6.8) 0.797 (0.11) 76.7 (7.3)

LassoINT 35.0 (10.0) 0.570 (0.13) 65.2 (8.2) 38.0 (11.0) 0.526 (0.14) 61.5 (7.0)

RidgeINT 18.0 (7.2) 0.782 (0.09) 69.4 (5.3) 17.0 (6.8) 0.798 (0.10) 68.1 (6.0)
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Table 3

Simulation results for scenario 2 with prognostic covariates considered on their original scales (2O) as well as 

generated from independent normal distributions (2N). The table provides means values and standard 

deviations (SD) obtained for the summary measures of %Δg = %ΔMTUg, MOT, and NPC. Results are based 

on 100 duplicated data sets.

Method Scenario 2O Scenario 2N

MOT(SD) %Δg (SD) NPC(SD) MOT(SD) %Δg (SD) NPC(SD)

HC-BPP 10.0 (6.2) 0.840 (0.10) 84.4 (6.8) 9.0 (6.3) 0.860 (0.12) 73.6 (6.2)

KM-BPP 20.0 (9.8) 0.707 (0.16) 83.2 (7.0) 21.0 (9.8) 0.678 (0.16) 72.5 (7.0)

PAM-BPP 22.0 (8.7) 0.689 (0.13) 79.9 (8.1) 20.0 (8.8) 0.725 (0.14) 70.2 (7.3)

LASSO 49.0 (8.7) 0.412 (0.14) 85.1 (8.6) 53.0 (6.4) 0.261 (0.09) 62.3 (7.0)

Ridge 27.0 (6.0) 0.591 (0.10) 73.8 (6.4) 25.0 (5.9) 0.620 (0.10) 68.0 (7.3)

LassoINT 46.0 (10.0) 0.408 (0.14) 89.4 (8.8) 49.0 (7.9) 0.322 (0.11) 61.8 (6.9)

RidgeINT 38.0 (8.8) 0.431 (0.15) 75.4 (5.9) 31.0 (8.4) 0.517 (0.14) 65.1 (5.5)
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Table 4

Results obtained from treatment selection using patients observed in the glioma case study.

Method NPC ESM

HC-BPP 64 0.132

KM-BPP 69 0.090

PAM-BPP 72 0.085

HC-BPO 58 0.114

KM-BPO 61 0.090

PAM-BPO 65 0.102

LASSO 73 0.071

Ridge 77 0.060

LassoINT 73 0.061

RidgeINT 76 0.068
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