Skip to main content
. 2020 Jul 8;11:5. doi: 10.1186/s13326-020-00221-1

Table 5.

Performance of CNN-based models and LSTM-based models in Ablation Study

Systems Components Evaluation Metrics
CW UE CA Pre. Rec. F1
LSTM-Vanilla 0.6173 0.407 0.4335
LSTM-WPE 0.6376 0.4344 0.4503
LSTM-WPEU 0.6064 0.5001 0.4896
LSTM-NEAT 0.6197 0.5134 0.5064
CNN-Vanilla 0.7214 0.5503 0.5637
CNN-WPE 0.7423 0.5799 0.5804
CNN-WPEU 0.6923 0.6350 0.5910
CNN-NEAT 0.7066 0.6431 0.6139

In the Components column, CW, UE, CA denote Credibility Weights, User Expertise and Cluster Attention module components, respectively. In the Evaluation Metrics column, Pre., Rec. and F1 denote Precision, Recall, and F1 score