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Abstract

Background: Cancer cells are known to display varying degrees of metastatic propensity, but the molecular basis
underlying such heterogeneity remains unclear. Our aims in this study were to (i) elucidate prognostic subtypes in
primary tumors based on an epithelial-to-mesenchymal-to-amoeboid transition (EMAT) continuum that captures the
heterogeneity of metastatic propensity and (i) to more comprehensively define biologically informed subtypes
predictive of breast cancer metastasis and survival in lymph node-negative (LNN) patients.

Methods: We constructed a novel metastasis biology-based gene signature (EMAT) derived exclusively from cancer
cells induced to undergo either epithelial-to-mesenchymal transition (EMT) or mesenchymal-to-amoeboid transition
(MAT) to gauge their metastatic potential. Genome-wide gene expression data obtained from 913 primary tumors
of lymph node-negative breast cancer (LNNBC) patients were analyzed. EMAT gene signature-based prognostic
stratification of patients was performed to identify biologically relevant subtypes associated with distinct metastatic
propensity.

Results: Delineated EMAT subtypes display a biologic range from less stem-like to more stem-like cell states and
from less invasive to more invasive modes of cancer progression. Consideration of EMAT subtypes in combination
with standard clinical parameters significantly improved survival prediction. EMAT subtypes outperformed prognosis
accuracy of receptor or PAM50-based BC intrinsic subtypes even after adjusting for treatment variables in 3
independent, LNNBC cohorts including a treatment-naive patient cohort.

Conclusions: EMAT classification is a biologically informed method that provides prognostic information beyond
that which can be provided by traditional cancer staging or PAM50 molecular subtype status and may improve
metastasis risk assessment in early stage, LNNBC patients, who may otherwise be perceived to be at low metastasis
risk.
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Introduction

Metastasis is one of the key hallmarks of cancer [1] and
accounts for nearly 90% of cancer-related mortality.
Cancer cells within a tumor are known to possess differ-
ent metastatic potentials [2]. However, the molecular
basis underlying the observed heterogeneity in meta-
static proclivity remains unclear and a suitable molecular
classification is lacking. Intrinsic molecular subtypes of
breast cancer (PAM50), that have provided tremendous
insight regarding the biological origins of breast cancer,
have been associated with distinct metastatic predilec-
tions for one organ or the other [3], but the PAM50
classification is independent of susceptibility to meta-
static spread [4]. For instance, an intrinsic subtype that
displays a higher rate of brain metastasis does not neces-
sarily mean all patients, or even the majority of patients
diagnosed with that subtype of cancer will go on to
manifest with metastatic disease in the brain. Clearly
other factors, independent of and in addition to those
that determine the intrinsic molecular subtype of the
cancer, influence its invasive potential and metastatic
propensity.

Although implicated in cancer progression and metas-
tasis, the clinical significance of processes like epithelial-
to-mesenchymal transition (EMT) and mesenchymal-to-
amoeboid transition (MAT) remains to be fully appreci-
ated. EMT, a cellular transformation process that plays a
key role in embryonic development, is widely considered
to be one such factor influencing metastasis. Cancer
cells derepress the normally silenced EMT molecular
program, acquiring malignant properties that enable
them to invade tissues surrounding their site of origin
thereby effectively spreading and colonizing distant sites
[5, 6]. Likewise, MAT is another process that plays an
important role in embryonic development and is simi-
larly reawakened by cancers during the metastatic cas-
cade [7, 8].

Since the EMT process is exploited by cancer cells
progressing to metastasis, there have been several at-
tempts to subtype patient tumors based on an EMT sig-
nature, but these have not been successful in
demonstrating a discernible difference in associated
breast cancer prognosis [9-11]. Additionally, for cancer
cells that have already transitioned through EMT but are
facing microenvironmental (e.g., hypoxia) or xenobiotic
(e.g., chemotherapy) stress, MAT may be an effective
adaptive response to bypass the stress [12]. Indeed a re-
cent report of effectively thwarting metastatic spread
through simultaneous targeting of both mesenchymal
and amoeboid motility in an animal model of cancer
progression appears to support this notion [13]. We thus
hypothesized that the true clinical and prognostic signifi-
cance of EMT as a driving process in cancer progression
towards distant metastasis cannot be fully appreciated
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unless it is considered in the context of being comple-
mented by the conditional occurrence of MAT as well.
Only when both processes are considered to coexist, and
possibly undergo plastic interchange triggered by envir-
onmental and/or xenobiotic pressures, can the clinical
significance of both be recognized and prognostic impact
demonstrated. We therefore sought to develop a more
inclusive gene expression signature that accurately cap-
tures EMT, MAT, and the variable dynamic co-
occurrence of both the processes in the same tumor. In
this study, our aims were to (i) elucidate prognostic sub-
types in primary tumors based on an EMT-MAT con-
tinuum that captures the heterogeneity of metastatic
propensity and (ii) to more comprehensively define bio-
logically informed subtypes predictive of breast cancer
metastasis and survival in lymph node-negative (LNN)
patients.

Methods

Derivation of MAT and EMAT gene lists

We constructed an “EMAT” gene signature compris-
ing a list of 253 previously reported EMT-related
genes [9] and 138 newly derived MAT-related genes
(Supplementary Table S1). The EMT list had origin-
ally been derived by analyzing gene expression data
obtained from 5 distinct and separate EMT-inducing
cell perturbation experiments to identify genes up- or
downregulated at least 2-fold in at least 3 experimen-
tal groups relative to control cells. Following identical
methodology to minimize derivation bias, we derived
a new MAT signature by analyzing gene expression
data obtained from 4 distinct and separate MAT-
inducing cell perturbation experiments [14] to identify
138 genes up- or downregulated at least 1.5-fold in at
least 2 experimental groups relative to control cells.
We then combined both the EMT and MAT signa-
tures above to create the 388-member EMAT
signature.

Data collection

Gene expression and clinical data for 562 LNN breast
cancer patient samples from the METABRIC study was
utilized as a training dataset (OASIS http://oasis-genom-
ics.org/, [15]) and two independent datasets of 200 LNN
samples and 151 LNN samples were used as test cohorts
for validation (http://www.ncbi.nlm.nih.gov/geo/ GEO
accession number GSE11121, http://ccb.nki.nl/data/
[16]), as summarized in Table 1. Gene expression pro-
files of H1 hESC lines [17] were also obtained (GEO ac-
cession number GSE54186). In all datasets, the probe
intensities were log2 transformed and Z normalized
prior to analysis.


http://oasis-genomics.org/
http://oasis-genomics.org/
http://www.ncbi.nlm.nih.gov/geo/
http://ccb.nki.nl/data/

Emad et al. Breast Cancer Research

(2020) 22:74

Page 3 of 13

Table 1 Clinical and pathological characteristics of patient cohorts used to assess prognostic significance of EMAT subtypes

Factor METABRIC (n =562) GSE11121 (n =200) NKI295 (n = 151)
No. (%) No. (%) No. (%)
Age, years
<50 20.8 23.2 84.1
> 50 788 76.8 159
Unknown 04 100
Tumor size, cm
<2 395 49.5 54.3
2-5 57.7 49 457
>5 23 1.5
Unknown 0.5 0 0
Tumor grade
Low 8.5 14.5 225
Intermediate 423 68 305
High 423 17.5 470
Unknown 6.8 0 0
ER
Negative 173 232 27.8
Positive 788 76.8 72.2
Unknown 39 0 0
PR
Negative 438 418
Positive 56.2 58.2
Unknown 0 0 100
HER2
Negative 80.2 89.0
Positive 194 0.1
Unknown 04 0 100
Adjuvant therapy
Chemotherapy 7.1 N/A 40
Hormonal therapy 479 N/A 40
Radiation therapy 544 N/A 404
PAMS50 status
Luminal A 44.1 27 318
Luminal B 199 235 252
HER2 75 12.5 16.6
Basal-like 153 175 185
Normal-like 13 18 79
EMAT status
EMAT1 194 225 17.2
EMAT2 457 31 35.1
EMAT3 26 29.5 27.8
EMAT4 8.9 17 199

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, PR progesterone receptor
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Hierarchical clustering

Hierarchical clustering of samples was performed using
the python module SciPy, using Ward’s variance
minimization algorithm. To obtain EMAT clusters, we
partitioned METABRIC LNN samples into # =3, 4, and
5 clusters and found that # =4 yields the best grouping
of samples based on average silhouette scores [18], when
considering three different distance measures (cosine,
Euclidean, and correlation).

Survival analysis

Survival analysis (Kaplan-Meier and Cox regression) was
performed using KnowEnG analytical platform (www.
knoweng.org) [19], lifelines python module (doi: https://
doi.org/10.5281/zenodo.815943), and Survival R package
(https://CRAN.R-project.org/package=survival). Vari-
ables included in the multivariate analysis were age,
tumor size, tumor grade, subtype status based on recep-
tor profile, PAM50 centroid or EMAT centroid, adjuvant
chemotherapy, hormone therapy or radiotherapy. All
tests were two-sided, and p < 0.05 was considered statis-
tically significant.

Cross-validation framework to evaluate survival predictive
ability of different predictors

To compare the predictive ability of different classes of
features, we used a cross-validation framework, in which
half of the samples (patients) were randomly selected as
the training set and the other half were used as a test
set. The training set was grouped into n=4 clusters
using the EMAT signature. A Cox regression model was
trained on these samples, using clinical variables as well
as EMAT cluster status. In parallel, Cox regression
models were trained on the same samples using the
other types of predictors. Each trained model was then
used to estimate the expected survival of the remaining
samples (i.e., test samples). In this step, EMAT cluster
status was assigned to test samples using a centroid-
based classifier trained on the training samples. Then,
the estimated survival times were compared to the ob-
served survival times using the concordance index (C-
index). To ensure the specific choice of training and test
set does not influence the results, this process was re-
peated 200 times, each time using a distinct random par-
tition of data. To determine the EMAT cluster
assignment of the test samples, we first used hierarchical
clustering to cluster samples in the training set into four
clusters. Then we trained a centroid-based classifier on
the training set and predicted the cluster labels for the
test set. The p-values were calculated using a one-sided
Wilcoxon signed rank test and represent the significance
of the improvement obtained using EMAT cluster status
and clinical parameters as compared to other predictors.
The measure PIF shows the percent of times in which
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EMAT + clinical parameters provided a more accurate
prediction compared to the baseline.

The KNN and centroid-based classifiers

We implemented a KNN (only used to generate Supple-
mentary Fig. S7) and a centroid-based classifier for our ana-
lyses trained on LNN METABRIC samples. To reduce
cross-dataset analysis batch effects and relax the normality
assumption for gene expression values, we used the Spear-
man’s rank correlation as the measure of the sample similar-
ity in these classifiers. In the centroid-based classifier, for
each training cluster, a centroid was calculated as a vector in
which each entry corresponds to the mean expression of a
gene across the samples of the cluster. The cluster (EMAT
subtype) whose centroid had the highest Spearman’s rank
correlation with the expression profile of a test sample was
selected as the sample’s label (Supplementary Table S2).

Results
Prognostic significance of EMAT gene signature in breast
cancer
Hierarchical clustering of patient samples from the
METABRIC study using the EMAT gene signature yielded
four separate clusters (Fig. 1) with statistically significant
separation of associated Kaplan-Meier survival curves
(p = 2.42E-4, log rank test, Fig. 1c) despite the clustering
procedure not being privy to survival data and demon-
strated statistically significant prognostic value on both
univariable and multivariable Cox regression analysis
(Table 2). EMAT clusters displayed distinct expression
profiles for CDH1, VIM, RHOA, and JUP, well-accepted
biomarkers of epithelial (E), mesenchymal (M), amoeboid
(A), and collective cell migration in breast cancer [20], re-
spectively. EMAT4, the cluster with the lowest disease-
specific survival (DSS) probability, showed M-like charac-
teristics (VIM was over-expressed in this cluster compared
to the other three clusters, p = 4.8E-8, unpaired two-tailed
t-test). Cluster EMAT3 had the lowest average expression
of VIM (p =3.7E-79) and the highest average expression
of CDH1 (p=1.3E-3) and JUP (p =8.3E-6), suggesting
that early onset of epithelial collective cell migration may
be manifested in this group of patients. EMAT2 had the
highest average expression of RHOA (p =3.8E-3), sug-
gesting A-like characteristics. Finally, EMAT1 had high
expressions of VIM and RHOA but low expression of
CDH1 and JUP, with the average expression of JUP being
smallest (p =3.9E-15) in this cluster. These results indi-
cate existence of clusters having hybrid characteristics ra-
ther than discrete E-, M- and A- subtypes and emphasize
the advantage of using the EMAT signature over using
only E, M, or A biomarkers to distinguish groups of pa-
tient tumors associated with distinct prognosis.

Genes most differentially expressed in each cluster
(Bonferroni adjusted ¢-test p < 0.01) included both EMT
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 EMAT clusters and their characteristics. a EMAT clusters based on lymph node-negative METABRIC samples obtained using hierarchical
clustering. The heatmap shows the normalized expression of EMAT genes (rows) in each sample (columns). Sample dendrogram colors are
chosen to match those of Kaplan-Meier plots in ¢. b Characterization of samples based on similarity to hESC, PAM50 subtypes, ER, PR, and HER2
status, stage, grade, and type of treatment. Spearman'’s rank correlation, scaled between 0 and 1 using min-max normalization, is used as the
measure of similarity of samples to hESC, in which 0 and 1 represent least similar and most similar, respectively. ¢ Kaplan-Meier plots
corresponding to n =4 clusters. The heatmap shows the relative ranking of the average expression of four biomarkers in each cluster compared
to other clusters. Clusters EMAT2 and EMAT3 have very similar Kaplan-Meier survival curves (c), even though their gene expression profiles are
distinct. EMAT4 has a worse survival outcome compared to other clusters (p = 0.05 against EMAT3, p=0.01 against EMAT2 and p = 1.8E-6 against
EMAT1). d The box plots show the distribution of hESC similarity of the samples in each cluster. The similarity is defined as the Spearman’s rank
correlation (scaled between 0 and 1) between expression profiles of H1 hESC lines and each sample. The p-values (calculated using a one-sided t-
test) show how significant the differences between two adjacent EMAT clusters are with respect to their similarity to hESC. The significance p-
value for the cluster with the least similarity to hESC (EMATT1) and the cluster with the most similarity to hESC (EMAT4) is p = 1.7E-23

and MAT genes for all clusters (Supplementary Table Genomic Grade Index) prominently track proliferation
S3). Similarly, the genes most associated with survival biology, and it is believed that the group of proliferation-
(univariable Cox regression, p <0.01) included six EMT  associated genes has the biggest impact on the measure-
and seven MAT genes (out of 13, Supplementary Table  ment of prognosis [21]. We therefore wanted to determine
S4). These results implicate the concurrent necessity of  whether the prognostic significance of the EMAT signa-
both signatures for cluster identification. Patient stratifi-  ture had any contribution from it possibly also tracking
cation using the EMT signature alone [9, 10], while suc-  proliferation processes in cancer. For this purpose, we ob-
cessful in discerning between epithelial (CDH1, p=14E tained a cancer proliferation gene signature consisting of
-2) and mesenchymal (VIM, p=1.8E-69) marker ex- 200 genes [22]. Comparing this signature with the 388-
pressions, failed to show significantly different DSS (p =  member EMAT gene signature showed a small overlap
0.28, Supplementary Fig. S1A). Similarly, patient stratifi- consisting of only three genes (CDH1, ELMOS3,
cation using the MAT gene signature alone, while suc- RPS6KA1). Also, the univariate Cox regression analysis
cessful in discerning between mesenchymal (VIM, p=  did not show a significant association between these three
2.7E-7) and amoeboid marker (RHOA, p=6.4E-4) ex- genes and survival outcome (Supplementary Table S4).
pressions, failed to demonstrate significantly different  These results suggest that the prognostic impact of EMAT
DSS (p = 0.56, Supplementary Figure S1B). signature is not due to an association with proliferation

Most breast cancer multi-gene prognostic assays (Onco-  and that this signature captures aggressive metastasis biol-
type Dx, Mammaprint, Prosigna/PAM50, Endopredict, ogy independent of proliferation biology.

Table 2 Univariable and multivariable analysis of 562 LNN breast cancer patients (METABRIC dataset [13]) used to examine
prognostic value of EMAT subtype designation status for 10-year follow-up

Univariable analysis Multivariable (age, tumor Multivariable (age, tumor Multivariable (age, tumor
size, grade, IHC status**, size, grade, PAMS50 status’, size, grade, EMAT status™,
any chemo/hormonal/ any chemo/hormonal/ any chemo/hormonal/
radiation therapy) radiation therapy) radiation therapy)

n P HR (95% Cl) n P HR (95% Cl) n P HR (95% Cl) n P HR (95% Cl)

Age 562 070 100 (099-1.02) 510 018 1.014(099-1.03) 521 021 1.01(099-1.03) 521 0.21 1.01 (0.99-1.03

Tumor size (<2,2-5,>5) 559 002 167 (1.10-2.54 1.04-2.49
Tumor grade* 524 020 1.26 (0.89-1.79
Any chemotherapy 562 015 1.78 (0.82-3.87

)

( ) 510 004 159 (1.04-245) 521 003 160

( )

( )
Any hormonal therapy 562 015 072(046-1.12) 510 006 062(038-1.01) 521 004 060 (0.37-097

( 6)

( )

4( )

( )

521 004 159
510 046 1.16(0.78-1.71) 521 045 1.16(0.78-1.73 0.69-147

) ( )
( ( ) (1.03-2.47)
( ( ) 521 098 14 )
510 017 1.86(0.78-4451) 521 012 199 (084-477) 521 010 207 (0.87-4.92)
( ( ) 521 005 062 (0.39-1.00)
( ( ) (
(

Any radiation therapy 562 020 0.76 (0.50-1.1 510 028 0.78(050-122) 521 024 0.77(049-1.19) 521 015 072 (046-1.12)

IHC status** 538 003 1.23 510 032 1.11(0.90-1.37)
PAMS50 status” 562 0.12

EMAT status™* 562 1E—4 165

1.02-1.47
0.97-1.35
1.29-2.11

521 067 1.04(086-1.27)
521 3E-4 164 (1.25-2.14)

Two-sided p-values were based on x* or Fisher's exact test, whenever appropriate

Cl confidence interval, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, HR hazard ratio, PR progesterone receptor, P p-value, n number
of samples

*(Low - “1,” intermediate - “2,” high - “3")

**(ER+HER2— “1,” ER+HER2+ “2,” ER—HER2+ “3,” ER—HER2- “4")

#(Normal-like - “0,” LumA - “1,” LumB - “2," HER2 - “3," basal-like - “4")

#(EMAT1 - “1,” EMAT2 - “2,” EMATS3 - “3,” EMAT4 - “4")



Emad et al. Breast Cancer Research (2020) 22:74

EMAT clusters provide prognostic information beyond
clinical parameters or PAM50 intrinsic subtypes

Next, we examined whether the EMAT clusters are associ-
ated with clinical parameters or previously described breast
cancer subtypes (Fig. 1b). Of note is the visually apparent
enrichment of EMAT4, the cluster with worst survival, with
triple-negative (negative for ER, PR, HER2) and basal-like
(PAMS50 subtype, purple) patients. In addition, most HER2-
positive patients (green) appear in EMAT2. Human embry-
onic stem cells (hESC) have been previously shown to be as-
sociated with elevated metastasis risk [23]. Figure 1d shows
that EMAT clusters display worsening prognosis propor-
tionate to their degree of similarity to hESC, consistent with
this theory. This was despite the fact that derivation of the
EMAT gene signature was not designed to intentionally en-
rich for stem cell traits. This provides further evidence in
support of the EMAT clusters representing a progressive
transition from less stem-like to more stem-like cell states
and less invasive to more invasive modes of cancer.

Quantitative significance of observed associations
(Supplementary Table S5) between EMAT clusters and
tumor size, PAM50 subtypes, and receptor status was
assessed using enrichment p-value (hypergeometric test,
Fig. 2a—c). While the presence of small tumors in clus-
ters with good prognosis is expected, the enrichment of
EMATT1 (the cluster with the best prognosis) in large tu-
mors suggests that large tumors do not necessarily result
in poor survival in the absence of necessary metastatic
mechanisms [24]. EMAT3 was enriched in ER-positive
(p=1.76E-06) and PR-positive (p=2E-06) samples,
while EMAT4 was enriched in ER-negative (p =2.64E
-28), PR-negative (p=4.18E-18), and HER2-negative
(p =4.8E-3) samples. EMAT subtypes displayed enrich-
ments for PAMS50 intrinsic subtypes (“normal-like” in
EMATI1, p=559E-3, luminal A in EMAT2, p=1.84E
-06, luminal B in EMATS3, p =7.34E-12, and basal-like
in EMAT4, p=7.73E-41). Despite these enrichments,
however, 68% of “normal-like” samples are in clusters
other than EMAT1, 43% of luminal A patients are in
clusters other than EMAT2, 47% of luminal B patients
are in clusters other than EMATS3, and 46% of basal pa-
tients are in clusters other than EMAT4 (Fig. 2d).

We performed Kaplan-Meier analysis of EMAT clusters
within each PAM50 subtype (Supplementary Figure S2)
and within HER2+ and triple negative (TN) subtypes
(Supplementary Figure S3). The results revealed that sur-
vival outcomes of EMAT subtypes within each of these
subtypes are generally consistent with their survival out-
comes when all samples are analyzed simultaneously, with
EMAT4 having poor prognosis and EMAT1 having a bet-
ter prognosis. A similar observation was made when we
evaluated survival behavior of EMAT clusters in treatment
naive and treated patients (Supplementary Figure S4). It is
worth mentioning that the survival of treatment naive
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versus treated patients did not show a statistically signifi-
cant difference within each EMAT cluster, even though
the treated patients showed a better 10-year survival prob-
ability (Supplementary Figure S5).

To ascertain whether EMAT clustering provides prog-
nostic information beyond what is captured by the intrinsic
subtypes, we trained a Cox regression model (CRM) on the
LNN samples from the METABRIC dataset using four
types of predictors: (1) clinical parameters (CP, including
age, tumor size, tumor grade, adjuvant chemotherapy, hor-
mone therapy, or radiotherapy), (2) CP and receptor status,
(3) CP and PAM50 subtype status, and (4) CP and EMAT
cluster status. The Cox regression model trained on CP
and EMAT cluster status had the smallest p-value using a
likelihood ratio test (p = 6.6E-5 compared to p = 1.0E-2
for CP and receptor status, p = 1.5E-2 for CP and PAMS50
subtypes, and p =4.2E-3 for CP only). However, because
EMAT cluster status was defined based on samples used in
the CRMs, while the other subtypes were defined a priori,
this result while promising was not conclusive.

To rigorously compare the predictive ability of the vari-
ous groups while removing the effect of the varying number
of predictive features, and also to test the generalizability of
these models on unseen data, we next used a cross-
validation framework (see Methods for details). Samples
were randomly divided in two groups of (almost) equal size
and a CRM trained on one half was used to estimate the ex-
pected survival on the other half. This process was repeated
200 times, each time using a distinct random partition of
data. The CP and EMAT cluster status CRM provided the
best predictions (Fig. 2a—c bottom panels), evaluated using
a one-sided Wilcoxon signed rank test on paired C-index
values of the compared methods as well as another measure
called percentage of improved folds (PIF) [25] defined as
percent of the partitions in which one class of features out-
performs another class. Thus, although some of the EMAT
clusters are enriched in previously known molecular sub-
types of breast cancer (e.g., PAMS50), they are quite distinct
from such subtypes (Fig. 2d). In addition, the EMAT clus-
ters are better predictors of patient survival outcome than
PAMS50 or receptor-based subtypes. Finally, even though
CP including the type of treatment are important in pre-
dicting survival outcome, the EMAT clusters are not simply
surrogate measures of adjuvant treatments (Fig. 2d) but ra-
ther provide extra information that are useful in predicting
patient prognosis, as is evident from Fig. 2a.

Cross-dataset validation of the prognostic value of EMAT
cluster designation

We next evaluated the prognostic power of the EMAT
clusters on independent, lymph node negative datasets
(151 LNN patients in the NKI295 dataset and GSE11121),
one of which was a treatment-naive dataset [26] (GEO ac-
cession number: GSE11121), and stratified patients
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according to their EMAT subtypes using a centroid-based
classifier, which was trained using LNN METABRIC sam-
ples (see the “Methods” section). The GSE11121 dataset
contains distant metastasis-free survival (DMFS) informa-
tion, allowing us to specifically study the ability of EMAT
clusters to predict metastasis occurrence. EMAT subtype
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Kaplan-Meier curve separation was statistically significant
(p = 2.56E-03, log rank test, 151 LNN cohort in NKI 295,
and p=1.39E-2, log rank test, GSE11121, Fig. 3). In
addition, univariable and multivariable Cox regression
analysis (when considering CP) showed that these
clusters provide a statistically significant prognostic
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value in these independent datasets as well which concordance between the characteristics of the EMAT
comprised only of LNN patients where none of the subtypes in three independent datasets.

patients received any adjuvant chemotherapy at all

(GSE11121, Supplementary Table S6) or only a small Identification of transcription factors associated with
fraction (6 patients) received adjuvant chemotherapy  EMAT clusters

(151 LNN cohort in NKI295, Supplementary Table We evaluated the expression of 1338 transcription
S6). Survival behavior of EMAT subtypes remains factors (TFs) present in the METABRIC dataset (Sup-
largely similar to their behavior in the LNN METAB-  plementary Table S7) and utilized a ¢-test (corrected
RIC dataset, with EMAT4 having the worst survival, for multiple hypothesis testing) to identify TFs that
EMATS3 the second worst survival with EMAT1 and are differentially expressed in one cluster compared
EMAT?2 the best survival probabilities (see also Sup- to others, in LNN samples. We identified PPP1R13L
plementary Figure S6). These results show a high and MNDA (EMAT1), ETV7 and TSHZ3 (EMAT?2),
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SLUG and AFF3 (EMATS3), and FOXA1 and FOXC1
(EMAT4), which were under-expressed and over-
expressed in each cluster, respectively. Hierarchical
clustering of LNN samples from the METABRIC
dataset using the eight identified TFs had a very high
concordance with clusters obtained using the full
EMAT gene signature. In addition, Kaplan-Meier ana-
lysis using the clusters defined using these TFs dem-
onstrated a significant and similar separation of
survival curves (Fig. 4), lending support to their po-
tential clinical utility as biomarkers of the identified
EMAT clusters.

Discussion and conclusion

The clinical significance and necessity of EMT in driving
metastasis has been questioned in recent publications
[27-30]. While the findings in such studies have been
challenged to be inconclusive [31, 32], there is another
possible explanation for the reported findings without
upending the potential significance of EMT in metasta-
sis. When a cancer cell proceeds along EMT, microenvi-
ronmental pressures (e.g, hypoxia) or xenobiotic
exposure (e.g., chemotherapy or EMT-targeted biologic
therapy) may lead to an increase in the entropy of the
EMT path of cellular transformation. A cancer cell of
epithelial origin that has already undergone EMT when
faced with such a situation may then undergo plastic
transformation by a process such as MAT and adopt a
low entropy, alternate amoeboid motility program to
metastasize [12]. Indeed simultaneous targeting of both
mesenchymal and amoeboid motility in an animal model
of cancer progression has been demonstrated to effect-
ively arrest metastatic spread [13]. Only when both pro-
cesses are considered together does the prognostic value
of such distinct phenotypes become demonstrable.

As LNN breast cancer patients are typically perceived
to harbor a lower metastasis risk compared to lymph
node-positive breast cancer patients, many LNN patients
(especially those diagnosed with ER+ breast cancer) are
not recommended to be treated with adjuvant chemo-
therapy. We therefore used lymph node negativity as a
criterion to select clinical samples for analysis to ensure
that the samples obtained were from early clinical stages
of the metastasis cascade. Furthermore, this would help
fulfill the greater unmet clinical need of identifying atyp-
ical LNN breast cancer patients who possibly harbor ele-
vated metastasis risk, as indicated by an EMAT3 or
EMAT4 cluster designation, and may potentially benefit
from life-extending adjuvant chemotherapy. Similarly,
patients diagnosed with LNN HER2+ breast cancer or
LNN TN breast cancer are known to harbor greater
metastatic recurrence risk than patients diagnosed with
LNN ER+ breast cancer, for which reason many such
patients are typically recommended to be treated with
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adjuvant chemotherapy. In this situation identifying
atypical LNN HER2+ or TN breast cancer patients who
possibly harbor lower metastatic recurrence risk, as indi-
cated by an EMAT1 cluster designation, would also be
important as such patients may not require treatment
with adjuvant chemotherapy and thereby avoid unneces-
sary chemotherapeutic side effects.

Limitations of the present study include our inability
to consider the potential impact of the host immune re-
sponse, tumor stromal factors, and/or that of non-
cancer cells of the tumor microenvironment on influen-
cing metastatic proclivity and prognostic prediction
thereof. Because of the retrospective design of the study,
reported results while suggestive are not conclusive
regarding the potential clinical impact of the EMAT
signature. As the dataset patients were treated at dif-
ferent time-points, conclusions cannot be generalized
because the distribution of clinical characteristics may
be different in patients from other areas (even within
the same geographical region). The current study
therefore suffers from biases inherent to such a study
design. Our results do however suggest that they
merit further investigation. To this end, the centroid-
based EMAT classifier developed in the present study
can be used as a single sample predictor to determine
the EMAT cluster designation status of new patient
samples, even if they were not included in the present
study.

Our study revealed the existence of breast cancer pro-
gression and metastasis subtypes that display a dynamic
overlap of EMT and MAT rather than discrete E-, M-,
and A-like clusters, emphasizing the advantage of using
the EMAT signature over using only E, M, or A bio-
markers, to distinguish patient groups with distinct
prognosis. What is important to note is that the meta-
static propensity of breast cancer cannot be accurately
captured or predicted by consideration of clinical stage,
receptor status, PAM50 molecular subtype status, or
treatment variables alone and that the additional consid-
eration of metastasis biology-based predictors is
warranted.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513058-020-01304-8.
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Additional file 1: Figure S1. Kaplan-Meier survival analysis correspond-
ing to clusters of LNN METABRIC samples based on EMT and MAT signa-
tures. (A) Kaplan-Meier survival analysis for clusters obtained based on
EMT gene signature using hierarchical clustering. (B) Kaplan-Meier survival
analysis for clusters obtained based on MAT gene signature using hier-
archical clustering. Figure S2. Kaplan-Meier survival analysis of EMAT
clusters within each PAM50 subtypes of LNN METABRIC samples. Figure
S3. Kaplan-Meier survival analysis of EMAT clusters within HER2-positive
and triple negative (TN) subtypes of LNN METABRIC samples. Figure S4.
Kaplan-Meier survival analysis of EMAT clusters within treatment-naive
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and treated patients of LNN METABRIC samples. Figure S5. Kaplan-Meier
survival analysis of treatment-naive versus treated patients of LNN
METABRIC samples within each EMAT cluster. Figure S6. Cross-dataset
analysis. The Kaplan-Meier survival plots correspond to EMAT subtypes of
LNN breast cancer samples from the GSE11121 dataset. A 5-NN classifier
trained on LNN METABRIC samples is used to assign EMAT subtype labels
to each sample. In the figure, C1 = EMAT1, C2 = EMAT2, C3 = EMAT3 and
C4 = EMAT4.

Additional file 2: Table S1. List of genes in the EMAT, EMT and MAT
signatures. The table content is provided as a separate xIsx file.

Additional file 3: Table S2. EMAT cluster labels of samples in the
METABRIC, GSE11121 and NKI295 datasets. The table content is provided
as a separate xIsx file. The labels are obtained using hierarchical
clustering with 4 clusters, as described in the manuscript.

Additional file 4: Table S3. Percent of EMT and MAT genes present
among differentially expressed genes (DEGs) for each cluster. The table
content is provided as a separate xIsx file. DEGS for each EMAT cluster
were defined as differentially expressed in that cluster compared to other
clusters (Bonferroni adjusted p < 0.01, using a two-sided t-test).

Additional file 5: Table S4. The association of EMAT genes with
survival outcome. The p-values are obtained using a univariable Cox
regression analysis.

Additional file 6: Table S5. A summary of the characteristics of the
EMAT clusters obtained using lymph node-negative breast cancer pa-
tients from the METABRIC study. In this table, P stands for positive and N
for negative. EMAT1 has the least similarity to hESC and is enriched in
normal-like PAM50 subtype of breast cancer and has a good prognosis.
EMAT2, the cluster with a relatively good prognosis, has little similarity to
hESC, is enriched in Luminal A subtype and in ER-positive and PR-positive
samples. EMATS3, the cluster with a relatively moderate prognosis, has a
high degree of similarity to hESC, is enriched in Luminal B subtype and in
ER-positive, PR-positive and HER2-negative samples. EMAT4, the cluster
with the worst prognosis, shows the highest degree of similarity to hESC,
is enriched in the basal-like subtype of breast cancer as well as ER-
negative, PR-negative and HER2-negative samples.

Additional file 7: Table S6. Univariable and multivariable Cox
regression analysis for validation dataset samples from GSE11121 and
NKI295. The table content is provided as a separate xIsx file.

Additional file 8: Table S7 Differential expression analysis of TFs for
each EMAT cluster. The table content is provided as a separate xIsx file.
The p-values were obtained using a two-sided t-test and were corrected
for multiple hypothesis testing.
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