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Abstract

Traumatic brain injury (TBI) can occur across wide segments of the population, presenting in a 

heterogeneous manner that makes diagnosis inconsistent and management challenging. 

Biomarkers offer the potential to objectively identify injury status, severity, and phenotype by 

measuring the relative concentrations of endogenous molecules in readily accessible biofluids. 

Through a data-driven, discovery approach, novel biomarker candidates for TBI were identified in 

the serum lipidome of adult male Sprague–Dawley rats in the first week following moderate 

controlled cortical impact (CCI). Serum samples were analyzed in positive and negative modes by 

ultraperformance liquid chromatography–mass spectrometry (UPLC–MS). A predictive panel for 

the classification of injured and uninjured sera samples, consisting of 26 dysregulated species 

belonging to a variety of lipid classes, was developed with a cross-validated accuracy of 85.3% 

using omniClassifier software to optimize feature selection. Polyunsaturated fatty acids (PUFAs) 

and PUFA-containing diacylglycerols were found to be upregulated in sera from injured rats, 

while changes in sphingolipids and other membrane phospholipids were also observed, many of 

which map to known secondary injury pathways. Overall, the identified biomarker panel offers 

viable molecular candidates representing lipids that may readily cross the blood–brain barrier 

(BBB) and aid in the understanding of TBI pathophysiology.
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INTRODUCTION

Heightened awareness of traumatic brain injury (TBI) in the military, athletics, and the 

general public has led to increased efforts toward the development of objective diagnostic 

measures and clinically relevant treatment options. The Centers for Disease Control estimate 

that TBI is the primary cause of over 50 000 deaths and 300 000 hospitalizations in the 

United States annually.1 Many more injuries remain misdiagnosed, undetected, or 

unreported.2,3 Typical clinical assessment tools such as the Glasgow Coma Scale, radiologic 

imaging, and symptoms reporting are limited and do not capture the heterogeneous 

physiologic and neurochemical response, making TBI diagnosis and treatment a challenge.4

Biomarkers offer the potential to both sensitively and specifically identify the severity and 

phenotype of TBI, track pathology and metabolic state, and aid in mechanistically based 

treatment decisions. The vast majority of proposed TBI biomarkers are astroglial and 

neuronal proteins, such as GFAP, S100β, UCH-L1 and Tau/P-tau,5,6 that may not readily 

cross the blood brain barrier (BBB), although the recently discovered glymphatic system 

may partially explain their brainto-blood transport.7,8 While some of these proteins have 

been useful in the diagnosis of severe TBI, they have not yet been shown to be sensitive 

enough to consistently detect TBI across a range of severities.9 Furthermore, while the BBB 

is disrupted in severe TBI, it is not as permeable in milder injuries, which perhaps partially 

explains why many biomarkers of severe brain injury do not translate well to mTBI 

diagnostics.10,11 Small molecule metabolites may permeate the BBB, though acute changes 

in tissue metabolite content are significantly more detectable than are alterations in plasma.
12 Blood lipid levels are expected to reflect brain pathophysiology, given the close proximity 

of the cerebrospinal fluid (CSF) and brain, the lipophilic nature of the endothelial cells 

comprising the BBB, the ease of transport of small lipids, and the similarity of lipid content 

in the CSF and extracellular fluids.13,14 Lipids are therefore more likely to translate to 

clinically successful TBI biomarkers than are proteins, especially in readily accessible 

biofluids such as blood or urine. Exploration of lipid metabolites as potential biomarkers of 

TBI is still in its infancy compared to protein-based markers, yet it holds promise given the 

high lipid content of the brain and its vulnerability to oxidative lipid damage.15–17 The 

dysregulation of lipids after TBI is well documented,18–22 and identification of altered lipids 

in the serum may reveal novel biomarker candidates.15,23 Elevated levels of polyunsaturated 

fatty acids (PUFAs) and redox transition metals as well as the high rate of oxygen 

consumption in the brain make it highly vulnerable to free radical attack.24 Free radical 

mediated damage from reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

is initiated acutely following the primary insult but can persist in the hours and days 

following injury, overwhelming antioxidant defenses, and mediating damage to vital cell 

structures such as membranes and mitochondria.25,26 The study of volatile urinary 

metabolites also offers promise for the detection of inflammatory processes resulting from 

neurological disorders such as TBI.27
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While biomarkers necessary for the diagnosis of TBI should exhibit rapid changes in 

biofluids following injury, fluid biomarkers also have the potential to minimally invasively 

probe the evolution of injury manifestation as well as monitor recovery and treatment 

interventions. Many molecular effectors associated with apoptosis, microgliosis, 

demyelination, and neuroregeneration are not detectable within hours of injury.28 In fact, 

biomarkers that indicate secondary injury cascades may take days or weeks to reach their 

maxima, highlighting the need for ongoing detection.4 For example, cellular and 

mitochondrial levels of lipid peroxidation mediated oxidative damage do not peak until 3 

days postinjury.29 Thus, a careful study of the metabolic response to brain injury over the 

first week following injury has the potential to aid in the discovery of biomarkers that can 

predict disease state and outcome. Given the heterogeneity of TBI, no single biomarker is 

likely to be predictive of all mechanisms of damage. Similarly, separate biomarkers or 

biomarker panels may be required to accurately reflect the acute, postacute, and chronic 

recovery periods, as different cellular mechanisms will be activated across the entire time 

course of injury.

A variety of mechanisms of cellular dysfunction are associated with brain injury including 

the onset of lipid peroxidation mediated damage. Free radicals react with esterified PUFAs 

including arachidonic acid (AA), docosapentaenoic acid (DPA), and docosahexaenoic acid 

(DHA) to induce lipid peroxidation, which leads to irreversible damage to neuronal lipid 

membranes.30 Milder injuries involve little to no cell death; therefore, measures of sublethal 

damage, such as the oxidation of membrane lipids, may be able to gauge injury across all 

severities, independent of BBB permeability.31

Many existing studies into lipid biomarkers have utilized targeted profiling of a handful of 

specific lipids, which has the disadvantage of being biased toward known pathways but not 

necessarily revealing the optimum biomarker candidates that can be found with discovery-

type approaches.32 A highcoverage survey of the lipid profile changes associated with TBI 

can thus help to guide biomarker discovery and identification while providing additional 

mechanistic understanding of the role of specific lipid-related molecular effectors in TBI 

pathophysiology. Therefore, the objective of this study was to determine which lipids, or 

classes of lipids, are dysregulated following moderate TBI in rats using a highcoverage 

lipidomics approach, ultimately selecting an optimized panel of lipid biomarkers that has the 

potential to objectively differentiate injured from uninjured Sprague–Dawley rats, which 

often serve as a suitable preclinical model for human disease.33 Currently there are no FDA 

approved biomarkers for the diagnosis of TBI, but consideration for the inclusion of lipids in 

the development of biomarker panels may aid in translation to clinical success.28

METHODS AND MATERIALS

Injury and Blood Sampling

All procedures involving animals were performed according to the guidelines set forth in the 

Guide for the Care and Use of Laboratory Animals (U.S. Department of Health and Human 

Services, Pub no. 85–23, 1985) and were approved by the Georgia Institute of Technology 

Institutional Animal Care and Use Committee (protocol #A15013). The study was not 

preregistered. Male Sprague–Dawley rats (8 weeks old; Charles River) were kept on a 12-h 
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light–dark cycle, and food and water were available ad libitum. Thirty-four animals 

weighing 300–400 g were randomly assigned to the following groups using a computer 

based randomization algorithm: (1) naive (n = 10), (2) sham-operated (n = 8; n = 4, 3 days 

postsurgery; n = 4, 7 days postsurgery), and (3) controlled cortical TBI (TBI, n = 16; n = 7, 3 

days postinjury; n = 9, 7 days postinjury). Shamoperated animals were employed to ensure 

that the stress of surgery did not play a role in sample classification based on lipid profiles, 

while naive samples were taken from a subset of animals prior to sham or TBI procedures.

Unilateral contusions of the lateral frontoparietal cortex were created using a controlled 

cortical impact (CCI) device (Pittsburgh Precision Instruments, Pittsburgh, PA) following 

published procedures.34,35 Rats were anesthetized (induction, 5% isoflurane; maintenance 

2–3% isoflurane), mounted in a stereotaxic frame and a 6 mm craniectomy was made over 

the left frontoparietal cortex (center: −3.0 mm AP, + 2.0 mm ML from bregma). A 

pneumatic piston (tip diameter = 5 mm; positioned 15 degrees from vertical in the coronal 

plane) impacted the cortical tissue to a depth of 2 mm (velocity = 4 m/s, duration = 200 ms), 

values consistent with a moderate TBI insult.36 Following the injury, the wound cavity was 

thoroughly cleaned and all bleeding stopped before a layer of 2% SeaKem agarose (Lonza, 

MD) was applied to the injury site and the scalp sutured.37,38 The bone flap was not replaced 

as per standard CCI protocols.35 Animals received sustained release buprenorphine (1 mg kg
−1) and were placed on a heating pad during recovery, at which time they were returned to 

their home cage and singly housed. Sham-operated animals were subjected to the same 

procedures described above, but did not receive an impact, while naive animals were not 

subjected to surgical procedures.

The serum lipidome of rats was analyzed at 3 and 7 days following moderate CCI injury to 

identify potential biomarker candidates. During the afternoon, approximately 200 μL of 

whole blood was collected from a tail vein punctured by 20gauge Precision Glide needles 

(Beckton Dickinson) and stored on ice. Whole blood samples were allowed to coagulate at 

room temperature for 45 min, and all sample collection followed literature guidelines for 

limiting the potential for hemolysis.39,40 Samples were then centrifuged at 4 °C for 15 min 

at 2500g, and serum was collected in 50 μL aliquots and stored at −80 °C.

Sample Preparation

Prior to analysis, lipids and small nonpolar metabolites were separated from proteins in 

blood using isopropyl alcohol (IPA) for protein precipitation, shown to be advantageous over 

the Folch or Bligh and Dyer methods for a variety of experimental considerations.41–44 For 

protein precipitation purposes, serum samples were thawed on ice for 1 h and serum was 

mixed 1:3 v/v with IPA. Samples were centrifuged at 16 000g for 7 min, and the supernatant 

was collected. Samples were stored at −80 °C until analysis. Liquid chromatography–mass 

spectrometry (LC–MS) analysis following IPA extraction confirmed excellent coverage of 

various lipid families (Figure S1).

UPLC–MS Analysis

A Waters Acquity ultraperformance liquid chromatography (UPLC) quaternary solvent 

manager system was employed for chromatographic separations. Both ionization modes 
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utilized identical mobile phases, though different chromatographic gradients were employed 

(Table S1a). Mobile phase A was water/acetonitrile (40:60) and mobile phase B was 10% 

acetonitrile in IPA. Both mobile phases included 10 mM ammonium formate (Sigma-

Aldrich, > 99.995%) and 0.1% formic acid (Fluka Analytical) additives to improve peak 

shape and ionization efficiency. All solvents used were of LC–MS grade and provided by 

Sigma-Aldrich (IPA) or J.T. Baker (acetonitrile). The column used was an ACQUITY UPLC 

BEH C18 1.7 μm, 2.1 × 50 mm2, operated at 60 °C, while samples were maintained at 5 °C 

throughout the analysis. Injection volumes of 5 and 10 μL were used in positive and negative 

ion modes, respectively. Run order was randomized, and samples were acquired in duplicate. 

A Waters Xevo G2 QTOF mass spectrometer with an electrospray ionization source was 

used for metabolomics analysis of all samples. MS parameters are provided in the 

Supporting Information (Table S1b). The mass spectrometer was calibrated with a sodium 

formate solution, and data were acquired in the 50–1200 Da range with leucine enkephalin 

used for lock mass correction. Data are available online at https://chorusproject.org/

anonymous/download/experiment/-3567265606761364215 and at http://

dev.metabolomicsworkbench.org:22222/data/DRCCMetadata.php?

Mode=Study&StudyID=ST000920.

Most tandem MS experiments were performed in the Xevo G2 QTOF mass spectrometer (4 

different collision energies, ranging from 10 to 40 V). For low abundance markers that 

required higher sensitivity, tandem MS experiments were performed in a Q-Exactive (QE) 

HF Orbitrap mass spectrometer (Thermo Fischer Scientific) at a normalized collision energy 

(NCE) setting of 10, 30, and 50, and combined into a single spectrum by the instrument 

software. Table S2 details the specific instrument used to acquire the MS/MS data for each 

respective lipid as well as the annotation of each species. Spectral interpretation of lipid 

fragmentation patterns was performed either manually or by comparison to entries in the 

Lipid Maps, Metlin, and HMDB databases.45–47 The Lipid Maps MS/MS prediction tool for 

glycerophospholipids was also used for the assignment of fragment ion species.

Sample Size Calculation

Minimum sample size to achieve statistical significance was determined by a priori power 

analysis using G*Power 3.1 statistical software.48 For each metabolomic feature, Cohen’s 

effect size (d) was estimated at d = 1 using pilot data, which produced the desired statistical 

power (1-β = 0.80) and error probability (α = 0.05) with a sample size of n = 34.

Data Mining

Chromatographic alignment, deisotoping, deconvolution, normalization, and peak picking 

were accomplished using Progenesis QI software. Sets of 1669 and 619 spectral features, 

defined as unique pairs of retention time (RT) and exact mass to charge ratios (m/z), were 

obtained for positive and negative ion modes, respectively. Filters were applied to remove 

peaks detected as background contaminants and peaks in which the instrumental variation, 

or the coefficient of variation measured (CVm), approached biological variability (CVb) 

through the use of solvent blanks and quality control pooled samples. Any features detected 

above the noise threshold in solvent blank runs or with high CVm in pooled quality control 

runs were removed from the data sets. Features detected in fewer than 75% of samples in 
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TBI and control groups were also removed prior to binary classification. The remaining 727 

feature abundances (413 positive and 314 negative mode) were exported as a single matrix 

combining both ionization modes to omniClassifier for multivariate analysis.

Feature Selection and Classification

Postprocessed feature abundances were log2 normalized to create an approximately 

Gaussian distribution prior to binary classification. OmniClassifier was utilized to develop 

an initial model to predict TBI based on lipidomics data.49 As a first approximation to model 

the data, sham-operated and naivë animals were collectively grouped as “controls” in a 

single class, while 3- and 7-day postinjury time-points were labeled as “TBI”. This was done 

to increase the total number of samples in each class, prevent overfitting, and increase model 

statistical significance. Using nested cross-validation, prediction models were optimized 

using four different classifiers bundled within omniClassifier: Bayesian, K-nearest neighbors 

(KNN), logistic regression, and support vector machines (SVM). Ten iterations of three-fold 

nested cross-validation were applied to the training data to estimate prediction performance, 

which resulted in 4 × 10 × 3 = 120 total tested models. Subsequently, non-nested cross-

validation was applied to the training data to optimize a final prediction model. Blinding was 

utilized in the data analysis cross-validation stage, where a subset of samples was removed 

from the training set, blinded, and predicted for each tested model.

A single iteration of nested cross-validation produced three prediction performance values, 

which were averaged into a single performance quantity. This entire process was repeated 

for ten iterations, resulting in ten averaged cross-validation performance quantities. After 

nested cross-validation, a final prediction model was chosen. When choosing a final 

prediction model, the same cross-validation optimization procedure as previously used in the 

nested cross-validation step was chosen, but applied to the entire training data set. 

Subsequently, the final model parameters were used to select features and train the classifier.

Each classifier was optimized over several parameters. Bayesian classifiers included nearest 

centroid, diagonal linear discriminant analysis, spherical discriminant, and uncorrelated 

discriminate classifiers.50 KNN classifiers were optimized over ten values of K (K = 1–10). 

The linear SVM was optimized over ten cost values (i.e., 1 to 10). Feature selection was 

accomplished using the minimum redundancy, maximum relevance (mRMR) method, 

choosing optimal feature sizes from within the range of 1 to 100.51 The mRMR feature 

selection method identified an optimal set of features that minimized the correlation among 

features while maximizing mutual information between features and class labels. Following 

omniClassifier analysis, more granular models were created using orthogonal partial least-

squares-discriminant analysis (oPLS-DA) for each of sham-operated or naive versus TBI 

samples (MATLAB, R2015a, The MathWorks, Natick, MA with PLS-Toolbox, version 8.0, 

eigenvector Research, Inc., Manson, WA) with Venetian blinds cross-validation.52,53 Prior to 

oPLS-DA, features were autoscaled. Abundances of features with significant changes (TBI 

vs control) were analyzed at 3 and 7 days postinjury using a one-way analysis of variance 

(ANOVA) with p < 0.05 considered significant.
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RESULTS

Overall, 2288 features that were above background were detected and further reduced to 727 

based on frequency criteria. Principal component analysis (PCA) investigation of this data 

set (Figure 1A) showed that pooled samples grouped together and accurately represented the 

average composition of both TBI and noninjury (naive + sham-operated) samples̈ analyzed. 

Initially, each sample was projected into linear space so that the relationship across all 

variables could be visualized in two dimensions. However, the lack of distinct clustering in 

the PCA scores plot revealed that accurate discrimination of TBI would require the selection 

of metabolic features that directly reflected TBI pathophysiology using supervised 

classification approaches. We initially combined the injured groups to use robust binary 

classification schemes to find potential lipids that could distinguish injured from noninjured 

rats. Using untargeted lipidomics approaches, we examined features that were able to 

distinguish TBI samples from controls. This feature set was then processed using a total of 

120 multivariate omniClassifier models of controls (sham-operated + naivë) versus TBI by 

testing a combination of various classifiers and comparing inner and outer cross-validation 

values. In all cases, inner cross-validation area under the curve (AUC) values matched outer 

cross-validation values, indicating lack of overfitting (Figure S2). Recursive selection within 

the 727feature set simplified these classification models by reducing data dimensionality 

while preserving only features that resulted in high sensitivity and specificity. Table 1 shows 

the performance of the best models produced by each of the four classifiers tested. All four 

models performed similarly well, with the number of features utilized ranging from 9 to 31 

and AUC values ranging from 0.80 to 0.84 under cross-validation. As expected, AUC 

performance on the whole data set approached unity for these four best models, but the 

cross-validated AUC values were chosen as more representative of a scenario in which 

unknowns would be predicted. Interestingly, the smallest set of nine features selected by the 

optimized Bayesian classifier using mRMR feature selection was conserved across all 

classifiers, lending support for the underlying biological basis of this multivariate 

classification. The optimized KNN classification model, containing 31 metabolite features, 

was selected for chemical annotation of the features so as not to ignore any useful TBI 

biomarker that might reflect unique network level alterations. Of those 31 features, five 

eluted with the chromatographic solvent front, where measured ion intensities are unreliable 

due to suppression effects.54 As their removal from the multivariate model did not result in a 

significant decrease in AUC, these features were excluded from further consideration. 

Following establishment of a subset of distinguishing features, we identified the molecules 

and examined abundance at each of the postinjury time points.

Figure 1B depicts an oPLS-DA scores plot for the optimized 26-feature lipid panel with all 

sample classes treated individually. Here, it becomes clear that the samples can be roughly 

split into two classes, with negative scores on latent variable (LV) 1 generally corresponding 

to TBI samples and positive scores being more representative of controls, irrespective of day 

of collection. In a binary representation of the data, differences between sham-operated and 

naive controls̈ versus TBI were also modeled using oPLS-DA and leave-oneout cross-

validation (Figure 1C). Control samples separated from injured samples with no significant 

overlap, again with negative scores (TBI) and positive scores (control) on LV1. The 
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sensitivity, specificity, and overall accuracy were 93.7%, 77.8%, and 85.3%, respectively. 

More detailed binary comparisons (sham-operated vs TBI, naive vs TBI, all controls̈ vs TBI) 

were also performed using the same panel of 26 metabolites and oPLS-DA, a standard 

multivariate classification tool (Figure 2). The classification accuracy in all cases exceeded 

90%, with a sensitivity of 93.8% and specificity of 87.5–100%. These results indicated that 

lipid alterations observed in the 26feature panel can be attributed solely to TBI and were not 

a consequence of the surgical procedure.

With an average mass error of 1.4 ppm, the elemental formulas and head groups were 

determined for all but two lipids, and all species were annotated where possible. Table 2 

details the identity of the lipids included in the 26-feature panel determined by both high-

resolution MS and MS/MS experiments, while Table S2 provides the level of confidence 

obtained for each identification. Two of the 26 species in the panel likely corresponded to a 

mixture of at least two lipids, which coeluted in the UPLC dimension and were isobaric in 

the MS dimension, therefore being unavoidably coisolated for MS/MS experiments. 

Distinction of these species was beyond the scope of this study and would require an 

additional dimension or either liquid-phase or gas-phase separation such as ion mobility.55,56 

Table 2 also depicts p-values and abundance fold changes for each species. Positive fold 

change values correspond to species with increased abundance in injured samples, while 

negative values indicate higher abundance in controls. When considered univariately, 15 of 

the 26 lipid species showed p-values at or below 0.05 (p-value range = 0.000354–0.0156) for 

a binary comparison between controls and TBI, though it must be taken into account that the 

panel as a whole was utilized for classification purposes, so the fold change of an individual 

lipid species is less significant when alterations are investigated at a systems level. Of these 

15 lipid species, 13 remained statistically significant when naive sampless̈ were removed 

from the control class for p-value calculations, further verifying that the lipidome alterations 

observed were due to injury and not to surgery. Ionization efficiency varies widely between 

lipid classes, so only abundances of lipids belonging to the same class can be compared 

directly.57 Calculation of absolute abundance values for each lipid was beyond the scope of 

this study, as it requires extraction of serum samples with all relevant internal standards.58 

This must therefore be performed prior to analysis and is better suited to targeted biomarker 

studies, which can be guided by our untargeted discovery analysis.59

Among the lipids identified as potential TBI biomarkers, PUFAs and PUFA-esterified DGs 

were found to increase in TBI samples. Also, a decrease in SM(d18:1_22:1) was observed in 

the TBI group, which was accompanied by a corresponding decrease in a related ceramide- 

Cer(d18:1_22:0). Injuryspecific changes in abundance were also found for a variety of other 

membrane lipids (e.g., PCs, PEs, and a PSs) as well as for cholesterol sulfate (CS). The PE 

membrane lipid containing esterified arachidonic acid PE(20:4_16:0) was more abundant in 

controls, while the relative abundance of PS(20:4_16:0) was slightly increased following 

TBI. Additionally, all PCs identified by the 26-feature model were of lower relative 

abundance in TBI samples, while the lysoPC species observed showed an increase following 

injury.

In addition to the 26-lipid panel described in Table 2, other lipids were frequently selected 

by the 120 multivariate models built using omniClassifier, but were not part of the optimum 
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panels highlighted in Table 1. Figure S3 details the topmost 30 features in the 120 unique 

individual multivariate models based on their frequency of selection, which was related to 

the feature’s ability to discriminate between classes. Only seven features (#30, 34, 35, 227, 

311, 475, and 701) were not covered in the 26-feature panel discussed above. Box plots and 

chemical annotations for the most significant additional features are shown in Figure S4. 

These were identified by both MS and MS/MS as eicosapentaenoic acid (EPA), 

docosahexaenoic acid (DHA), lysoPE(20:4), PE(32:0), and PC(40:4).

To visualize the entire set of relevant features simultaneously, a volcano plot was used to 

represent changes in individual species. Figure 3 provides a broad overview of the most 

salient lipidome alterations following TBI as a function of p-value and fold change. 

Boundaries are drawn to illustrate features with fold change absolute values > 2 and p < 

0.05. Features in the upper left and upper right regions satisfy both of these requirements 

and are most likely to be good candidate biomarkers of TBI if a single species was more 

desirable, although it is known that biomarker panels are more robust than assays based on 

single species.60,61 The lipids contained in the 26-feature model are indicated by red circles, 

with 9 of the 15 individually significant features contained in those volcano plot regions. 

Additionally, most of the frequently selected features not in the panel, represented by blue 

X’s in the plot, fell above the significance boundary, further validating the feature selection 

method. As shown, not all the selected features were significant or near significant 

individually; however, when combined into a multivariate panel, all species were critical to 

the accuracy of the classification.

Box plots describing these trends in dysregulation and normalized relative abundances for a 

variety of lipid species from the classification panel are shown in Figure 4. As observed in 

panels A1–A3, free fatty acid concentrations (18:0, 20:4, and 22:5) were all significantly 

elevated in TBI samples. The same trend held for DGs, DG(20:4_18:1) and DG(22:6_18:2), 

as shown in panels A5 and A6. Panels B1–B3 illustrate decreases in abundance for CS as 

well for SM and PC species, SM(d18:1_22:1) and PC(20:2_20:0).

Altered lipids were subdivided into groups by describing their trend as increased, decreased, 

or no significant change at the 3and 7-day time points following injury (Figure 5). No 

significant differences were observed compared to controls at either the 3- or 7-day time 

point for five features, indicating that these alone are unlikely to translate to successful 

biomarkers. Approximately half (10/21) of the remaining features were significant across 

both time points (3 and 7 days) when compared to controls, while 10 more showed 

significant differences at only 3 or 7 days (Figure 5A,B). Most features in the panel, all 

except for two, did not show significant differences between 3 and 7 days, (Figure 5C). The 

remaining differences, however, could be attributed to reduced sample size for each pairwise 

comparison or type I errors stemming from multiple comparisons. Additionally, many 

features show temporal patterns supporting a return toward control levels at 7 days, 

warranting further study and inclusion of more acute time points to determine the time 

course of biochemical changes following injury.
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DISCUSSION

We utilized a broadband, discovery approach to identify novel lipid biomarkers of moderate 

TBI in the serum of adult male rats at 3 and 7 days postinjury. These subacute time points 

correspond with ongoing secondary cell degradation as well as the time course of post-

traumatic inflammatory and oxidative stress cascades.26,62–68 Through the combination of 

high resolution mass spectrometric methods and rigorous datadriven classification models 

(feature selection algorithms: Bayesian, K-nearest neighbors, logistic regression, and 

support vector machines), we determined a 26-feature lipid panel that consistently separated 

TBI samples from sham-operated and naive controls with over 85% accuracy. Many of the 

lipids̈ prominent in the panel were PUFAs and PUFA-containing diacylglycerols as well as 

oxidized phospholipids, sphingolipids, and other lipid moieties. These dysregulated lipid 

species warrant further investigation and consideration for inclusion in a TBI biomarker 

panel. While it is expected that a biomarker panel will increase specificity over a single 

biomarker, 15 of the 26 lipids in the panel distinguished injury from control when 

considered individually, demonstrating the potential of this approach to identify TBI-specific 

changes in single lipid species. Among the lipids identified as potential TBI biomarkers, 

PUFAs were found to increase after TBI. Specifically, free fatty acids such as FFA(18:0), 

FFA(20:4, AA), FFA(22:5, DPA), and FFA(22:6, DHA) all showed significantly increased 

relative abundances following TBI, while the abundance of oxidized free fatty acid 

FFA(18:2 + 1 O) decreased. Similarly, elevated levels of AA have been found in rat serum 

following TBI using gas chromatography–mass spectrometry (GC–MS) at 1 and 5 days 

postinjury.69 FFA increases have also been observed in the rat brain following CCI21 as well 

as in the CSF of TBI patients.70,71

An increase in FFAs is known to accompany cellular injury events such as uncoupling of 

oxidative phosphorylation, exacerbating the disruption of ion balance and aggregation of 

oxidative metabolites.72 The disruption of calcium ion homeostasis in combination with 

energy depletion in the brain following injury leads to the activation of phospholipases A2 

and C, which causes the release of FFAs from membrane phospholipids.73,74 The activation 

of phospholipase A2 in particular causes the liberation of AA, DPA, EPA, DHA, and other 

FFAs, enabling detection in serum post-TBI. Increases in phospholipase activity have been 

observed as early as 15 min post TBI,75 and the levels of FFAs have been reported to remain 

elevated at least 35 days postinjury.20 Evidence of fatty acid oxidation as well as disrupted 

amino acid metabolism has also been reported in patients presenting with severe blunt head 

trauma.76

While PUFAs are elevated following injury, FFA turnover is an essential process for 

membrane homeostasis and synaptogenesis,77 and these changes may be associated with 

postinjury repair attempts. The downstream metabolites of AA have been cited as potential 

biomarkers of inflammation, albeit for both pro- and anti-inflammation cascades.64 

Specifically, AA is metabolized to eicosanoids through the cyclooxygenase (COX) pathway, 

as well to as anti-inflammatory lipoxins through the lipoxygenase (LOX) pathway, which are 

associated with the resolution phase of inflammation.78
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Fatty acids can also undergo lipid peroxidation as a result of ROS and RNS imbalances once 

cleaved from membrane phospholipids, leading to the formation of α,ß-unsaturated 

aldehydes including malondialdehyde, 4-hydroxynonenal, and acrolein.79 We observed a 

decreased abundance for the oxidized FFA (18:2 + 1 O) and a lyso-phosphatidylcholine of 

the same species, lysoPC(18:2 + 1 O). The enzyme lipoprotein associated phospholipase A2 

(Lp-PLA2) hydrolyzes oxidized phospholipids within LDL to generate oxidized lyso-PCs, 

which are known to induce inflammation.80 However, the resolution phase following injury 

is not reached if the oxygen supply in the brain is not re-established, possibly explaining the 

decrease in observed oxidized FFAs.81 The decreased relative abundance of these oxidation 

products in TBI samples may thus indicate a lack of effective controlled clearance of 

damaged cellular membranes following TBI, possibly due to an imbalance in PUFA 

concentrations. Necrotic cell death also stimulates the release of ROS and cytokines, the 

activation of phospholipase and sphingomyelinase, and phospholipid hydrolysis, all of 

which occur in TBI.82 Furthermore, the CNS has a high level of lipid content, providing 

abundant substrates for oxidative attack by ROS.83 Neurons are particularly vulnerable to 

ROS due to reduced glutathione levels, with the high degree of polyunsaturation of brain 

lipids providing many sites for the propagation of lipid peroxidation reactions.84

We also found that PUFA-esterified DGs changed significantly following TBI. TBI 

stimulates the activation of phospholipases C and D, resulting in increased abundances of 

PUFA-containing DGs.85 In our study, DGs- specifically those containing PUFA residues 

(22:6 or 20:4) were significantly increased in relative abundance following TBI. It has been 

shown previously that DGs in rat brains were increased immediately following CCI and 

remained elevated a month later compared to controls.21

While FFAs and DGs were increased in response to injury, all PCs and PEs identified in the 

classification panel were decreased in abundance after TBI. The majority of these lipids 

were esterified by PUFAs such as AA, including PE(20:4_16:0), PE (22:4_18:0), and 

PC(20:2_18:0), which were all decreased in TBI samples, while the relative abundance of 

PS(20:4_16:0) was slightly increased. Although lipid species containing only saturated fatty 

acids followed the same trend, none achieved statistical significance individually.

A recent study showed decreased levels of cortical and cerebellar PCs and PEs following 

CCI in the rat, while hippocampal PC and PE levels were elevated. Levels of overall PC, PE, 

and SM were lower in plasma following injury, and ether PE levels were lower in the 

cortices and plasma of injured mice relative to controls.19 In addition to preclinical evidence, 

phospholipid dysregulation has been observed in the CSF of human subjects following TBI. 

Clinical evidence for the disruption of CNS phospholipids has been observed within the first 

days following TBI, with PCs and PEs elevated to the highest concentration by day four.86 

Similarly, both PCs and PEs were dramatically increased as early as 1 day following TBI, 

though levels decreased with time for survivors, falling below control levels by day six.87 

Total PS concentrations were elevated at all measured time points, in agreement with the 

observed trend for the AA-containing PS molecule identified in the 26-feature panel above. 

Clinical evidence supports the initial increase of membrane phospholipids upon injury, 

followed by a decrease to levels below controls, likely indicative of ongoing hydrolysis of 

PC and PE species.83 Activation of phospholipases results in the hydrolysis of PUFAs 
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esterified to membrane phospholipids, leading to decreased concentrations of PUFA-

containing PC and PEs. The same pathophysiology resulting in the increased formation of 

FFAs also leads to a decreased rate of phospholipid resynthesis, and our results follow 

previous observations regarding phospholipid dysregulation following TBI.

Injury-specific changes in abundance were found for a variety of membrane lipids (e.g., PCs, 

PEs, and PSs) as well as for cholesterol sulfate (CS), which was significantly decreased in 

the TBI cohort. CS is an end product in the cholesterol metabolic pathway and may play a 

stabilizing role in cell membranes.88 The decrease in CS indicates a possible disturbance in 

AA regulation, a vital pathway in the secondary injury cascade.89 While both cholesterol 

and CS play key roles in lipid organization, CS is often found in high abundance in DHA 

rich membranes.90 While DHA was increased following moderate injury, CS was 

significantly decreased, potentially decreasing membrane permeability due to less efficient 

packing. There are some limitations to the present study that should be acknowledged. 

While we focused on time points that are known to show peak secondary injury changes, 

exploration of earlier time points may help to guide biomarker panel development in the 

acute period for diagnostics measures. Furthermore, we did not examine possible 

correlations between biomarker levels and histopathological or behavioral changes post-TBI. 

While such correlation is not straightforward,91,92 it will be pertinent to examine these 

potential links. As the lipid panel is refined, it would also beneficial to study not only other 

outcome measures, but also how addition of other fluid biomarkers, such as GFAP or UCH-

L1, might improve specificity and sensitivity.

Additional lipid changes after both experimental and clinical TBI have been observed. 

Gangliosides such as GM2 have been shown to increase in the hippocampus, thalamus, and 

hypothalamus of mice following blast TBI, accompanied by a corresponding decrease in 

ceramides.22 Brain cardiolipins have been shown to be selectively oxidized following TBI,
16,93,94 though none were detected in this study due to their low abundance in plasma 

resulting from localization within the mitochondrial membrane, as well as possible ion 

suppression effects.95–97 Also DGs and cholesteryl esters have been found to increase, while 

PCs, PEs, PIs, and cholesterol decrease in rat brains following CCI.18 Phospholipids 

esterified with PUFAs have been found to increase in the CSF of TBI patients.19 Similarly, 

levels were higher in patients with TBI who died within days after injury compared to those 

who survived.87,98 The results of our study thus lend support to previously identified 

lipidome alterations resulting from TBI and introduce a host of new potential biomarker 

candidates warranting further validation.

In addition to providing novel lipid biomarker candidates for TBI, the untargeted nature of 

our study also provides an indepth exploration of the metabolic processes in the subacute 

post-TBI period. Overall, many of the altered lipids are known to be involved in secondary 

injury pathways and would be expected to cross the BBB regardless of injury severity, 

increasing their likelihood of being detectable in serum, a readily accessible matrix with 

clinical relevance. The identified lipids may serve as prognostic biomarkers for TBI in the 

rat model, and it is expected that many of the same lipids could be detectable in both rodent 

and human blood. However, because of differences in the genome, proteome, and 

metabolome between rodents and humans, the diagnostic panel is unlikely to have direct 
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clinical utility. Therefore, further discovery and validation studies are needed to assess the 

viability of this panel in detecting TBI in human patients. The metabolism of lipids is both 

complex and interwoven, but this study serves as a foundation for future targeted validation 

studies of TBI biomarkers. Comprehensive biomarker panels for TBI diagnosis and clinical 

management should consider inclusion of lipid-based molecules.
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ABBREVIATIONS

AA arachidonic acid

ANOVA analysis of variance

AUC area under the curve

BBB blood–brain barrier

CCI controlled cortical impact

Cer ceramide

CS cholesterol sulfate

CSF cerebrospinal fluid

CVb coefficient of variation biological

CVm coefficient of variation measured

DG diacylglycerol

DHA docosahexaenoic acid

DPA docosapentaenoic acid

FFA free fatty acid

IPA isopropyl alcohol

KNN K-nearest neighbors

LC–MS liquid chromatography–mass spectrometry

Lp-PLA2 lipoprotein associated phospholipase A2
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LV latent variable

m/z mass to charge ratio

mRMR minimum redundancy, maximum relevance

MS mass spectrometry

mTBI mild traumatic brain injury

NCE normalized collision energy

oPLS-DA orthogonal partial least-squares-discriminant analysis

PC phosphatidylcholine

PCA principal component analysis

PE phosphatidylethanolamine

PI phosphatidylinositol

PS phosphatidylserine

PUA polyunsaturated aldehyde

PUFA polyunsaturated fatty acid

QE Q-exactive

RNS reactive nitrogen species

ROS reactive oxygen species

RT retention time

SM sphingomyelin

SVM support vector machines

TBI traumatic brain injury

UPLC–MS ultraperformance liquid chromatography–mass spectrometry
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Figure 1. 
(A) Principal component analysis (PCA) scores plot for the subset of 314 negative mode 

features obtained following filtering and prior to feature selection across each class. The 

distribution of samples in this plot reveals no clustering among samples. Pooled quality 

control samples, represented by yellow circles, clustered toward the center of the plot, 

indicating they are an accurate representation of the average sample analyzed. (B) 

Orthogonalized Partial Least Squares Discriminant Analysis scores plot depicting clustering 

of samples separated into five classes by day of sample collection and injury status using the 

26-feature model. Variance between classes is captured across the X-axis. (C) 

Orthogonalized Partial Least Squares Discriminant Analysis scores plot depicting clustering 

of samples separated into a binary model.
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Figure 2. 
oPLS-DA cross validated (CV) class prediction plots based on the optimized 26 feature 

panel comparing (A) sham + naive controls versus TBI, (B) sham versus TBI, and (C) naive 

versus TBI samples. For all plots, TBI samples are represented by red diamonds and 

correspond to a predicted class value of 0, while the various control samples are represented 

by green squares and correspond to a predicted value of 1. Accuracy, sensitivity, and 

specificity values are given for each model. The red dashed line represents a decision 

boundary between classes. The oPLS-DA model details were as follows: (A) 34 samples, 

venetian blinds CV, five splits, three latent variables (LVs); (B) 24 samples, venetian blinds 

CV, four splits, two LVs; (C) 26 samples, venetian blinds CV, five splits, two LVs.
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Figure 3. 
Volcano plot of processed metabolomic data set. Each point represents one feature. Features 

with fold change < 2 are colored in gray. Features in optimized classification panel are 

colored in red. Features frequently selected to build models but not in final classification 

panel are colored in blue. Positive fold change values correspond to increased abundance in 

TBI samples.
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Figure 4. 
Example box plots showing significantly dysregulated species used by optimized model for 

classification of samples. A1–A6 show upregulated species and B1–B3 show downregulated 

species following injury. (A1) FFA 18:0, [M-H]− = 283.2644; (A2) arachidonic acid, [M-H]− 

= 303.2330; (A3) docosapentaenoic acid, [M-H]− = 329.2483; (A4) m/z = 262.8846; (A5) 

DG(20:4_18:1), [M+HCO2]− = 687.5197; (A6) DG(40:8), [M+HCO2]− = 709.5041; (B1) 

cholesterol sulfate, [M-H]− = 465.3035; (B2) SM(d18:1_22:1), [M+H]+ = 785.656; (B3) 

PC(20:2_20:0), [M+HCO2]− = 858.6225.
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Figure 5. 
Boxplots showing time profile changes of samples following TBI at 0, 3, and 7 days. 

Features are divided into 3 groups: (A) features 14, 128, 271, 272, 277, 699, 289, 245, 656, 

680, and 479 that showed an initial increase following TBI and then continuing to increase 

or decreasing at 7 days; (B) features 719, 61, 357, 103, 377, 64, 129, 292, and 314 that 

decreased following TBI and continued to decrease or started to return to baseline at 7 days; 

(C) features 24, 118, 409, 665, and 698 that showed no significant differences. †Not 

identified; *adduct differences; ‡corresponds to PE(18:2_18:0) or PC(18:2_16:0). See Table 

2 for more information on lipids.
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Table 1.

Classifier Performance and Selected Features Used for Optimized Models Built with omniClassifier

classifier

feature 
selection 
method

number of 
features

cross-validation 
estimate, AUC 

(SD)

performance on 
whole data set, 

AUC features selected (using 1:727 index)

Bayesian mRMR, 
difference

9 0.8019 (0.0618) 0.9653 24, 61, 140, 184, 271, 272, 377, 479, 665

KNN (K = 10) mRMR, 
difference

31 0.8268 (0.0646) 0.9774 24, 41, 58, 61, 64, 103, 118, 128, 129, 140, 
184, 185, 233, 245, 271, 272, 277, 289, 292, 
314, 357, 377, 409, 479, 656, 665, 680, 698, 
699, 702, 719

Logistic 
Regression

mRMR, 
difference

17 0.8348 (0.0478) 1.0000 24, 41, 58, 61, 64, 140, 184, 245, 271, 272, 
314, 377, 479, 656, 665, 699, 719

Linear SVM 
(Cost = 4)

mRMR, 
difference

20 0.8404 (0.045) 1.0000 24, 41, 58, 61, 64, 118, 140, 184, 245, 271, 
272, 314, 377, 409, 479, 656, 665, 680, 699, 
719
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Table 2.

Annotation of Lipids in 26-Feature Panel. Retention Time, Observed Exact Mass with Xevo Instrument 

(error), Observed Adduct, Predicted Elemental Formulae, p-value of Average Abundances Between Controls 

and TBI (p-value of Abundances Between Sham and TBI), and Fold Change (FC) Included. Positive FC 

Values Correspond to Species with Increased Abundance in Injured Animals, while Negative Values Indicate 

Higher Concentrations in Controls. Fatty Acid Chain Information was Included Only When MS/MS 

Experiments were Possible, which Required a Minimum Precursor Ion Abundance and No Chemical Overlaps 

with Other Species. SN1/SN2 Stereochemistry was Not Determined. For Those Unidentified Species, Please 

Refer to Table S2 for Additional Information on the Identity of Detected Fragments. Abbreviations: PE, 

phosphatidylethanolamine; PC, phosphatidylcholine; Cer, ceramide; DG, diacylglycerol; SM, sphingomyelin; 

PS, phosphatidylserine; PUA, polyunsaturated aldehyde; FFA, free fatty acid.

feature 
number RT (min)

m/z mass error 
(ppm) adduct

elemental 
formula ID

p-value (p-value 
sham vs TBI) FC

24 9.86 738.5081
027

[M-H]− C4,H74NO8P PE(20:4_16:0) 0.236
0.619

−1.58

41 5.38 303.2323
−231

[M-H]− C20H32O2 arachidonic acid (AA) 0.0138
0.0134

1.35

58 11.32 666.6038
−0.60

[M+HCO2]− C40H79NO3 Cer(dl8:l_22:0)) 0.252
0.000168

−1.11

61 7.21 465.3035
−1.93

[M-H]− C27H46O4S Cholesterol sulfate (CS) 0.00231
0.000971

−1.20

64 10.61 858.6225
−0.58

[M+HCO2]− C46H88NO8P PC(20:2_18:0) 0.00280
0.380

−1.21

103 10.12 778.5594
−1.28

[M+HCO2]− C40H80NO8P PC(l6:0)_l6:0)) 0.0606
0.0639

−1.50

118 10.35 742.5386
−0.81
−0.13

[M-H]−

[M-CH3]−
C41H78NO8P
C42H80NO8P

PE(18:2_18:0)
PC(l8:2_l6:0))

0.250
0.0763

−1.17

128 10.35 711.5221
−0.70

[M+HCO2]− C43H70O5 DG(22:6_18:1) 0.00169
6.92 × 10−5

2.23

129 10.37 818.5912
−0.57

[M+HCO2]− C43H84NO8p not identified 0.0544
0.147

−1.18

245 0.54 262.8846 not identified not identified not identified 0.00449
0.0235

2.88

271 10.02 709.5041
−1.13

[M+HCO2]− C43H68O5 DG(22:6_18:2) 0.000354
7.54 × 10−6

2.49

272 5.91 329.2483
−0.91

[M-H]− C22H34O2 docosapentaenoic acid 
(DPA)

0.00405
0.0001

2.59

277 10.47 687.5197
−1.16

[M+HCO2]− C41H70O5 DG(20:4_18:1) 0.00156
0.0057

2.61

289 5.02 283.2642
−0.35

[M-H]− C18H36O2 FFA(18:0) 0.0153
0.000241

3.02

292 0.53 297.0985 not identified not identified not identified 0.0552
0.153

−10.8

314 1.48 295.2274
0.27

[M-H]− C18H32O3 FFA(18:2 + 1 O)c 0.0560
0.0071

−2.55

357 9.35 813.617
6.64

[M+NH4]+ C45H82NO8P PE(18:0)_22:4) 0.00835
0.387

−1.28

377 10.29 785.656
3.69

[M+H]+ C45H89N2O6P SM(d18:1/22:1) 0.00241
0.000247

−1.37
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feature 
number RT (min)

m/z mass error 
(ppm) adduct

elemental 
formula ID

p-value (p-value 
sham vs TBI) FC

409 1.32 548.3713
0.36

[M+H]+ C28H54NO7P LysoPC(20:2) 0.549
0.00147

−1.08

479 0.44 784.4746
−1.66

[M+H]+ C42H74NO10P PS(16:0_20:4) 0.159
0.155

1.21

656 9.78 684.558
2.78

[M+NH4]+ C43H70O5 DG(22:6_18:1) 0.00104
0.000213

2.67

665 10.93 746.5693
−0.13

[M+H]+ C41H80NO8P not identified 0.219
0.0492

−1.38

680 8.57 682.5402
−0.44

[M+NH4]+ C43H68O5 DG(22:6_18:2) 0.000489
0.000125

2.60

698 7.14 822.60
−0.85

[M+H]+ C47H84NO8P Not identified 0.370
0.0161

−1.36

699 0.92 582.3147
−0.17

[M+2Na−H]+ C26H52NO8P LysoPC(l8:2 + 1 O) 0.0144
0.0076

1.65

719 10.86 840.6465
−1.43

[M+H]+ C48H90NO8P PC(l8:2_22:l) 0.0103
0.426

−2.65
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