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Abstract

Purpose of review—In the absence of a protective vaccine against HIV-1, passive 

immunization using novel broadly neutralizing antibodies (bNAbs) is an attractive concept for 

HIV-1 prevention. Here, we summarize the results of pre-clinical and clinical studies of bNAbs, 

discuss strategies for optimizing bNAb efficacy and lay out current pathways for the development 

of bNAbs as prophylaxis.

Recent findings—Passive transfer of second generation bNAbs results in potent protection 

against infection in preclinical animal models. Furthermore, multiple bNAbs targeting different 

epitopes on the HIV-1 envelope trimer are in clinical evaluation and have demonstrated favorable 

safety profiles and robust antiviral activity in chronically infected individuals. The confirmation 

that passive immunization with bNAb(s) will prevent HIV-1 acquisition in humans is pending and 

the focus of ongoing investigations. Given the global diversity of HIV-1, bNAb combinations or 

multi-specific antibodies will most likely be required to produce the necessary breadth for 

effective protection.

Summary—Encouraging results from preclinical and clinical studies support the development of 

bNAbs for prevention and a number of antibodies with exceptional breadth and potency are 

available for clinical evaluation. Further optimization of viral coverage and antibody half-life will 

accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention strategies.

Keywords

neutralizing antibodies; passive immunization; HIV prevention; global coverage of HIV-1 diversity

Introduction

Despite significant research efforts for over three decades, a protective vaccine against 

HIV-1 has been elusive. Alternative approaches for HIV-1 prevention are therefore necessary 

until a successful vaccine strategy is found. The idea of passive administration of 

neutralizing antibodies had been raised early on, however lack of efficacy using first 
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generation neutralizing antibodies (nAb) with limited potency and breadth dampened 

enthusiasm for this approach. With the introduction of reproducible high-throughput 

neutralization assays in combination with single B-cell receptor sequencing using HIV-1 

envelope probes to sort HIV-1 specific B-cells (1, 2), a new generation of extremely potent 

and broadly neutralizing antibodies (bNAbs) was identified (1, 3, 4). These new generation 

bNAbs are up to 100-fold more potent than the first-generation antibodies and exhibit 

significant neutralization breadth against cross-clade HIV-1 strains. Multiple antibodies 

against various sites of vulnerability on the HIV-1 envelope trimer have been described 

targeting the CD4-binding site of gp120, the V2-glycan site at the apex of the Env trimer, the 

V3-glycan site, the membrane-proximal external region (MPER) of gp41, and more recently 

the interface region between gp120 and gp41 (table 1) (reviewed in (5, 6)). In the following 

review we will discuss the progress that has been made in evaluating the potential role of 

neutralizing antibodies in preventing HIV-1 infection and we will highlight obstacles and 

potential future avenues for bNAb development.

Evidence of antibody protection in animal models

Non-human primates (NHP), specifically infant and adult rhesus macaques, have been 

used to model natural HIV-1 transmission by mucosally challenging animals with a chimeric 

simian-human immunodeficiency virus (SHIV) which expresses HIV-1 envelope on a 

backbone of SIV. This model allows to quantify the protective efficacy of passively 

administered immunoglobulins by challenging the animals either with a single high dose of 

SHIV or repeated low dose challenges following administration of antibody(ies). Studies 

using this model have so far demonstrated varying degrees of protection, largely impacted 

by the neutralization sensitivity of the challenge stock to the administered antibodies (17–

22). Moldt et al demonstrated that the V3 glycan antibody PGT121 completely protected 

macaques against a high dose challenge with the tier 2 SHIV-SF162P3 at doses of 5 mg/kg 

and 1 mg/kg at antibody serum concentrations of 95 μg/mL, and 15 μg/mL (23). Other 

potent bNAbs including VRC01, VRC07–523, 3BNC117 and 10–1074 have also 

demonstrated protection (20, 21, 23, 24) and PGDM1400 and CAP256-VRC26.25 protected 

animals against a clade C SHIV-325c challenge at doses of 0.4 (PGDM1400) and even 0.08 

mg/kg (CAP256-VRC26.25) with serum concentrations as low as 0.75 μg/mL (25). When 

comparing different bNAb/SHIV combinations in the NHP challenge model it has been 

suggested that plasma neutralization titers of ∼1:100 are required to prevent virus infection 

in 50% of the exposed monkeys (20). A limitation of the model for testing human bNAbs is 

the dependence on SHIV strains that are sensitive to currently used bNAbs and the limited 

availability thereof, the lack of SHIV swarms to mimic HIV-1 diversity, and the relative low 

virulence of some of the SHIV strains used. Newer generations of SHIV strains, that share 

more similarities with HIV-1 and represent non-clade B envelopes have been and are getting 

developed and will hopefully expand the armamentarium for assessing bNAbs in passive 

transfer studies (26–28).

Humanized mice

Given the high costs associated with NHP studies and the constraints to the use of simian 

immunodeficiency viruses, humanized mouse models are getting employed to study HIV-1 
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transmission. The presence of human hematopoietic and lymphoid cells in these animals 

support HIV-1 infection and enable the testing of bNAbs in-vivo against HIV-1. Some of the 

earlier studies to demonstrate the protective efficacy of nAbs and have been done in 

humanized mice (29) and protection by many newer generation bNAbs are assessed in this 

model (30–32). Incomplete immune reconstitution, e.g. limited formation of secondary 

lymphoid tissues and reduced levels and function of innate effector cells such as NK-cells 

however have been a limitation of the applicability of this model. In particular the ability to 

determine Fc-mediated antiviral functionality depends on sufficient availability of innate Fc-

receptor expressing effector cells. Advances in generating humanized mice with more 

functional NK-cells (33) will allow for the dissection of functional properties of mAbs as 

shown by the enhanced clearance of infected cells by bNAbs, attributed to an FcγR-

dependent mechanism (34–36).

Viral diversity

In contrast to the single challenge virus NHP model, humans during natural HIV-1 

transmission are exposed to viral swarms and one of the main challenges for bNAb based 

prevention strategies is the vast viral diversity observed in circulating HIV-1 strains. Ideally, 

the bNAb used for prevention would cover 100% of circulating strains however even the 

broadest bNAbs are not able to potently neutralize all HIV-1 strains. Wagh et al. recently 

determined the breadth and neutralization efficacy of antibody combinations against a panel 

of 200 clade C isolates (37) and the data suggest that at least three bNAbs will be necessary 

for preventing and treating HIV-1 infection. Indeed, the combination of PGT121 and 

PGDM1400 was required to protect macaques against a mixed SHIV challenge consistent of 

SHIV SF162P3, sensitive to PGT121 but not PGDM1400, and SHIV 325c with the opposite 

sensitivity pattern, while the administration of each antibody alone resulted in 100% 

breakthrough infection with the respective resistant SHIV strain (38). Efforts to increase 

viral coverage breadth are therefore ongoing which include the development of bispecific 

antibodies that target Env and an HIV-1 receptor or coreceptor and more recently Huang 

combined the MPER antibody 10E8 with iMab, the heavy-chain N-terminus of ibalizumab. 

10E8/iMab covered 100% of a 118-virus panel with mean IC50 values of 0.002 μg/mL and 

protected hu-mice against HIV-1JR-CSF challenge (39). Combining 3 distinct Env epitope 

specificities, the VRC01/PGDM1400–10E8v4 trispecific antibody demonstrated excellent 

breadth and potency and conferred complete immunity against a mixture of SHIVs in 

nonhuman primates, in contrast to single bNAbs (40). A combination of two or more 

bNAbs, or engineered antibodies with multiple Fab specificities targeting multiple HIV-1 

Env epitopes, is therefore most likely required to potently cover the entirety of the HIV-1 

diversity (37, 41).

Current status of bNAb studies in humans

Over the past several years, there have been a series of studies that evaluated newer bNAbs 

including VRC01, 3BNC117, and 10–1074 for safety and tolerability in HIV uninfected 

individuals and also assessed antiviral efficacy in people living with HIV (42–45). Studies 

with the antibodies PGT121, PGDM1400, VRC07–523LS and N6LS are ongoing 

(NCT02960581, NCT03015181, NCT03205917, NCT03538626, NCT03735849, and 
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NCT03015181). A study testing the safety of subcutaneous administration of the antibody 

10E8V-LS (NCT03565315) was halted due to local reactogenicity. A study evaluating the 

antibody bNAb combinations 3BNC117 and 1010–74 showed favorable safety profiles (46) 

and other bNAb combination studies are currently ongoing using PGT121 and PGDM1400 

or PGT121 and VRC07–523LS (NCT03205917 and NCT03721510). Studies testing 

engineered bi and tri-specific antibodies are currently under development. While no data 

about the protective efficacy of bNAbs against HIV-1 acquisition in humans is currently 

available, the AMP (antibody-mediated prevention) study consisting of two large 

randomized placebo-controlled trials is evaluating the protective effect of infusions with 

VRC01 every two months in women living in sub-Saharan Africa (HVTN 703/HPTN 081, 

NCT02568215) and in men and transgender persons who have sex with men (HVTN 704/

HPTN 085, NCT02716675). The results of the trials are expected soon. This study is critical 

as a proof-of-concept if passive immunization has the potential to protect against HIV-1 

acquisition, however with the evidence from preclinical models suggesting that a single 

bNAb might not be sufficiently broad enough to neutralize a diverse virus exposure, 

evaluating the efficacy of bNAb cocktails or multi-specific antibodies will most likely be the 

logical next step in advancing antibodies as HIV-1 prevention strategy.

Biodistribution of bNAbs

Achieving and maintaining serum levels above a threshold concentration is a critical 

requirement for effective protection and necessitate that bNAbs are administered repeatedly. 

In the NHP-SHIV model, using challenge viruses that are highly sensitive against the tested 

bNAb, protection can be achieved with serum concentrations in the range of 1–10 μg/ml and 

even lower with some highly potent V2-apex antibody like CAP256-VRC26.25 (23–25, 47). 

One approach to extend the in-vivo half-life of the antibody serum concentrations has been 

the introduction of two amino acid mutations (M428L/N434S - LS) into the Fc-region to 

enhance binding to the neonatal Fc-receptor (FcRn) (48, 49). This modification resulted in 

markedly extended period of protection in macaques using e.g. the antibodies 10–1074LS 

and 3BNC117LS (50) and many of the bNAbs that are under clinical evaluation are getting 

produced as LS variants. However, in addition to serum concentrations, bNAbs most likely 

will need to achieve sufficient mucosal and tissue concentrations to block infection prior to 

the virus’ systemic distribution. bNAbs are found in mucosal secretions following IV 

administration suggesting that they are distributed systemically (17, 20, 23). A study in 

infant macaque performing serial sacrifices to determine the kinetics of mAb tissue 

distribution detected polyclonal SIVIG but also monoclonal bNAbs across lymphoid tissues 

(51). Moreover, PGT121 mediated clearance of infection was observed in distal tissues in 

adult macaques following SHIV-SF162P3 challenge (52) suggesting i) the necessity for 

bNAbs to block infection beyond the mucosal surface but ii) that sufficient tissue levels were 

achieved following a single IV dose. While bNAbs seem to distribute into most organs, the 

low permeability of the blood-brain barrier restricts bNAb transfer into the central nervous 

system (CNS). It has been suggested that the CNS can harbor HIV-1 variants that are more 

resistant to bNAbs than what is detected in peripheral blood (53), however, this might be 

more of a concern for therapeutic approaches using bNAbs then for protection strategies.
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Role of antibody effector functions in protection

Data from NHP and humanized mice studies suggests that clearing infected cells in blood 

and tissues is part of the protective activity of bNAbs and required for preventing the 

systemic spread of infection (34, 52). Furthermore, a role for Fc-mediated effector function 

of antibodies in reducing transmitted founder viruses (54) or controlling post-infection 

viremia has been indicated in rhesus macaques (55–57). Lu et al demonstrated in the 

humanized mouse model, that upon binding to infected cells, the bNAb 3BNC117 could 

recruit FcγR-dependent antibody-dependent cell-mediated phagocytosis (ADCP) and 

cytotoxicity (ADCC) and thereby was able to drive the elimination of infected CD4+ T cells 

(35). While it still needs to be shown if sterilizing protection can be achieved by functional 

but non-neutralizing antibodies, it has been suggested that Fc mediated anti-viral activities 

may augment the protective efficacy of neutralizing antibodies (58). Moreover, many studies 

have demonstrated strong correlations between serum titers of HIV-1 specific ADCC 

mediating antibodies and improved clinical outcomes (59, 60), e.g. HIV controller that 

maintain undetectable virus loads in the absence of antiretroviral therapy are enriched for 

polyfunctional antibodies (61). When poly-IgG from HIV controllers however was passively 

transferred to NHPs, no protection against SHIV challenge was observed, potentially due to 

the relative low quantity of the functional antibody within the total administered poly-IgG 

(62). In addition, efficacy of functional antibodies heavily relies on the availability of 

effector cells at the sites of HIV-1 transmission (63) and is affected by the affinity to FcγRs 

that differ between species (64). Non-neutralizing antibodies might also differ in their ability 

to bind to native Env trimers and monomeric structures compared to bNAbs (65) which 

might explain differences in the ability to mediate effective ADCC against infected cells 

(66). Given the importance of the Fc region for bNAbs to not only block infection but also 

clear infected cells, many Fc modifications, including Fc point mutations and Fc glycan 

variants are getting explored to enhance the FcyR binding and the induction of antiviral 

functions (67). Better understanding the bioactivity of the different Fc profiles that maximize 

protection against infection at different mucosal surfaces will be crucial for the successful 

and global implementation of bNAbs for prevention.

Host immune modulation by bNAbs

bNAb distribution into lymphoid tissues and co-localization with virus following systemic 

infection and potentially even just localized exposure enables the formation of immune 

complexes (ICs) and it has been postulated that these ICs could augment anti-viral immune 

response (68). Indeed, in HIV-1 infected individuals that were administered 3BNC117, 

expansion of autologous neutralizing antibody responses was reported (69) and the effect 

was more pronounced among subjects with detectable viremia. Early treatment of SIV-

infected juvenile macaques with SIV-specific neutralizing IgG (SIVIG) accelerated NAb 

development by 20 weeks (70) and a second study confirmed that only SHIVIG highly 

specific for the challenge SHIV SF162P3, therefore retaining the ability to generate ICs, 

generated this effect (71). In addition to induction of humoral immunity, bNAb cocktail 

administration during acute SHIV infection of rhesus macaques resulted in 6/13 monkeys 

that maintained undetectable plasma HIV virus loads following bNAb clearance and CD8 T-

cell depletion resulted in rapid reappearance of plasma viremia suggestive of a CD8 T-cell 
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mediated effect of control (72). In contrast, a single dose of PGT121 or N6LS or a 

combination of both administered to chronically SHIV SF-162P3 infected macaques did not 

results in an increase in autologous neutralizing antibody titers above what was observed in 

the placebo control animals (73). Repeated 3BNC117 administration in humans before and 

during antiretroviral treatment interruption resulted in delayed viral rebound, however, HIV 

specific T cell magnitude and breadth did not seem to expand following bNAb infusion (74) 

with the caveat that there was no control group to compare T-cell responses to. The different 

aspects of the vaccinal effect of bNAb therapy are also discussed in a review by Naranjo-

Gomez & Pelegrin et al in this issue (…).

Future: other isotypes and engineered mAbs

While IgGs dominate the current development pipeline for monoclonal bNAbs, other 

isotypes have interesting features that suggest them as potential alternatives for antibody-

based prevention strategies. IgM, recognized as the first responder to pathogens, execute 

high avidity/affinity to their target, have the enhanced ability to fix complement and 

efficiently form immune complexes therefore being considered as vaccine adjuvants (75, 

76). A recombinant monoclonal IgM generated with the heavy and light chain variable 

region from an IgG1 Nab prevented transmission of SHIV in mucosally challenged rhesus 

macaques (77). However, potentially short half-life, dependence on targeting protruding 

epitopes due to the conformation and size of IgMs and lack of capacity to induce non-

complement Fc-mediated functions are possible obstacles that need to be overcome. 

Secretory IgA (SIgA) plays a critical role in mucosal immunity and appear obvious as 

isotype for strategies aimed at preventing infection at mucosal surfaces. Indeed, mucosal 

SIgA have been suggested to be associated with enhanced protection against vaginally 

transmitted infections including HIV-1 (78, 79) and influenza (80) but vaccine induced IgA 

responses have also been associated with increased risk of infection during the RV144 

vaccine trial (81). However, a recent net-work analysis suggested that IgA responses were 

unlikely to cause impaired humoral immune protection but rather indicated an overall mis-

coordinated and therefore less functional humoral immune response (82). A study using 

rectally applied IgA1 resulted in higher level of protection against transmitted SHIV in the 

NHP model (83). Crosslinking of FcαRI by IgA-immune complexes yields potent neutrophil 

activation and pro-inflammatory effector functions, including the recruitment of neutrophils 

(reviewed in (84). If intravenous administration of IgAs will result in protective levels of 

neutralizing and/or functional SIgA at the mucosal surface needs to be determined. In 

addition to the engineering of bi-or tri-specific antibodies, e.g. as discussed before, some 

groups have pursued the targeting of the conserved CD4-binding, and coreceptor-binding 

sites (85, 86), e.g. eCD4-Ig (87), showed exceptional neutralization breadth against most 

tested HIV-1 strains, regardless of clade or coreceptor preference, including strains resistant 

to some of the CD4-binding site antibodies like VRC01 and 3BNC117 but also showing 

activity against SIV and HIV-2 strains. Delivered via a recombinant adeno-associated virus 

(rAAV), rhesus macaques expressed rh-eCD4-Ig levels and were protected against SHIV-

AD8 challenges that infected all control animals (87).
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Conclusions

Until a protective vaccine is available, passive immunization strategies using broadly 

neutralizing antibodies could be a promising alternative to prevent acquisition of HIV-1 

infection. While other long-acting prevention methods, in addition to bNAbs, are also being 

developed, including sustained-release antiretrovirals, encouraging results from animal 

protection models support the development of bNAbs for prevention and an increasing 

number of antibodies with exceptional breadth and potency have been and are getting 

identified. Further optimization of viral coverage by combining bNAbs with complementary 

epitope specificities, or by generating multi-specific antibodies, in addition to enhancing 

bNAb effector function by Fc engineering and extending antibody half-life in serum will 

accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention 

strategies.
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Key bullet points

1. New-generation broadly neutralizing antibodies (bNAbs) with remarkable 

potency and breadth have been identified.

2. Passive transfer of bNAbs results in potent protection against infection in 

preclinical animal models.

3. bNAbs have demonstrated favorable safety profiles and robust antiviral 

activity in chronically infected individuals.

4. Given the global diversity of HIV-1, bNAb combinations or multi-specific 

antibodies will most likely be required to produce the necessary breadth for 

effective protection.
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Table 1.

Target sites on the HIV-1 envelope trimer and exemplary bNAbs

Target site Antibody Clinical Development Reference

CD4-binding site VRC01, 3BNC117, N6, VRC07–523 Yes (2, 7–9)

V2-glycan site PG9, PGDM1400 and CAP256-VRC26.25 Yes (1, 10, 11)

V3-glycan site PGT121 and 10–1074 Yes (3, 12)

Glycan epitope on the outer domain of gp120 2G12 No (13)

Membrane-proximal external region (MPER) 10E8 Yes (14)

Interface region between gp120 and gp41 35O22 and PGT151 No (15, 16)
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