Skip to main content
. 2020 Jul 4;20:100391. doi: 10.1016/j.imu.2020.100391

Table 1.

Comparison of recall, precision, Fβ score, validation accuracy and training time for different models.

Dataset Structural design Recall Precision Fβ (0.5) score Validation Accuracy No. parameters Training time (seconds)
Sample Dataset Vanilla gray 0.50 0.58 0.56 50.7% 321225 2
Vanilla RGB 0.59 0.62 0.61 51.8% 322793 2
Hybrid CNN VGG 0.56 0.65 0.63 68% 15252133 16
VDSNet 0.64 0.62 0.64 70.8% 15488051 19
Modified CapsNet 0.42 0.71 0.45 59% 12167424 37
Basic CapsNet 0.60 0.62 0.62 57% 14788864 75
Full Dataset Vanilla gray 0.58 0.68 0.66 67.8% 321225 51
Vanilla RGB 0.61 0.68 0.66 69% 322793 53
Hybrid CNN VGG 0.62 0.68 0.67 69.5% 15252133 384
VDSNet 0.63 0.69 0.68 73% 15488051 431
Modified CapsNet 0.48 0.61 0.58 63.8% 12167424 856
Basic CapsNet 0.51 0.64 0.61 60.5% 14788864 1815