Table 1.
Comparison of recall, precision, Fβ score, validation accuracy and training time for different models.
Dataset | Structural design | Recall | Precision | Fβ (0.5) score | Validation Accuracy | No. parameters | Training time (seconds) |
---|---|---|---|---|---|---|---|
Sample Dataset | Vanilla gray | 0.50 | 0.58 | 0.56 | 50.7% | 321225 | 2 |
Vanilla RGB | 0.59 | 0.62 | 0.61 | 51.8% | 322793 | 2 | |
Hybrid CNN VGG | 0.56 | 0.65 | 0.63 | 68% | 15252133 | 16 | |
VDSNet | 0.64 | 0.62 | 0.64 | 70.8% | 15488051 | 19 | |
Modified CapsNet | 0.42 | 0.71 | 0.45 | 59% | 12167424 | 37 | |
Basic CapsNet | 0.60 | 0.62 | 0.62 | 57% | 14788864 | 75 | |
Full Dataset | Vanilla gray | 0.58 | 0.68 | 0.66 | 67.8% | 321225 | 51 |
Vanilla RGB | 0.61 | 0.68 | 0.66 | 69% | 322793 | 53 | |
Hybrid CNN VGG | 0.62 | 0.68 | 0.67 | 69.5% | 15252133 | 384 | |
VDSNet | 0.63 | 0.69 | 0.68 | 73% | 15488051 | 431 | |
Modified CapsNet | 0.48 | 0.61 | 0.58 | 63.8% | 12167424 | 856 | |
Basic CapsNet | 0.51 | 0.64 | 0.61 | 60.5% | 14788864 | 1815 |