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a b s t r a c t 

In this article, we propose the Susceptible-Unidentified infected-Confirmed (SUC) epidemic model for 

estimating the unidentified infected population for coronavirus disease 2019 (COVID-19) in China. The 

unidentified infected population means the infected but not identified people. They are not yet hospital- 

ized and still can spread the disease to the susceptible. To estimate the unidentified infected population, 

we find the optimal model parameters which best fit the confirmed case data in the least-squares sense. 

Here, we use the time series data of the confirmed cases in China reported by World Health Organiza- 

tion. In addition, we perform the practical identifiability analysis of the proposed model using the Monte 

Carlo simulation. The proposed model is simple but potentially useful in estimating the unidentified in- 

fected population to monitor the effectiveness of interventions and to prepare the quantity of protective 

masks or COVID-19 diagnostic kit to supply, hospital beds, medical staffs, and so on. Therefore, to control 

the spread of the infectious disease, it is essential to estimate the number of the unidentified infected 

population. The proposed SUC model can be used as a basic building block mathematical equation for 

estimating unidentified infected population. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The coronavirus disease 2019 (COVID-19) was first identified in

uhan, China in December 2019 [1] . The numbers of the COVID-

9 confirmed cases in China from 21 January to 24 February 2020

re shown in Fig. 1 . The data was reported by World Health Orga-

ization (WHO) as of 24 February 2020 [2] . 

Currently, there are many active research about COVID-19: In

3] , the authors presented the impact of reduced travel volume to

nd from China on the transmission dynamics of COVID-19 out-

ide China. Roosa et al. [4] used phenomenological models to gen-

rate short-term forecasts of cumulative reported cases in Guang-

ong and Zhejiang, China. In [5] , the authors presented the distri-

ution of incubation periods estimated for travellers from Wuhan

ith confirmed COVID-19 infection in the early outbreak phase.

ellewell et al. [6] developed a stochastic transmission model to

ssess the effects of isolation and contact tracing. 

In this paper, we propose the Susceptible-Unidentified infected-

onfirmed (SUC) epidemic model for estimating the unidentified

nfected population for COVID-19 in China. In the Susceptible-
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nidentified infected-Confirmed (SUC) epidemic model, the total

opulation N is divided into the susceptible S ( t ), unidentified in-

ected U ( t ), and confirmed C ( t ) individuals at time t : 

S ( t ) = susceptible; individuals who are not infected but are ca-

pable of contracting the disease and becoming infective. 

U ( t ) = unidentified infected; individuals who are infected but

have not yet been confirmed, and therefore are not isolated.

C ( t ) = confirmed; individuals who have been infected and con-

firmed, including all cases of recovery or death (i.e., the re-

moved). 

Based on the assumptions above, the equations governing the

UC model are as follows: 

dS(t) 

dt 
= −β

S(t) U(t) 

N 

, (1) 

dU(t) 

dt 
= β

S(t) U(t) 

N 

− γU(t) , (2) 

dC(t) 

dt 
= γU(t) . (3) 

ere, N is the total population and thus we assume that N =
(t) + U(t) + C(t) is always satisfied. We disregard changes in pop-

lation due to birth and death irrelevant to the infectious disease.

https://doi.org/10.1016/j.chaos.2020.110090
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110090&domain=pdf
mailto:cfdkim@korea.ac.kr
http://math.korea.ac.kr/cfdkim
https://doi.org/10.1016/j.chaos.2020.110090
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Fig. 1. Epidemic curve of COVID-19 confirmed cases from 21 January to 24 February 2020. 

Fig. 2. Flow chart of the SUC model: S is susceptible, U is infected but not con- 

firmed (i.e., unidentified infected), and C is confirmed or removed. Here, the re- 

moved indicates the recovered or dead cases. 
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Therefore, Eq. (3) can be replaced by Eq. (4) . 

(t) = N − S(t) − U(t) . (4)

The transmission is expressed by the standard incidence β SU 
N ,

where β represents the disease transmission rate [7] . We assume

the unidentified infected U ( t ) are not yet hospitalized and still can

spread the disease to the susceptible S ( t ). 

The parameter γ is the probability of cases where disease is

confirmed among the unidentified infected. We assume that the

confirmed C ( t ) are all cases who have been confirmed to have

COVID-19 and recovered or died from the disease. That is, C ( t ) is

the cumulative number. Once confirmed, patients are no longer

able to spread the disease because they become isolated com-

pletely from the susceptible and the unidentified infected popu-

lation. Furthermore, in this paper we ignore specific cases, such

as infection in medical staff or confirmed patients not isolated, to

reduce the complexity of model. Fig. 2 illustrates the transition di-

agram of the SUC model with three states. 

The ordinary differential Eqs. (1) –(3) for the proposed

model are identical to the classical epidemic model, the

Susceptible-Infected-Recovered (SIR) epidemic model [8] which

is widely used to estimate transmission dynamics in emerg-

ing epidemics [9] . However, we impose different meanings of

the epidemic variables. The susceptible, the unidentified in-

fected, and the confirmed in the SUC model correspond to

the susceptible, the infected, and the recovered in the SIR

model, respectively. Various epidemic models have been pro-

posed by modifying the SIR model, such as SIRS (Susceptible-

Infected-Recovered-Susceptible) [10] , SIRD (Susceptible-Infected-

Recovered-Dead) [11] , SIS (Susceptible-Infected-Susceptible) [12] ,

SEIR (Susceptible-Exposed-Infected-Recovered) [13] , SIIR (a mod-

ified SIR with a latent period) [14] , and SIR/V (Susceptible-

accinated-Infected-Recovered) [15] models. Moreover, fractional-

order epidemic models as applications of classical models have

been studied [16,17] . We intend to consider the epidemic with a
imilar framework but new interpretation in a different way. In

his paper, we propose a simple model as the first step. 

. Numerical solution algorithm 

Let S n = S(n �t) , U n = U(n �t) , and C n = C(n �t) , where �t is a

ime step. The governing equations can be solved by discretizing

ime and applying the explicit Euler method. Then, we have the

ollowing equations: 

 n +1 = S n − �tβ
S n U n 

N 

, n = 0 , 1 , 2 , . . . , (5)

 n +1 = U n + �t 

(
β

S n U n 

N 

− γU n 

)
, (6)

 n +1 = N − S n +1 − U n +1 . (7)

ere, the unknown parameters are β , γ , U 0 . Once these param-

ter values are known, then we can solve the discrete system of

qs. (5) –(7) . To find the optimal values of the parameters ( β , γ , U 0 )

hich best fit the confirmed case data in the least-squares sense,

hat is, 

min 

, γ , U 0 

1 

2 

p ∑ 

i =1 

(C n i − ˆ C i ) 
2 , (8)

here p is the number of the given real data ˆ C i (i = 1 , 2 , . . . , p) and

 n i (i = 1 , 2 , . . . , p) are the numerical solutions from Eqs. (5) –(7)

t the corresponding times. We use a MATLAB routine, lsqcurve-

t , which is a nonlinear curve-fitting solver function that uses the

rust-region-reflective algorithm in a least-squares sense [18] : 

 β, γ , U 0 ] = lsqcurvefit (‘ SUCmodel ′ , [ β0 , γ 0 , U 

0 
0 ] , 

Tdata , Cdata , lb , ub ) , (9)

here β , γ , U 0 are the optimized parameters, SUCmodel is the

UC model which returns the numerical confirmed cases at times

data, Cdata is the confirmed real case data, lb and ub are the

ower and upper bound vectors of the parameters. 

. Computational experiments 

In this section, we estimate the number of the unidenti-

ed infected population using Eqs. (5) –(7) and lsqcurvefit (9) .

e use the time series data of the confirmed cases listed in

able 1 . For all numerical computations, we use the following

arameter values: �t = 0 . 001 , β0 = 1 , γ 0 = 1 , U 

0 
0 

= 0 . 1 C 0 , lb =
(10 −3 , 10 −3 , 0 . 01 C 0 ) , and ub = (10 , 10 , 5 C 0 ) . Here, the time unit

s one day, which corresponds to 10 0 0 time steps when �t =
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Table 1 

Numbers of the confirmed cases of COVID-19 from 21 January to 24 February 2020 [2] . 

Situation report Date Confirmed cases Situation report Date Confirmed cases 

1 21-Jan-2020 278 19 8-Feb-2020 34,598 

2 22-Jan-2020 309 20 9-Feb-2020 37,251 

3 23-Jan-2020 571 21 10-Feb-2020 40,235 

4 24-Jan-2020 830 22 11-Feb-2020 42,708 

5 25-Jan-2020 1297 23 12-Feb-2020 44,730 

6 26-Jan-2020 1985 24 13-Feb-2020 46,550 

7 27-Jan-2020 2741 25 14-Feb-2020 48,548 

8 28-Jan-2020 4537 26 15-Feb-2020 50,054 

9 29-Jan-2020 5997 27 16-Feb-2020 51,174 

10 30-Jan-2020 7736 28 17-Feb-2020 70,635 

11 31-Jan-2020 9720 29 18-Feb-2020 72,528 

12 1-Feb-2020 11,821 30 19-Feb-2020 74,280 

13 2-Feb-2020 14,411 31 20-Feb-2020 74,675 

14 3-Feb-2020 17,238 32 21-Feb-2020 75,569 

15 4-Feb-2020 20,471 33 22-Feb-2020 76,392 

16 5-Feb-2020 24,363 34 23-Feb-2020 77,042 

17 6-Feb-2020 28,060 35 24-Feb-2020 77,262 

18 7-Feb-2020 31,211 

Table 2 

Computed numbers of the unidentified infected pa- 

tients of COVID-19 on 11 February 2020 and ratio β/ γ . 

p / N 10 9 10 8 10 7 

22 5028 (1.10) 5068 (1.10) 1914 (1.04) 

14 3449 (1.04) 3526 (1.04) 1506 (1.02) 

7 2422 (0.93) 2438 (0.93) 2436 (0.94) 

Table 3 

Computed numbers of the unidentified infected 

patients of COVID-19 on 24 February 2020 and ra- 

tio β/ γ . 

p / N 10 9 10 8 10 7 

8 456 (0.61) 423 (0.64) 436 (0.63) 
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 . 001 . Note that we perform a practical identifiability analysis of

he parameters, β and γ , in Section 4 . 

Let p be the number of data, Cdata and we take the most re-

ent p data in Table 1 . Fig. 3 shows the computational results with

arious N ; and p = 22 , 14 , and 7. In this test, we consider three

ifferent N (i.e., N = 10 9 , 10 8 , 10 7 ) to use the effective population

ppropriate to each situation. When investigating actual cases of

pidemic spread, we can see that most infections have occurred in

ertain areas such as Wuhan in China rather than across the whole

ountry, and then spread across the country. Therefore, it is good

o choose an effective population size to suit the situation. As we

an observe from the results of figures, if we use the recent small

umber of data, then we have better fitting results to the time se-

ies data. Furthermore, we can observe the number of the uniden-

ified infected population decreases as time increases. 

Table 2 shows the computed numbers of unidentified infected

opulation of COVID-19 on 11 February 2020 and a ratio β/ γ . In

 strict sense, the ratio is not equivalent to the basic reproduc-

ion number R 0 in the SIR model because our proposed model has

 different meaning from the SIR model and we assume that the

onfirmed cases of infection are isolated completely from the sus-

eptible population. Therefore, we present the ratio as a reference

nly. 

Next, we perform the computational tests with various N and

p = 8 from 17 February 2020. Fig. 4 shows the computational re-

ults on 24 February 2020 with various N and p = 8 . As shown in

ig. 4 , we have the best fitting data of the confirmed cases. Table 3

hows the computed numbers of unidentified infected population

f COVID-19 on 24 February 2020 and the ratio β/ γ . 
. Practical identifiability analysis 

We perform the practical identifiability analysis of our proposed

odel using the Monte Carlo simulation (MCS) [19,20] . We use the

ame data and parameter set as in Fig. 4 . First, we solve the SUC

odel numerically with the obtained parameters β and γ ; and ob-

ain the vector C i with �t = 0 . 001 for i = 0 , 1 , . . . , 70 0 0 . Second,

e generate M parameter sets, ( β j , γ j ) for j = 1 , . . . , M. We take

 = 10 0 0 . Here, ( β j , γ j ) are the optimized parameters with which

he SUC model best fits with randomly perturbed confirmed data

 i,j from C i , where P i, j = C i + C i εi, j , E (εi, j ) = 0 , and V ar(εi, j ) = σ 2 
0 

or each j. σ 0 is the standard deviation. Third, we compute the av-

rage relative estimation errors (AREs): 

ARE(β) = 

1 

M 

M ∑ 

j=1 

| β − β j | 
β

× 100 % , 

RE(γ ) = 

1 

M 

M ∑ 

j=1 

| γ − γ j | 
γ

× 100 % . (10) 

et us consider that a parameter is very sensitive to the noise. In

20] , the parameter is not practically identifiable if ARE is higher

han the measurement error σ 0 . In this case, even with a moder-

te and reasonable level of measurement error, it may result in a

eriously large ARE. Table 4 lists AREs for the parameters β and γ
ith respect to various noise levels σ 0 . As expected, increasing σ 0 

ncreases the AREs. Both the parameters β and γ are practically

dentifiable because the AREs are smaller than the measurement

rror σ 0 . Therefore, the proposed model is practically identifiable,

hich implies the model parameters can be estimated from real

ata. 

. Discussion 

We proposed a new approach for modeling an epidemic dis-

ase, COVID-19, to estimate the unidentified infected case U . The

roposed model is in a framework similar to the standard SIR

odel. However, our model suggests a different interpretation of

 worldwide epidemic. The main purpose of the proposed model

s to predict the number of the unidentified infected population

ho are infected but have not yet been confirmed. 

The SUC model is potentially useful for determining the effec-

iveness of interventions. We can find out if various policy/strategy

ork well, and monitor their strengths and weakness by analyzing

he changes of U after taking some actions. Furthermore, the model

s helpful for predicting the extent of infection spread, i.e., U can
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Fig. 3. Computational results: (a), (b), and (c) are results with N = 10 9 , 10 8 , 10 7 and p = 22 ; (d), (e), and (f) are results with N = 10 9 , 10 8 , 10 7 and p = 14 ; (g), (h), and (i) 

are results with N = 10 9 , 10 8 , 10 7 and p = 7 . 

Table 4 

Average relative estimation errors for parameters β and γ . 

N 10 9 10 8 10 7 

σ 0 (%) ARE ( β) (%) ARE ( γ ) (%) ARE ( β) (%) ARE ( γ ) (%) ARE ( β) (%) ARE ( γ ) (%) 

0 0.00 0.00 0.00 0.00 0.00 0.00 

1 1.87 1.26 0.87 0.57 0.48 0.37 

5 3.98 2.93 2.54 1.82 1.54 1.36 

10 6.02 4.64 4.15 3.25 2.82 2.59 

20 10.03 7.87 7.93 5.95 5.42 4.67 

30 13.65 11.23 10.55 9.80 7.29 7.91 
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Fig. 4. (a), (b), and (c) are results with p = 8 and N = 10 9 , 10 8 , and 10 7 , respectively, from 17 February 2020. 
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e used as a criterion. Thus, we can prepare the proper quantity

f protective masks or COVID-19 diagnostic kit to supply, hospital

eds, medical staffs, and so on. It is significantly important to pre-

ent the spread of infectious diseases and the incalculable damage

aused by the epidemics. 

However, the proposed model is as simple as possible under

any constraints, assuming the ideal situation. In this paper, we

educed the complexity and focused on a basic building block.

hus, we excluded several realistic elements, for example, inter-

entions, a latent period of virus, changes in population due to

irth and death, infection in medical staff or confirmed patients

ot isolated, etc. In future works, we will complement various con-

itions for specific and realistic situations not covered in this paper

o improve the model. 

The accurate estimation of the unidentified infected using the

roposed model depends on the reliable and accurate confirmed

ata. We used the number of the confirmed cases and deaths re-

orted by WHO. There may be differences in how data is aggre-

ated for each country or region. In fact, the criterion for classify-

ng the confirmed cases in China has been changed twice, and it

as led to sharp increase in the number of confirmed cases on 17

ebruary 2020. Nevertheless, the proposed model can be modified

y applying various situations for each system and culture in di-

erse countries. We only used the data on China, however, if the

odel is supplemented, it can be applied to many different coun-

ries with a variety of spread patterns. 

. Conclusion 

The proposed SUC epidemic model for computing the unidenti-

ed infected for COVID-19 in China is very simple and is robust in

omputation. The model only uses the numbers of the total pop-

lation and the available time series confirmed cases. The compu-

ational results from the model can be useful in controlling of the

isease because we can estimate the size of the unidentified in-

ected population. We performed the practical identifiability anal-

sis of the proposed model using MCS. Finally, we clarified the im-

ortance of the proposed model and added its limitations. In the

ppendix, we provide the source program code so that the inter-

sted readers can use and modify it for their own needs. In future

orks, we will improve the SUC model with more specific condi-

ions such as a latent period, changes in population due to birth
nd death, infection in medical staff or confirmed patients not iso-

ated. We will also develop a novel and proper index correspond-

ng to the basic reproduction number used to investigate infectious

iseases and compare to other diseases. 
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ppendix A 

The following MATLAB codes are available from the correspond-

ng author’s webpage: 

http://elie.korea.ac.kr/cfdkim/codes/ 

The following code is a function and should be saved with the

le name ‘SUCmodel.m’ and placed in the same folder where the

ain code is. 
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The following code is the main program. 
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