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Psychiatric disorders are the leading cause of disa-
bility worldwide while the pathogenesis remains unclear. 
Genome-wide association studies (GWASs) have made 
great achievements in detecting disease-related genetic 
variants. However, functional information on the under-
lying biological processes is often lacking. Current reports 
propose the use of metabolic traits as functional interme-
diate phenotypes (the so-called genetically determined 
metabotypes or GDMs) to reveal the biological mechan-
isms of genetics in human diseases. Here we conducted a 
two-sample Mendelian randomization analysis that uses 
GDMs to assess the causal effects of 486 human serum 
metabolites on 5 major psychiatric disorders, which respec-
tively were schizophrenia (SCZ), major depression (MDD), 
bipolar disorder (BIP), autism spectrum disorder (ASD), 
and attention-deficit/hyperactivity disorder (ADHD). 
Using genetic variants as proxies, our study has identified 
137 metabolites linked to the risk of psychiatric disorders, 
including 2-methoxyacetaminophen sulfate, which affects 
SCZ (P = 1.7 × 10–5) and 1-docosahexaenoylglycerophosp
hocholine, which affects ADHD (P = 5.6 × 10–5). Fourteen 
significant metabolic pathways involved in the 5 psychi-
atric disorders assessed were also detected, such as glycine, 
serine, and threonine metabolism for SCZ (P = .0238), 
Aminoacyl-tRNA biosynthesis for both MDD (P = .0144) 
and ADHD (P = .0029). Our study provided novel insights 
into integrating metabolomics with genomics in order to 
understand the mechanisms underlying the pathogenesis of 
human diseases.

Key words:   serum metabolite/psychiatric disorder/ 
Mendelian randomization/metabolic pathway/2-
methoxyacetaminophen sulfate/1-docosahexaenoylglyce
rophosphocholine

Introduction

Psychiatric disorders have become a major driver of the 
growth of overall morbidity and disability in the past 
decades, with the rapid transformation of global eco-
nomic, demographic, and epidemiological conditions.1,2 
Major syndromes, such as schizophrenia (SCZ), major 
depression (MDD), bipolar disorder (BIP), autism spec-
trum disorder (ASD), and attention-deficit/hyperactivity 
disorder (ADHD), comprise a large proportion of global 
health burden worldwide.3 Despite considerable efforts 
have been undertaken to understand the nature of psy-
chiatric disorders, knowledge of disease mechanisms is 
still limited and no etiological therapies are available.4 
Fortunately, advances in genetics (especially genome-
wide association studies [GWASs]) have greatly promoted 
the progress of etiology research and made remarkable 
success in identifying genetic risk factors for psychiatric 
disorders.5–9 However, it is still a major obstacle trans-
lating these genetic findings into pathophysiological 
mechanisms and new therapies.10

Current researches have proposed metabolic traits 
as functional intermediates to investigate the under-
lying biological mechanisms of  genetics on psychiatric 
disorders.11–13 Metabolites are the intermediate or end 
products of  metabolism that drive essential biolog-
ical functions of  human bodies.14 The measurement 
of  these markers could reflect the health status of  an 
individual and potentially offer novel insight into the 
effects of  diet, drugs, and disease. Especially the metab-
olomics, which aims to provide a top-down functional 
readout of  the biochemistry, physiological status, and 
environmental exposure for human diseases.15 In fact, 
metabolic strategies have been extensively used to char-
acterize specific metabolic phenotypes associated with 
psychiatric disorders and a number of  metabolites have 
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been identified.16–20 However, a comprehensive analysis 
is needed to reveal the role of  the interactions between 
genetic variants and metabolites in the pathogenesis of 
psychiatric disorders.

Mendelian randomization (MR) is a novel genetic 
epidemiology study design that uses genetic variants as 
instrumental variables to assess the causal relationships 
among exposures and clinical outcomes of  interest.21 
Unlike observational epidemiology, the MR strategy 
can provide unbiased estimates exploiting the fact that 
genotypes are determined at conception and not gen-
erally susceptible to confounders.22 By taking advan-
tage of  these GWAS discoveries, MR has been widely 
applied to infer causality of  exposures on diseases.23–25 
Recently, GWAS has been extended to metabolic pro-
files, from which an atlas of  genetically determined 
metabotypes (GDMs) was established. Based on the 
generated GDMs, we are able to assess the causal effects 
of  genetically determined nontargeted metabolomics on 
psychiatric disorders.

Hereby making use of the GDMs and latest GWAS 
findings on psychiatric disorders, we conducted this two-
sample (genetic associations with the exposure and out-
come are measured in different samples) MR approach 
to: (1) assess the causal effects of human blood metabol-
ites on 5 major psychiatric disorders, which respectively 
were SCZ, MDD, BIP, ASD, and ADHD; (2) identify 
common metabolites that had causal effects on multi-
psychiatric disorders; (3) identify metabolic pathways 
that might contribute to the development of the 5 major 
psychiatric disorders; (5) investigate potential genetic 
variants that lead to both the variation of the metabolites 
and the progress of psychiatric disorders.

Materials and Methods

Study Design and Data Sources

The design of  this MR study is illustrated in supplemen-
tary figure S1. We obtained the genome-wide association 
summary datasets for 486 metabolites from the study by 
Shin et al,26 which is the most comprehensive investiga-
tion of  genetic influences on human metabolism. The 
total sample is comprised of  7824 adult participants 
from 2 European population studies, including 1768 par-
ticipants from the German KORA F4 study and 6056 
participants from the British Twins UK study. Metabolic 
profiling was done on fasting serum using ultra-high-
performance liquid-phase chromatography and gas-
chromatography separations coupled with tandem mass 
spectrometry.12,27 Standardized processes of  identifica-
tion and relative quantification, data-reduction, and 
quality-assurance were performed for metabolic ana-
lyses by Metabolon, Inc. (https://www.metabolon.com/). 
After stringent quality control, a total of  486 metabolites 
were used for genetic analysis, including 309 known and 

177 unknown metabolites. The 309 known metabolites 
could be further assigned to 8 broad metabolic classes 
(amino acids, carbohydrates, cofactors and vitamins, en-
ergy, lipids, nucleotides, peptides, and xenobiotic metab-
olism) as described in the KEGG (Kyoto Encyclopedia 
of  Genes and Genomes) database.28 Genotyping and im-
putation steps of  the two cohorts are described in detail 
in previous studies and approximately 2.1 million SNPs 
were reserved in the GWAS meta-analysis. Full GWAS 
summary statistics were publicly available through the 
Metabolomics GWAS Server at http://metabolomics.
helmholtz-muenchen.de/gwas/.

Selection of Instrumental Variables for the 486 
Metabolites

We implemented uniform criteria for the selection of ge-
netic variants for the 486 serum metabolites. For each 
metabolite, we first selected SNPs that showed associa-
tion at P < 1 × 10−5. This relax statistical threshold was 
usually used in MR research to explain a larger variation 
when few genome-wide significant SNPs were available 
for exposures.21,23 After extracting the significant SNPs 
for each metabolite, we conducted a clumping procedure 
to retain SNPs with the lowest P-value as independent 
instruments, setting a linkage disequilibrium threshold 
of r2 < 0.1 in a 500-kb window in the European 1000G 
reference panel. We next calculated the explained varia-
tion (R2) between the instrumental variable and the cor-
responding metabolite exposure using the “gtx” package 
in R (https://www.r-project.org/). An F statistic was also 
estimated to evaluate the strength of these genetic pre-
dictors for the metabolites.29 Generally, an F statistic > 10 
was considered as a typical threshold for the selection of 
strong instrumental variables.30

Primary Outcomes for MR

The latest GWAS summary statistics for SCZ, MDD, BIP, 
ASD, and ADHD were extracted from the Psychiatric 
Genomics Consortium (PGC) website (https://www.med.
unc.edu/pgc/results-and-downloads/).6–9,31 The PGC has 
conducted the most influential meta- and mega-analyses 
of genome-wide genomic data for psychiatric disorders. 
The samples were collected from multiple cohorts of dif-
ferent ancestry, the majority of whom were of European 
ancestry. Genotyping, quality control, imputation, 
and association analysis were performed by the PGC 
Statistical Analysis Group as described in the primary re-
ports for each study. The GWAS summary datasets for 
SCZ (36 989 cases and 113 075 controls), MDD (75 607 
cases and 231 747 controls), BIP (20 352 cases and 31 358 
controls), ASD (18 381 cases and 27 969 controls), and 
ADHD (20 183 cases and 35 191 controls) were generated 
from genome-wide meta- or mega-analyses (supplemen-
tary table S1).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz138#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz138#supplementary-data
https://www.metabolon.com/
http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
https://www.r-project.org/
https://www.med.unc.edu/pgc/results-and-downloads/
https://www.med.unc.edu/pgc/results-and-downloads/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz138#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz138#supplementary-data
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MR Analysis

Causal effects for two-sample MR analyses were esti-
mated using a standard inverse variance weighted (IVW) 
method.32 The IVW approach provides a consistent esti-
mate of the causal effect of the exposure under the fun-
damental assumption that each included variant is a valid 
instrumental variable. Briefly, the IVW estimate can be 
equivalently obtained as the slope from a weighted linear 
regression of the genetic associations with the outcome 
as a function of the genetic associations with the expo-
sure, weighted by the inverse variance of the genetic as-
sociations with the outcome. A fixed-effect meta-analysis 
model was used for each variant with a fixed intercept of 
zero. The P-value was calculated as P = 2 × (1 – Φ(Z)), 
where Φ is the standard normal cumulative distribution 
function and Z is the ratio of the estimated causal effect 
and its standard error. We adopted a multiple-testing-
adjusted threshold of P < 1.03 × 10−4 (0.05/486) using the 
Bonferroni correction to declare a statistically significant, 
causal relationship.  We also reported metabolites that 
had a P < .05, but were above the Bonferroni-corrected 
threshold, as suggestive risk predictors for psychiatric 
disorders.

The IVW estimate is an efficient analysis under the basic 
premise that all genetic variants are valid instrumental 
variables. This particularly requires the genetic variants 
to act on the target outcome exclusively through the ex-
posure of interest (“no horizontal pleiotropy” assump-
tion). The IVW estimate can lead to severe bias if  the “no 
horizontal pleiotropy” assumption is violated. To con-
trol for the widespread horizontal pleiotropy in MR, we 
conducted methodologic sensitivity analyses using addi-
tional MR methods: the weighted median method, which 
provided estimates when a subset (< 50%) of the variants 
came from invalid instrumental variables33; MR-Egger, 
which provided consistent estimates even when up to 50% 
of the variants were invalid34; and MR-PRESSO, which 
provided a correction test by identifying and discarding 
horizontal pleiotropic outliers.35 Furthermore, we spe-
cifically detected the presence of horizontal pleiotropy 
through the MR-PRESSO Global test. All MR analyses 
were conducted using R software with the R package 
“MendelianRandomization” and “MR-PRESSO.”

Metabolic Pathway Analysis

We next conducted a metabolic pathway analysis for the 
identified metabolites using web-based MetaboAnalyst 4.0 
software (https://www.metaboanalyst.ca/MetaboAnalyst/
faces/home.xhtml).36 We used both the functional enrich-
ment analysis module and the pathway analysis module 
to search for potential metabolite sets or pathways that 
might be involved in the biological processes of psychi-
atric disorders. A total of 183 human metabolic pathways 
from two metabolite set libraries, including 99 metabo-
lite sets from The Small Molecule Pathway Database 

(SMPDB) and 84 metabolite sets from the KEGG data-
base, were tested in the metabolic pathway analysis.28,37 
All significant metabolites identified by IVW (PIVW < .05) 
were extracted for metabolic pathway analysis because we 
were interested in elucidating plausible metabolic path-
ways for psychiatric disorders.

Results

Study Overview

We performed a two-sample MR analysis to assess the 
causal effects of human blood metabolites on 5 major 
psychiatric disorders using pairs of GWAS summary 
statistics. For each metabotype, we extracted the genetic 
variants as instrumental variables to test their causality 
on the outcome. The number of SNPs in the extracted 
instrumental variables varied from 3 to 675, with a me-
dian number of 17. The instrumental variables ex-
plained 8.2%–83.5% of the variance in their respective 
metabotypes, and the minimum F statistic for validity 
tests of these genetic predictors was 20.33. All instru-
mental variables for the 486 metabotypes were sufficiently 
informative (F statistic >10) for MR analyses.

Causal Effects of the 486 Metabolites on Psychiatric 
Disorders

We used the IVW test to identify causal relationships 
among the 486 metabolites and the 5 major psychiatric 
disorders using pairs of GWAS summary statistics. 
A  total of 160 significant causative association features 
(corresponding to 137 unique metabolites) were identi-
fied at P < .05, including 104 features for 85 known me-
tabolites and 56 features for 52 unknown metabolites 
(supplementary tables S2 and S3). Figure 1 presents all 
significant causative association features between known 
metabolites with the 5 psychiatric disorders.  We further 
reported the causative association features following a 
multiple-testing-adjusted threshold of the Bonferroni 
correction (P < 1.03 × 10−4). We observed two causal in-
fluence features of metabolites on psychiatric disorders, 
which were 2-methoxyacetaminophen sulfate on SCZ 
(P = 1.73 × 10–5) and 1-docosahexaenoylglycerophospho
choline on ADHD (P = 5.58 × 10–5). It is worth noting 
that 2-methoxyacetaminophen sulfate also showed sug-
gestive causality on BIP (P = .011), implying that a 
shared molecular mechanism might exist between SCZ 
and BIP. Table 1 shows the overlapped metabolites in the 
5 psychiatric disorders. These findings provide important 
information for understanding the molecular mechanism 
of psychiatric disorders.

Sensitivity and Pleiotropy Analysis

To avoid the horizontal pleiotropy for MR esti-
mate, we further conducted a sensitivity and pleiotropy 

https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbz138#supplementary-data
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SCZ MDD BIP ASD ADHD

Psychiatric Disorders

M
et

ab
ol

ite
s

theobromine
quinate
piperine
homostachydrine
ergothioneine
salicylate
p-acetamidophenylglucuronide
4-acetaminophen sulfate
2-methoxyacetaminophen sulfate
2-hydroxyacetaminophen sulfate
4-ethylphenylsulfate
HWESASXX
gamma-glutamyltyrosine
gamma-glutamylleucine
gamma-glutamylglutamate
DSGEGDFXAEGGGVR
pyroglutamylglycine
cyclo(leu-pro)
aspartylphenylalanine
urate
N2,N2-dimethylguanosine
guanosine
estrone 3-sulfate
epiandrosterone sulfate
dehydroisoandrosterone sulfate (DHEA-S)
cholesterol
androsterone sulfate
valerate
1-stearoylglycerol (1-monostearin)
1-palmitoylglycerol (1-monopalmitin)
1-linoleoylglycerol (1-monolinolein)
heptanoate (7:0)
5-dodecenoate (12:1n7)
2-stearoylglycerophosphocholine
2-palmitoylglycerophosphocholine
2-oleoylglycerophosphocholine
1-stearoylglycerophosphocholine
1-palmitoylglycerophosphoinositol
1-linoleoylglycerophosphoethanolamine
1-eicosatrienoylglycerophosphocholine
1-docosahexaenoylglycerophosphocholine
stearidonate (18:4n3)
palmitate (16:0)
oleate (18:1n9)
myristoleate (14:1n5)
adrenate (22:4n6)
scyllo-inositol
octadecanedioate
3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF)
butyrylcarnitine
eicosapentaenoate (EPA; 20:5n3)
docosahexaenoate (DHA; 22:6n3)
3-dehydrocarnitine
2-tetradecenoyl carnitine
glycocholate
phosphate
biliverdin
bilirubin (Z,Z)
bilirubin (E,Z or Z,E)
bilirubin (E,E)
pyruvate
glycerate
1,6-anhydroglucose
mannose
valine
leucine
4-methyl-2-oxopentanoate
3-methyl-2-oxovalerate
proline
N-acetylornithine
arginine
tryptophan betaine
kynurenine
indoleacetate
C-glycosyltryptophan
tyrosine
phenyllactate (PLA)
phenylalanine
phenylacetylglutamine
betaine
5-oxoproline
2-hydroxybutyrate (AHB)
2-aminobutyrate
N-acetylalanine
asparagine

P < .0001
P < .001
P < .01
P < .05

P < .05
P < .01
P < .001
P < .0001

Higher Risk

Lower Risk

Amino acid

Carbohydrate

Cofactors and vitamins

Energy

Lipid

Nucleotide

Peptide

Xenobiotics

Fig. 1.  Mendelian randomization associations of serum metabolites on the risk of 5 major psychiatric disorders. Shown are the results 
for known metabolites derived from the fixed-effects IVW analysis. IVW, inverse-variance weighted.
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analysis to evaluate the robustness of the estimates. 
Figure 2 shows the results of the sensitivity analysis for 
2-methoxyacetaminophen sulfate on SCZ and 1-doco
sahexaenoylglycerophosphocholine on ADHD.  The 
causal relationship was robust when two additional MR 
tests were performed (PWeighted-median  =  4.31 × 10–3 and  
PMR-PRESSO  =  2.06 × 10–5 for 2-methoxyacetaminophen 
sulfate, PWeighted-median =  .027 and PMR-PRESSO = 5.00 × 10–3 
for 1-docosahexaenoylglycerophosphocholine), and there 
was no evidence of horizontal pleiotropy for either metab-
olite (PMR-PRESSO Global = .134 for 2-methoxyacetaminophen 
sulfate, PMR-PRESSO Global  =  .459 for 1-docosahexaenoylgl
ycerophosphocholine). However, both of the two me-
tabolites were nonsignificant in the MR-Egger test. 
This might be because the MR-Egger method was 
based on a weaker assumption and was substantially 
less efficient than the IVW method and weighted me-
dian method in inferring causal estimates. We further 
reported 4 suggestive association features that passed 
all sensitivity analyses (P < .05) without horizontal 
pleiotropy, which respectively were ergothioneine on 
ASD (PIVW =  .018, PMR-Egger =  .026, PWeighted-median =  .018, 
PMR-PRESSO  =  .023; PMR-PRESSO Global= .676), 1-linoleoyl 
glycerophosphoethanolamine on MDD (PIVW  =  .001, 
PMR-Egger  =  .011, PWeighted-median  =  .018, PMR-PRESSO  =  .001; 
PMR-PRESSO Global =  .872), phosphate on BIP (PIVW = .006, 
PMR-Egger =  .009, PWeighted-median =  .010, P MR-PRESSO =  .040; 
PMR-PRESSO Global =0.426), and 2-tetradecenoyl carnitine on 
BIP (PIVW  =  .031, PMR-Egger  =  .010, PWeighted-median  =  .002,  
P MR-PRESSO = .045; PMR-PRESSO Global = .190). The genetically 
predicted effect sizes of these four additional metabolites 
on psychiatric disorders are presented in figure 3.  The ge-
netic variants for explaining the relationships between the 

six abovementioned metabolites and psychiatric disorders 
were listed in supplementary tables S4–S9, respectively.

Metabolic Pathway Analysis

The metabolic pathway analysis identified 14 significant 
metabolic pathways among the 5 psychiatric disorders 
(table 2). Our results show that the “Glycine, serine, and 
threonine metabolism” pathway might be associated with 
the pathogenetic process of SCZ (P = .0238) whereas the 
“Glycerolipid metabolism” pathway was found to be as-
sociated with BIP (P = .0325). We also detected several 
shared metabolic pathways for different psychiatric dis-
orders, such as the “Alpha-linolenic acid and linoleic 
acid metabolism” pathway for MDD (P = .0037) and 
ASD (P = .0225), the “Aminoacyl-tRNA biosynthesis” 
pathway for MDD (P = .0144) and ADHD (P = .0029), 
and the “D-arginine and D-ornithine metabolism” 
pathway for ASD (P = .0393) and ADHD (P = .0328).

Discussion

This MR study provides unbiased detection of the 
causal effects of human serum metabolites on 5 major 
psychiatric disorders. Using genetic variants as proxies, 
we observed 137 metabolites linked to the risk of psy-
chiatric disorders, including 2-methoxyacetaminophen 
sulfate, which affects SCZ (P = 1.7 × 10–5) and 1-docos
ahexaenoylglycerophosphocholine, which affects ADHD 
(P = 5.6 × 10–5). Fourteen significant metabolic pathways 
involved in the 5 psychiatric disorders assessed were also 
detected. To the best of our knowledge, this is the first 
MR study combining metabolomics with genomics to 
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Fig. 2.  Sensitivity analysis for two significant features passing Bonferroni correction. a. effect of 1-SD genetically determined levels of 
2-methoxyacetaminophen sulfate on SCZ; b. effect of 1-SD genetically determined levels of 1-docosahexaenoylglycerophosphocholine 
on ADHD. SCZ, schizophrenia; ADHD, attention-deficit/hyperactivity disorder.
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810

J. Yang et al

evaluate the causal effects of serum metabolites on psy-
chiatric disorders. Our study provides novel insight to re-
veal the role of genetic-environmental interactions in the 
pathogenesis of human diseases.

Our study detected a group of serum metabolites 
showing associations with psychiatric disorders, among 
which 2-methoxyacetaminophen sulfate was observed 
to have a robust effect on SCZ, as well as BIP. The me-
tabolite 2-methoxyacetaminophen sulfate, also known 
as 4-(acetylamino)-3-methoxyphenyl hydrogen sulfate, 

is a member of the acetamide class and has a role as a 
drug metabolite. The acetamides have long been rec-
ognized to be associated with levels of glutathione and 
N-acetylcysteine, which are known biomarkers for SCZ 
and BIP.38–41 N-acetylcysteine is widely known for its role 
as an antidote for acetaminophen overdose. It can mod-
ulate multiple pathophysiological processes in psychiatric 
disorders, including oxidative stress, neurogenesis and 
apoptosis, mitochondrial dysfunction, and dysregulation 
of glutamate and dopamine neurotransmitter systems.42 
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Fig. 3.  Scatter plot showing the genetic associations of four metabolites on the risk of psychiatric disorders. a. ergothioneine on ASD; 
b. 1-linoleoylglycerophosphoethanolamine on MDD; c. 4-hydroxyhippurate on BIP; d. 2-tetradecenoyl carnitine on BIP. SNPs showing 
negative signals with metabolites are plotted after orientation to the exposure-increasing allele. Each of the SNPs associated with 
metabolites is represented by a black dot with the error bar depicting the standard error of its association with metabolite (horizontal) 
and the target psychiatric disorder (vertical). The slopes of each line represent the causal association for each method. ASD, autism 
spectrum disorder; MDD, major depression, BIP, bipolar disorder.
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Although 2-methoxyacetaminophen sulfate seems like 
a promising biomarker for psychiatric disorders, fur-
ther clarification of the relevant mechanism is required. 
Another compound, 1-docosahexaenoylglycerophospho
choline, has been recognized to have a causal effect on 
ADHD. The metabolite 1-docosahexaenoylglycerophosp
hocholine is a kind of lysophospholipid (LP). The LPs are 
important signaling molecules that regulate fundamental 
cellular functions.43 Particularly, the LPs were involved 
in several aspects of neurodevelopment, such as cortical 
growth and folding.44 Therefore, 1-docosahexaenoylglyce
rophosphocholine might play a role in neurodevelopment 
in ADHD.

The MR analysis also detected several additional me-
tabolites, some of which had already been reported in 
previous observational studies. McClay et al conducted 
a neurochemical metabolomics study that found altered 
levels of N-acetylornithine and leucine in response to 
the antipsychotic drug haloperidol.45 Scaini et  al sug-
gested that phosphate was involved in the mitochondrial 
dysfunction of BIP.46 Nakamichi et al found that food-
derived ergothioneine was distributed to the brain and 
exerted an antidepressant effect.47 Furthermore, a recent 
meta-analysis found that patients with ASD had lower 
eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) levels than those of healthy controls, and a ran-
domized, controlled treatment study of a comprehensive 
nutritional and dietary intervention suggested that ASD 
patients could benefit from supplements of EPA and 
DHA.48,49 Our results further support these findings and 
highlight the importance of genetics in the progression of 
psychiatric disorders.

Our metabolic pathway analysis shows that glycine, 
serine, and threonine metabolism pathways are asso-
ciated with SCZ. An increasing amount of recent evi-
dence indicates that D-serine and glycine could regulate 
N-methyl-d-aspartate (NMDA) receptor-dependent 
synaptic activity, which is one of the core hypotheses 
explaining the pathophysiology of SCZ.50,51 The alpha-
linolenic acid and linoleic acid metabolism pathway is 
also a known indicator for psychiatric disorders, which 
participates in multiple pathophysiological processes, 
including biological stress, inflammation, and brain 
network structure and function.52 The most significant 
pathway for ADHD was the phenylalanine metabolism 
pathway. Symptoms of ADHD, particularly inattention 
and impairments in executive functioning, have been fre-
quently reported in children, adolescents, and adults with 
phenylketonuria.53,54 Evidence has also shown that higher 
blood phenylalanine levels are correlated with ADHD.55 
A potential mechanism for phenylalanine involvement in 
ADHD might lie in its role as a precursor for dopamine; 
the dopamine and serotonin hypotheses dominate cur-
rent scientific work on ADHD.56

There are several limitations to our study. First, 
our study identified a causal relationship between 
2-methoxyacetaminophen sulfate and SCZ. However, 
the very low effect size would limit its potential utility as 
a biomarker. Second, the metabolic traits of the GWAS 
analysis were carried out on fasting serum. Because psy-
chiatric disorders mainly manifest as abnormal function 
of the brain, more data should be collected from cere-
brospinal fluid or brain tissues. Third, the accuracy of 
the MR analysis depended on the explanation of the 

Table 2.  Significant Metabolic Pathways Involved in the 5 Major Psychiatric Disorders

Trait Metabolic Pathway Involved Metabolites P-Value
Data-
base

SCZ Glycine, serine, and threonine metabolism Glycocholate, Betaine .0238 KEGG
MDD Alpha-linolenic acid and linoleic acid me-

tabolism
Eicosapentaenoate, Adrenate, 
Stearidonate

.0037 SMPDB

MDD Aminoacyl-tRNA biosynthesis Asparagine, Leucine, Proline .0144 KEGG
BIP Glycerolipid metabolism 5-oxoproline, Phosphate .0325 SMPDB
ASD Alpha-linolenic acid and linoleic acid me-

tabolism
Docosahexaenoate (DHA), Eicosa-
pentaenoate (EPA)

.0225 SMPDB

ASD D-arginine and D-ornithine metabolism Arginine .0393 KEGG
ADHD Phenylalanine metabolism Phenylalanine, Tyrosine, Pyruvate 6.69E-4 KEGG
ADHD Aminoacyl-tRNA biosynthesis Phenylalanine, Arginine, Tyrosine .0029 KEGG
ADHD Phenylalanine, tyrosine, and tryptophan 

biosynthesis
Phenylalanine, Tyrosine .0051 KEGG

ADHD Valine, leucine, and isoleucine biosynthesis 4-Methyl-2-oxopentanoate, Pyruvate .0051 KEGG
ADHD Nitrogen metabolism Phenylalanine, Tyrosine .0106 KEGG
ADHD D-arginine and D-ornithine metabolism Arginine .0328 KEGG
ADHD Tyrosine metabolism Tyrosine, Pyruvate .0376 KEGG
ADHD Arginine and proline metabolism Arginine, Pyruvate .0385 KEGG

Note. SCZ, schizophrenia; MDD, major depression; BIP, bipolar disorder; ASD, autism spectrum disorder; ADHD, attention-deficit/
hyperactivity disorder; OR, odds ratio; 95% CI, 95% confidence interval; KEGG, kyoto encyclopedia of genes and genomes; SMPDB, 
small molecule pathway database.
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instrumental variables on exposure. A further expanded 
sample size might provide a more accurate assessment of 
the genetic influences on metabolites. Finally, while our 
study identified multiple metabolites causing a risk of 
psychiatric disorders, further work should be done to re-
veal their roles in the pathogenesis of these disorders.

In summary, the MR study identified 137 metabolites 
that might have causal effects on the development of psy-
chiatric disorders, including 18 metabolites having causal 
effects on more than one outcome. Our study also iden-
tified 14 significant metabolic pathways that might be in-
volved in the development of psychiatric disorders. Our 
study provides novel insights into combining metabol-
omics with genomics to reveal the pathogenesis and ther-
apeutic strategies for psychiatric disorders. 
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Bulletin online. 
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