异基因造血干细胞移植(allo-HSCT)是一种治疗血液系统恶性肿瘤的有效手段,其目的是清除患者体内的异常克隆,用供者来源造血干细胞(HSC)替代患者体内的HSC,并重建供者来源的造血与免疫。供者HSC在患者体内的稳定植入是allo-HSCT获得成功的基础。部分患者移植后尽管已经转化为供者来源的造血,但造血延迟恢复或恢复不完全仍较为常见,即所谓的植入功能不良(Poor graft function, PGF)。PGF定义如下[1]–[2]:移植28 d以后,出现两系或三系细胞计数未达到植活标准(中性粒细胞绝对计数≥0.5×109/L连续3 d且脱离G-CSF应用,PLT≥20×109/L连续7 d且脱离血小板输注,HGB≥80 g/L且脱离红细胞输注)持续2周以上,骨髓检查提示骨髓增生低下,原发病处于缓解状态,细胞为完全供者嵌合,而无严重移植物抗宿主病(GVHD)和复发。
PGF的发生与移植前疾病状态、预处理强度、HSC数量、HLA相合程度、移植物来源、GVHD及病毒感染等很多因素相关,发生率为5%~27%,常伴随着感染及出血等并发症的出现,严重影响allo-HSCT的预后[1]。随着近年来对造血微环境生物学特性及免疫学基础的研究,对其发病机制有了更为深入的了解。
一、免疫机制异常
1.细胞介导的反应:CD4+T细胞根据其分泌细胞因子的不同可分为Th1、Th2、Th17及调节性T细胞(Treg)4个亚群。Th1细胞通过分泌IL-2、IFN-γ、TNF-α等细胞因子激活细胞毒性T细胞(CTL)及巨噬细胞调节细胞免疫;Th2细胞主要分泌IL-4、IL-10等细胞因子,促进B细胞激活与分化并产生抗体,介导体液免疫[3];Th17细胞主要分泌IL-17、TNF-α等募集活化的中性粒细胞,协同刺激T细胞活化;Treg细胞主要通过分泌IL-10、TGF-β负向调节免疫反应,其特异性转录因子Foxp3可通过结合Th17特异性转录因子RORγt抑制Th17细胞的活性。故Th1/Th2、Treg/Th17是两对相互制约的平衡体系,一旦平衡被打破,机体会发生免疫功能异常,引起炎症、肿瘤、免疫性疾病[4]。Wang等[5]对10例allo-HSCT后PGF患者、30例植入功能良好患者及15例健康供者的巢式对照研究发现,相较于植入功能良好组及健康对照组,PGF组的血清中IFN-γ水平升高、Th1和Tc1细胞比例增加,同时伴随IL-4水平降低、Th2和Tc2细胞比例下降,导致Th1/Th2、Tc1/Tc2比例明显升高。随后的研究还发现PGF组血清中IL-17水平升高,Th17/Treg比例也明显高于其他组[6],提示Th1/Th2、Th17/Treg比例失衡可能是PGF的发病机制之一,推测与其造成1型免疫反应的发生、活化的CD8+细胞数目的增加及造血前体细胞的破坏相关。
2.抗体介导的反应:抗体介导的移植排斥取决于靶抗原的密度及抗体Fc域的能力,虽然接受allo-HSCT后患者体内可检测到预先形成的多种抗体,但目前只有抗供者特异性抗体(donor-specific antibodies, DSA)已被证明具有临床意义。DSA是患者接受器官/组织移植后体内产生的针对供者组织抗原的特异性抗体,是影响HSC植入及造血重建的重要因素之一[10]。Yoshihara等[11]利用群体反应性抗体检测单倍型移植前患者血清中的抗体,抗体阳性[平均荧光强度(MFI)>500]标本进一步采用Luminex单抗原分析技术鉴定抗体的特异性,结果发现DSA阳性组患者的粒系重建率明显低于DSA阴性组(61.9%对94.4%,P=0.026),巨核系重建率亦显著低于阴性组(28.6%对79.6%,P=0.035)。Chang等[2]同样认为DSA阳性患者出现PGF风险增加,他们通过对DSA水平检测发现PGF发生率在MFI>2 000组为27.3%,在MFI<2 000组只有1.9%,且差异有统计学意义(P=0.003)。在实体器官移植中已有研究表明,体外将DSA与血管内皮细胞共培养可激活PI3/AKt及MAPK/ERK信号通路,刺激下游多种信号转导,引起内皮细胞抗凋亡和增殖,导致内皮细胞功能受损[12]。内皮细胞在allo-HSCT中不仅可促进骨髓微环境内造血细胞及造血基质的恢复,还可促进造血干/祖细胞归巢及植入后造血重建,由此推测DSA可能通过损伤内皮细胞引起移植物微血管病变,影响移植物功能,造成PGF,但其具体作用机制仍需进一步探究。
二、骨髓微环境受损
骨髓微环境是维护造血干细胞稳态的特殊微环境,已有研究提出骨髓微环境中主要存在成骨细胞为主要成员的骨内膜壁龛和血管内皮细胞为主要成员的血管壁龛。HSC位于骨髓微环境即HSC龛中,通过细胞——细胞、细胞——可溶性因子相互作用及信号通路调节自我更新和多向分化,维持骨髓造血功能动态平衡[13]。Kong等[14]对19例PGF与38例对照(移植后造血重建良好者)及15例健康志愿者的骨髓微环境进行比较发现,PGF组骨髓低增生明显高于其他组,其骨髓中CD34+细胞、血管内皮祖细胞、CD146+血管周围细胞及骨内膜细胞比例显著低于其他组,提示骨髓微环境受损可能是PGF的发病机制之一。
1.血管壁龛调节造血功能:血管壁龛分为小动脉龛和血窦龛,小动脉龛主要由NG2+ Nestinbright α-smooth muscle actin+周细胞组成,高表达CXC趋化因子配体12(CXCL12),维持HSC静止;而血窦龛由VEGFR2+ VEGFR3+血窦内皮细胞及Nestindim Lepr+血管旁基质细胞组成,分泌大量Notch配体、CXCL12及干细胞因子(SCF),调节HSC增殖和迁移,维持HSC稳态[13],[15]。已有研究证实,小鼠接受allo-HSCT后,骨髓微环境的血管内皮细胞受到破坏,引起SCF分泌减少及CXCL12表达上调,从而抑制ckit活化,导致血管通透性增高及活性氧(ROS)的增加,影响供鼠来源HSC的植入及造血重建[16]。SCF是HSC在骨髓内扩增不可缺少的因子,血窦龛SCF表达缺失的转基因小鼠骨髓中HSC明显减少,骨髓移植后易出现PGF[17]–[18]。CXCL12属于趋化因子蛋白家族,高表达于血管旁基质细胞,低表达于内皮细胞[19],可与HSC上的CXCR4结合促进HSC归巢,维持HSC处于静止状态[20]。AMD3100是一种CXCR4拮抗剂,能阻断CXCL12/CXCR4结合,进而动员HSC进入外周血循环并减少促炎因子释放,促进移植后造血重建[21]。Green等[22]研究发现,28例接受外周血干细胞移植的患者应用AMD3100后能更快地获得中性粒细胞及血小板重建(P=0.004),使TNF-α、TGF-β、IL-3、IFN-γ等炎症因子释放减少,而不增加毒副作用,由此可见血管内皮细胞龛及其分泌的多种因子参与移植后造血功能恢复。此外,为进一步证实骨髓微环境中内皮细胞损伤的修复作用及其对allo-HSCT造血重建的影响,Zeng等[23]在小鼠HSCT的同时联合输注供鼠来源的内皮祖细胞,可有效修复HSCT后受鼠骨髓窦内皮及微血管,减轻骨髓微环境损伤,进而促进其移植后的造血及免疫重建,并且能够明显减轻移植物抗宿主病所致的肠道和皮肤等损伤。
2.骨内膜龛调节造血功能:骨内膜通过细胞-细胞相互作用或释放相关可溶性因子,将HSC黏附在成骨细胞表面,从而调节其自我更新及增殖。成骨细胞产生TPO及Ang-1可通过结合长程造血干细胞(Long term-HSC, LT-HSC)表面受体MPL和Tie2传递信号,使定位于骨内膜的LT-HSC保持静止状态,维持干细胞特性[24]。此外,成骨细胞分泌的黏附分子N-cadherin也参与调节造血功能,Hosokawa等[25]通过shRNA干扰N-cadherin基因的表达发现,N-cadherin能够介导造血干细胞、成骨细胞及其他细胞相互作用,调节造血干/祖细胞的增殖,维持骨髓造血微环境稳态,对骨髓移植后的造血功能恢复起重要作用。成骨细胞分化产生的骨细胞也参与调节造血重建过程,通过选择性缺失Gsα,诱导G-CSF的生成,促进移植后粒系及巨核系的恢复[26]。
3.信号转导通路:Wnt信号通路:Wnt蛋白家族作为一种分泌型信号分子,参与HSC增殖分化及自我更新,影响骨髓移植后造血重建。Wnt蛋白通常与HSC表面的跨膜受体Frizzled和LRP-5/6结合,激活Dsh基因产物,从而招募GSK3β、Axin及Apc,抑制β-catenin的磷酸化,阻止其被泛素介导的降解过程,而后β-catenin可转移到核内,与转录因子LEF/TCF形成复合物激活下游靶基因,促进HSC的增殖与分化[27]。Wnt信号不同程度的活化会影响HSC的功能,当Wnt信号水平轻度高于正常时,HSC的增殖能力增强,移植后重建造血能力随之提高;当GSK3β、Axin或Apc突变引起Wnt信号过度激活时,就会造成HSC凋亡,引起PGF[28]。此外,Wnt蛋白家族特定配体Wnt3a能通过Wnt/β-catenin通路刺激C-kit−细胞增殖及自我更新,促进移植后髓系、淋系及红系重建[29]。
Notch信号通路:Notch通路通过调节细胞——细胞间的相互作用使细胞的分化和自我更新处于平衡状态进而控制HSC的增殖。Notch受体(Notch1-4)高表达于HSC上,而其配体Delta-like1-4、Jagged1、Jagged2高表达于造血微环境中,如骨髓基质细胞、成骨细胞和内皮细胞。当DSL介导Notch配——受体相互作用时,会引起Notch受体发生连续的蛋白水解过程,释放胞内区(NICD),NICD是受体的活化形式,可进入细胞核内,直接与转录因子CSL结合,形成复合体,从而促进靶基因Hes和Herp的转录,发挥调节造血功能的作用[30]。Tian等[31]利用新型Notch激活剂hD1R(包含Delta-like 1的DSL结构域和RGD九肽,前者负责与Notch受体结合,后者能靶向锚定于血管龛窦状内皮细胞表面)激活Notch信号通路,发现其可维持干细胞特性及相关细胞因子的表达,促进HSC增殖及自我更新,挽救放射线损伤及化学药物等应激造成的重度骨髓抑制,并能极大促进移植后髓内外造血重建。其机制可能是Notch信号能特异性识别CSF2RB2(GM-CSF、IL-3、IL-5三种细胞因子受体复合物βc亚单位的低亲和力共受体,本身可作为信号转导的关键分子)启动子序列上的RBP-J结合位点,促进CSF2RB2基因表达,活化下游JAK2/STAT5、Ras/Raf/MAPK、PI3K/Akt信号通路并调控细胞生存、增殖和分化,维持造血功能[32]。
JAK-STAT信号通路:JAK-STAT信号转导通路在造血干/祖细胞的生长、增殖和分化中具有重要意义。TPO可以与HSC上的c-mpl受体结合,激活JAK2,从而活化骨髓微环境中的STAT5,STAT5磷酸化有助于维持HSC的稳态。当患者STAT发生缺陷时,供者HSC分化受阻并失去自我更新及增殖的能力,引起PGF[33]。Sun等[34]研究发现,艾曲波帕作为一种非肽类c-mpl受体激动剂,能够促进小鼠体内外HSC扩增及移植后三系造血恢复,可能与其激活JAK-STAT通路,诱导STAT5磷酸化有关。国外也有个案报道,allo-HSCT后出现PGF的患者在移植后72 d(+72 d)应用艾曲波帕治疗后,分别于+110 d、+130 d、+200 d实现巨核系、红系及粒系重建,应用此药1年未发生不良反应或不耐受,且疗效良好,停药后仍能维持持久应答,但其起效时间、疗程、疗效及安全性尚不明确[35]。
4.氧平衡状态:正常骨髓微环境处于低氧状态,氧浓度为1%~6%,有利于维持HSC的自我更新,防止氧化过激。ROS是细胞有氧呼吸或其他酶促反应的产物,通常以超氧阴离子、过氧化氢和羟自由基三种主要形式存在,其参与细胞周期、细胞动员及造血重建的调控[36]。Kong等[37]研究发现骨髓微环境中ROS水平升高会导致造血干/祖细胞耗竭而引起PGF,可能与其通过p53/p21途径造成CD34+细胞DNA双链断裂、破坏有关;Miao等[38]在骨髓移植实验中证明在供鼠HSC中高表达一些清除活性氧分子的酶(如过氧化物歧化酶或过氧化氢酶),可以抵抗γ射线照射后受体鼠内产生的活性氧的影响,增强植入的造血干细胞重建骨髓造血的功能。此外,骨髓微环境中氧浓度对造血调控也有着不可忽视的作用。移植前预处理会引起细胞大量减少,并能显著降低氧耗,造成骨髓微环境氧浓度短暂升高,使基质细胞维持相对高水平的HIF-1α,从而下调N-cadherin水平,为造血重建提供合适的时间窗,一旦造血重建开始,随着氧耗的增加,骨髓微环境恢复低氧状态,进而达到稳态[39]。因此,骨髓微环境氧平衡状态参与调控造血重建过程,延迟低氧状态的恢复、维持ROS水平稳定可能为移植后造血重建提供潜在靶点。
三、结语
综上所述,allo-HSCT后PGF发生可能与以下机制相关:①异体免疫机制异常:如Th1/Th2、Th17/Treg比例失衡引起细胞因子水平变化及造血干/祖细胞破坏,DSA损伤血管内皮细胞影响造血功能恢复;②骨髓微环境受损:如各种基质细胞及相关因子对HSC的调控、信号转导通路的异常激活、氧化应激等。尽管近年来对PGF发生机制的研究已有部分进展,但仍有许多亟待解决的问题,比如骨髓微环境中各种细胞及分子是如何相互协调、PGF与GVHD的相关性、其他免疫细胞及细胞因子是否参与其中等。目前,PGF尚无标准治疗方案,现有的治疗方法包括造血生长因子、二次供者细胞治疗、间充质干细胞输注等,但其疗效仍需大规模临床研究予以证实。
References
- 1.Sun YQ, He GL, Chang YJ, et al. The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation[J] Ann Hematol. 2015;94(10):1699–1705. doi: 10.1007/s00277-015-2440-x. [DOI] [PubMed] [Google Scholar]
- 2.Chang YJ, Zhao XY, Xu LP, et al. Donor-specific anti-human leukocyte antigen antibodies were associated with primary graft failure after unmanipulated haploidentical blood and marrow transplantation: a prospective study with randomly assigned training and validation sets[J] J Hematol Oncol. 2015;8:84. doi: 10.1186/s13045-015-0182-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Tong C, Cui Z, Sun X, et al. Mannan derivatives instruct dendritic cells to induce Th1/Th2 cells polarization via differential mitogen-activated protein kinase activation[J] Scand J Immunol. 2016;83(1):10–17. doi: 10.1111/sji.12369. [DOI] [PubMed] [Google Scholar]
- 4.Yoshida N, Kinugasa T, Miyoshi H, et al. A high RORγT/CD3 ratio is a strong prognostic factor for postoperative survival in advanced colorectal cancer: analysis of helper T cell lymphocytes (Th1, Th2, Th17 and regulatory T cells)[J] Ann Surg Oncol. 2016;23(3):919–927. doi: 10.1245/s10434-015-4923-3. [DOI] [PubMed] [Google Scholar]
- 5.Wang YT, Kong Y, Song Y, et al. Increased type 1 immune response in the bone marrow immune microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2016;22(8):1376–1382. doi: 10.1016/j.bbmt.2016.04.016. [DOI] [PubMed] [Google Scholar]
- 6.Kong Y, Wang YT, Cao XN, et al. Aberrant T cell responses in the bone marrow microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation[J] J Transl Med. 2017;15(1):57. doi: 10.1186/s12967-017-1159-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Pierini A, Alvarez M, Negrin RS. NK cell and CD4+FoxP3+ regulatory T cell based therapies for hematopoietic stem cell engraftment[J] Stem Cells Int. 2016;2016:9025835. doi: 10.1155/2016/9025835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Sun K, Alvarez M, Ames E, et al. Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing[J] Blood. 2012;119(6):1590–1598. doi: 10.1182/blood-2011-08-374314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Alvarez M, Sun K, Murphy WJ. Mouse host unlicensed NK cells promote donor allogeneic bone marrow engraftment[J] Blood. 2016;127(9):1202–1205. doi: 10.1182/blood-2015-08-665570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Ciurea SO, Cao K, Fernadez-Vina M, et al. The European Society for Blood and Marrow Transplantation (EBMT) consensus guidelines for the detection and treatment of donor-specific anti-HLA antibodies (DSA) in haploidentical hematopoietic cell transplantation[J] Bone Marrow Transplant. 2018;53(5):521–534. doi: 10.1038/s41409-017-0062-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Yoshihara S, Maruya E, Taniguchi K, et al. Risk and prevention of graft failure in patients with preexisting donor-specific HLA antibodies undergoing unmanipulated haploidentical SCT[J] Bone Marrow Transplant. 2012;47(4):508–515. doi: 10.1038/bmt.2011.131. [DOI] [PubMed] [Google Scholar]
- 12.Jin YP, Fishbein MC, Said JW, et al. Anti-HLA class I antibody-mediated activation of the PI3K/Akt signaling pathway and induction of Bcl-2 and Bcl-xL expression in endothelial cells[J] Hum Immunol. 2004;65(4):291–302. doi: 10.1016/j.humimm.2004.01.002. [DOI] [PubMed] [Google Scholar]
- 13.Asada N, Takeishi S, Frenette PS. Complexity of bone marrow hematopoietic stem cell niche[J] Int J Hematol. 2017;106(1):45–54. doi: 10.1007/s12185-017-2262-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Kong Y, Chang YJ, Wang YZ, et al. Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2013;19(10):1465–1473. doi: 10.1016/j.bbmt.2013.07.014. [DOI] [PubMed] [Google Scholar]
- 15.Blaser BW, Moore JL, Hagedorn EJ, et al. CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment[J] J Exp Med. 2017;214(4):1011–1027. doi: 10.1084/jem.20161616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Itkin T, Ludin A, Gradus B, et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation[J] Blood. 2012;120(9):1843–1855. doi: 10.1182/blood-2011-11-394692. [DOI] [PubMed] [Google Scholar]
- 17.Zhou BO, Yu H, Yue R, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF[J] Nat Cell Biol. 2017;19(8):891–903. doi: 10.1038/ncb3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Ding L, Saunders TL, Enikolopov G, et al. Endothelial and perivascular cells maintain haematopoietic stem cells[J] Nature. 2012;481(7382):457–462. doi: 10.1038/nature10783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches[J] Nat Rev Immunol. 2017;17(9):573–590. doi: 10.1038/nri.2017.53. [DOI] [PubMed] [Google Scholar]
- 20.Golan K, Kollet O, Lapidot T. Dynamic cross talk between S1P and CXCL12 regulates hematopoietic stem cells migration, development and bone remodeling[J] Pharmaceuticals (Basel) 2013;6(9):1145–1169. doi: 10.3390/ph6091145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Hoggatt J, Singh P, Tate TA, et al. Rapid mobilization reveals a highly engraftable hematopoietic stem cell[J] Cell. 2018;172(1–2):191–204. doi: 10.1016/j.cell.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Green MM, Chao N, Chhabra S, et al. Plerixafor (a CXCR4 antagonist) following myeloablative allogeneic hematopoietic stem cell transplantation enhances hematopoietic recovery[J] J Hematol Oncol. 2016;9(1):71. doi: 10.1186/s13045-016-0301-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Zeng L, Chen C, Song G, et al. Infusion of endothelial progenitor cells accelerates hematopoietic and immune reconstitution, and ameliorates the graft-versus-host disease after hematopoietic stem cell transplantation[J] Cell Biochem Biophys. 2012;64(3):213–222. doi: 10.1007/s12013-012-9387-5. [DOI] [PubMed] [Google Scholar]
- 24.Galan-Diez M, Kousteni S. The osteoblastic niche in hematopoiesis and hematological myeloid malignancies[J] Curr Mol Biol Rep. 2017;3(2):53–62. doi: 10.1007/s40610-017-0055-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Hosokawa K, Arai F, Yoshihara H, et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells[J] Blood. 2010;116(4):554–563. doi: 10.1182/blood-2009-05-224857. [DOI] [PubMed] [Google Scholar]
- 26.Fulzele K, Krause DS, Panaroni C, et al. Myelopoiesis is regulated by osteocytes through Gsalpha-dependent signaling[J] Blood. 2013;121(6):930–939. doi: 10.1182/blood-2012-06-437160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Undi RB, Gutti U, Sahu I, et al. Wnt Signaling: Role in Regulation of Haematopoiesis[J] Indian J Hematol Blood Transfus. 2016;32(2):123–134. doi: 10.1007/s12288-015-0585-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Famili F, Brugman MH, Taskesen E, et al. High levels of canonical wnt signaling lead to loss of stemness and increased differentiation in hematopoietic stem cells[J] Stem Cell Reports. 2016;6(5):652–659. doi: 10.1016/j.stemcr.2016.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Trowbridge JJ, Guezguez B, Moon RT, et al. Wnt3a activates dormant c-Kit− bone marrow-derived cells with short-term multilineage hematopoietic reconstitution capacity[J] Stem Cells. 2010;28(8):1379–1389. doi: 10.1002/stem.457. [DOI] [PubMed] [Google Scholar]
- 30.Lampreia FP, Carmelo JG, Anjos-Afonso F. Notch signaling in the regulation of hematopoietic stem cell[J] Curr Stem Cell Rep. 2017;3(3):202–209. doi: 10.1007/s40778-017-0090-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Tian DM, Liang YM, Zhang YQ. Endothelium-targeted human Delta-like 1 enhances the regeneration and homing of human cord blood stem and progenitor cells[J] J Transl Med. 2016;14:5. doi: 10.1186/s12967-015-0761-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Chen JJ, Gao XT, Yang L, et al. Disruption of Notch signaling aggravates irradiation-induced bone marrow injury, which is ameliorated by a soluble Dll1 ligand through Csf2rb2 upregulation[J] Sci Rep. 2016;6:26003. doi: 10.1038/srep26003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Wang Z, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation[J] JAKSTAT. 2013;2(4):e27159. doi: 10.4161/jkst.27159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Sun H, Tsai Y, Nowak I, et al. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis[J] Stem Cell Res. 2012;9(2):77–86. doi: 10.1016/j.scr.2012.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Master S, Dwary A, Mansour R, et al. Use of eltrombopag in improving poor graft function after allogeneic hematopoietic stem cell transplantation[J] Case Rep Oncol. 2018;11(1):191–195. doi: 10.1159/000487229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Chatterjee R, Law S. Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia[J] Eur J Cell Biol. 2018;97(1):32–43. doi: 10.1016/j.ejcb.2017.11.003. [DOI] [PubMed] [Google Scholar]
- 37.Kong Y, Song Y, Hu Y, et al. Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants[J] Oncotarget. 2016;7(21):30892–30906. doi: 10.18632/oncotarget.8810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Miao W, Xufeng R, Park MR, et al. Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice[J] Mol Ther. 2013;21(2):423–432. doi: 10.1038/mt.2012.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Moirangthem RD, Singh S, Adsul A, et al. Hypoxic niche-mediated regeneration of hematopoiesis in the engraftment window is dominantly affected by oxygen tension in the milieu[J] Stem Cells Dev. 2015;24(20):2423–2436. doi: 10.1089/scd.2015.0112. [DOI] [PMC free article] [PubMed] [Google Scholar]
