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Abstract
Autism spectrum disorders (ASDs) are increasingly prevalent neurodevelopmental disorders characterized by
sociocommunicative impairments. Growing consensus indicates that neurobehavioral abnormalities require explanation in
terms of interconnected networks. Despite theoretical speculations about increased local and reduced distal connectivity,
links between local and distal functional connectivity have not been systematically investigated in ASDs. Specifically, it
remains open whether hypothesized local overconnectivity may reflect isolated versus overly integrative processing.
Resting state functional MRI data from 57 children and adolescents with ASDs and 51 typically developing (TD) participants
were included. In regional homogeneity (ReHo) analyses, pericalcarine visual cortex was found be locally overconnected
(ASD > TD). Using this region as seed in whole-brain analyses, we observed overconnectivity in distal regions, specifically
middle frontal gyri, for an ASD subgroup identified through k-means clustering. While in this subgroup local occipital to
distal frontal overconnectivity was associated with greater symptom severity, a second subgroup showed the opposite
pattern of connectivity and symptom severity correlations. Our findings suggest that increased local connectivity in ASDs is
region-specific and may be partially associated with more integrative long-distance connectivity. Results also highlight the
need to test for subtypes, as differential patterns of brain–behavior links were observed in two distinct subgroups of our ASD cohort.
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Introduction
Autism spectrum disorders (ASDs) are an increasingly prevalent
set of neurodevelopmental disorders (CDC 2015), characterized by
sociocommunicative impairments and repetitive behaviors
(American Psychiatric Association 2013). A neurobiological basis of
ASDs has been recognized for many decades (Damasio and
Maurer 1978), but anatomical and functional brain findings have
been highly diverse. Due to the complexity of the disorder and

heterogeneity in symptoms, attempts to explain autism with
respect to strictly localized brain anomalies have not been success-
ful. Instead, there has been a growing consensus that behavioral
and brain abnormalities can only be explained at the level of inter-
connected networks (Menon 2011; Vissers et al. 2012).

Efficient functioning of specialized sensorimotor and cogni-
tive networks relies on two complementary organizing princi-
ples: functional segregation (or differentiation), emphasizing
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the degree to which different regions or networks are special-
ized, and functional integration, referring to the communica-
tion between regions within a specialized network (Johnson
2011; Sporns 2013; Maximo et al. 2014). Functional differentia-
tion at the local level, and the balance between segregation and
integration support the emergence of efficient and specialized
networks in neurotypical development (Johnson 2011).

One method for mapping large-scale functional networks
that span distributed areas is functional connectivity MRI
(fcMRI), which detects interregional temporal correlations of
the blood oxygen level-dependent (BOLD) signal (Van Dijk et al.
2010; Buckner et al. 2013). In a task-free condition, spontaneous
low-frequency time series fluctuations are thought to reflect
synchronized neuronal activity (Birn 2007), interpreted as
intrinsic functional connectivity (iFC). A growing number of
studies has examined iFC using resting state (rs) fMRI. While
there have been numerous reports of atypical distal connectiv-
ity in ASDs (Vissers et al. 2012), findings are mixed regarding
over- versus underconnectivity (e.g., Supekar et al. 2013;
Di Martino et al. 2014; Nair et al. 2014; Abbott et al. 2016).

Comparatively few studies have examined local connectiv-
ity in ASDs (Paakki et al. 2010; Shukla et al. 2010; Keown et al.
2013; Maximo et al. 2013; Itahashi et al. 2015; Jiang et al. 2015;
Dajani and Uddin 2016), and results have been as divergent as
for studies of distal connectivity. For example, whereas
Di Martino et al. (2014) observed local overconnectivity in ASDs
in right prefrontal cortex in a large multisite sample, such
effects were detected in posterior visual cortices in smaller
samples (Maximo et al. 2013), including subsets of the same
multisite sample (Nair et al. 2017). Such atypically increased
local synchrony of the BOLD signal may be an indicator of
reduced differentiation (Shih et al. 2011; Nebel et al. 2014).

While the ASDs literature has generated numerous findings of
atypical iFC – many for distal and some for local connectivity –

the links between the two remain poorly understood. Although a
hypothesis of local overconnectivity associated with long-range
underconnectivity in ASDs proposed by Belmonte et al. (2004) has
been frequently reiterated via cross-citation (e.g., Minshew and
Williams 2007; Williams and Casanova 2010; Wass 2011; Vissers
et al. 2012; Maximo et al. 2014), there has been surprisingly little

systematic research on the links between local and distal connec-
tivity in ASDs. One related study by Shih et al. (2011) found that
reduced differentiation within posterior superior temporal sulcus
(equivalent to greater synchrony of BOLD fluctuations across
adjacent subregions) was associated with diffuse distal overcon-
nectivity in children and adolescents with ASDs, which is incon-
sistent with the “Belmonte hypothesis.”

In the present study, we investigated links between local
and distal iFC in ASDs. The regional homogeneity (ReHo)
approach (Zang et al. 2004) was used to examine whether atypi-
cally increased (or reduced) local connectivity is related to iso-
lated processing (associated with distal underconnectivity) or,
conversely, overly integrative processing (associated with distal
overconnectivity). Additionally, we investigated whether links
between local and distal iFC are associated with symptomatol-
ogy in autism.

Materials and Methods
Participants

The current study included 57 high-functioning children and
adolescents with ASDs and 51 typically developing (TD) control
participants between 8 and 18 years of age. Diagnoses in the
ASD group were established using the Autism Diagnostic
Interview-Revised (ADI-R; Lord et al. 1994), the Autism
Diagnostic Observation Schedule (ADOS; Lord et al. 2000), and
expert clinical decision according to DSM-5 (American Psychiatric
Association 2013). Three ASD participants fulfilled criteria (one for
autistic disorder, two for Asperger’s Syndrome) on the DSM-IV
(American Psychiatric Association 2000), but not the DSM-5, due to
the higher threshold for the repetitive and restrictive diagnostic
criteria on the DSM-5. Children with autism-related medical condi-
tions (e.g., Fragile-X syndrome, tuberous sclerosis) or other neuro-
logical conditions (e.g., epilepsy, Tourette’s Syndrome) were
excluded. TD participants had no reported history of ASDs or any
other neurological or psychiatric condition. Groups were matched
on gender, handedness, age, IQ, and in-scanner head motion
(Table 1). All participants scored above the cutoff for intellectual
disability (IQ > 70) on the Wechsler Abbreviated Scale of
Intelligence–2nd ed. (WASI-2; Wechsler 1999). Hand preference

Table 1 Demographic and diagnostic information

TD (n = 51) ASD (n = 57) Group comparison

Mean (SD) Range Mean (SD) Range

Gender 9 female 10 female χ2 (1) < .001, P = 0.99
Handedness 8 left 9 left χ2 (1) < .001, P = 0.99
Age in years 13.2 (2.7) 8.0–17.6 13.8 (2.6) 9.0–18.0 t (106) = 1.1, P = 0.29
Verbal IQ 106.9 (9.9) 78–127 102.0 (17.3) 70–147 t (106) = −1.8, P = 0.08
Non-verbal IQ 105.1 (12.7) 62–129 106.6 (18.7) 53–145 t (106) = 0.5, P = 0.63
Full-Scale IQ 106.4 (10.7) 79–126 104.4 (17.2) 66–141 t (106) = −0.7, P = 0.46
RMSD 0.06 (0.03) 0.02–0.14 0.06 (0.03) 0.02–0.11 t (106) = −0.1, P = 0.93
ADOSa

Social interaction – – 7.6 (2.7) 2–14 –

Communication – – 3.9 (2.1) 0–13 –

Repetitive/Restricted – – 2.2 (1.5) 0–5 –

ADI-Rb

Social interaction – – 18.3 (5.0) 6–28 –

Communication – – 13.5 (5.0) 2–24 –

Repetitive behavior – – 6.1 (2.2) 1–12 –

aSubdomain data not available for 3 ASD participants.
bSubdomain data not available for 1 ASD participant.
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was assessed using the Edinburgh Handedness Inventory (Oldfield
1971). The Institutional Review Boards of San Diego State
University and University of California San Diego approved the
experimental protocol, and informed consent and written assent
were obtained for all participants.

Data Acquisition and Image Preprocessing

Resting-state imaging data were acquired on a GE 3T MR750
scanner with an 8-channel head coil at the University of
California San Diego Center for Functional MRI. High-resolution
structural images were acquired with a standard FSPGR T1-
weighted sequence (TR: 8.136ms; TE: 3.172ms; flip angle: 8°;
field of view [FOV]: 25.6 cm; matrix: 256 × 256; 172 slices; resolu-
tion: 1mm3). Resting-state functional T2*-weighted images
were obtained using a single-shot gradient-recalled, echo-
planar pulse sequence. One 6:10min scan was acquired con-
sisting of 185 whole-brain volumes (TR: 2000ms; TE: 30ms;
slice thickness: 3.4mm; flip angle: 90°; FOV: 22.0 cm; matrix:
64 × 64; in-plane resolution: 3.44mm2). The first five time
points were discarded to allow for equilibration effects, leaving
180 time points for analysis. Participants were instructed:
“Keep your eyes on the cross-hair, relax, let your mind wander,
and try not to fall asleep.” Eye status was monitored through-
out the scan with an in-bore video camera to ensure that parti-
cipants’ eyes were open. Additionally, eye status (e.g., fixated,
exploring, closed) was coded frame-by-frame in a subset of par-
ticipants. Post-hoc analyses of the percentage of scan time for
each eye status showed that both groups followed instructions
similarly and predominantly fixated on the cross hair (ASD
mean: 92.5%; TD mean: 83.4%), and two-sample t-tests showed
no significant between-group differences (eyes fixated: t(19) =
0.98, P = 0.34; eyes exploring: t(19) = −1.51, P = 0.15; eyes closed:
t(19) = −0.73, P = 0.47).

Functional images were processed using Analysis of
Functional NeuroImages (AFNI; Cox 1996) and FMRI software
library (FSL; Smith et al. 2004). Functional images were slice-
time corrected to compensate for temporal offset between slice
acquisitions, and motion corrected to align all acquired volumes.
Images were field-map corrected to minimize effects of mag-
netic field inhomogeneity. Functional images were registered to
the anatomical images via FSL’s FLIRT (Jenkinson and Smith
2001), and structural images were normalized to the atlas space
of the MNI152 template using FSL’s nonlinear registration tool
(FNIRT). The resulting transformation matrix was then used to
spatially normalize the functional images, with both images
resampled to 3mm isotropic voxels. To isolate spontaneous
low-frequency BOLD fluctuations (Cordes et al. 2001), fMRI time
series were bandpass filtered (0.008 < f < 0.08Hz), using a
second-order Butterworth filter, which was also applied to all
nuisance regressors described below. Differences in smoothness
between individual datasets (resulting from motion correction
and spatial normalization, for example) directly impact time
series correlations between neighboring voxels and could con-
found local connectivity comparisons. We therefore set effective
smoothness of all datasets to a Gaussian FWHM of 6mm.
Participant-level masks for cerebral white matter and lateral
ventricles were created using FSL’s FAST automated segmenta-
tion (Zhang et al. 2001), and an average time series for each was
extracted. Time courses for white matter, ventricles, and 6 rigid-
body motion parameters (from motion correction), each with
their first derivatives, were used as nuisance regressors.

Given evidence suggesting that global signal regression
(GSR) has the potential to distort between-group effects (Gotts

et al. 2013; Abbott et al. 2016) and may impact ReHo (Qing et al.
2015), we performed primary analyses without regressing the
global signal (i.e., the time series of the averaged whole brain
signal), which likely reflects a combination of “true” (neuronal-
activity based) signal fluctuations and noise (Fox et al. 2009;
Schölvinck et al. 2010; Keller et al. 2013). Nevertheless, as GSR is
a powerful noise-reduction tool in resting state fcMRI (Power
et al. 2014), analyses were also performed with GSR using the 6
motion parameters, white matter, ventricles, global signal, and
their first derivatives as regressors (Power et al. 2015). Results
are described below and presented in the Supplementary
Materials.

Head Motion

Due to the known impact of head motion on BOLD correlations
(Power et al. 2012; van Dijk et al. 2012), several quality control
measures were taken during data preprocessing and analysis
to minimize head motion effects. Six rigid-body motion regres-
sors and their derivatives were estimated, modeled, and used
to censor time points with excessive head motion. Time points
with head motion >0.5mm, together with the two following
time points, were censored. All participants included in the cur-
rent study retained at least 80% of time points. Additionally, no
participants with movements >0.1mm over more than 5 conse-
cutive time points were included. There were no group differ-
ences in the root mean squared displacement (RMSD; i.e., the
root mean squared values of the detrended realignment;
Table 1), suggesting that any detected connectivity differences
were unlikely related to differences in motion.

Local Functional Connectivity Measure: Regional
Homogeneity

Regional homogeneity (ReHo) uses Kendall’s coefficient of con-
cordance (KCC; Kendall and Gibbsons 1990), which relies on
rank correlations to assess the homogeneity of a voxel and its
neighboring voxels. KCC within a given cluster of voxels is
equal to the parameter W (ranging from 0 to 1),
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∑( ) − ( ¯ )

( − )
W

R n R

K n n
i

2 2

1
12

2 3

where Ri is the sum rank of the ith time point; R̄ is the mean of
the Ris; K is the number of time series within a selected cluster
and n is the number of ranks, as determined by the number of
time points (Zang et al. 2004).

Maximo et al. (2013) examined the effect of varying cluster
sizes of 7, 19, and 27 voxels on ReHo, and found more modest
between-group effects at finer spatial scales. For the present
study, ReHo was therefore computed for a cluster size of 27
voxels and a gray-matter mask was used to reduce partial-
volume effects. Individual-level ReHo maps were obtained and
standardized into KCC (W) z’-values by subtracting the mean
voxel-wise KCC (W) obtained for the entire whole-brain mask
and then dividing by the standard deviation. The standardiza-
tion of KCC (W) into z’-maps distributes whole-brain ReHo
maps around zero and may aid in interpreting regionally spe-
cific differences in local connectivity. Group differences were
then examined with two-sample t-tests. Randomization and
permutation tests were implemented via the updated, bug-
fixed 3dClustSim program called by the 3dttest++ function in
AFNI to correct for multiple comparisons in order to obtain a
corrected significance level of P < 0.05, with an uncorrected
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significance level of P < 0.005 and a minimum cluster volume
of 45 voxels (Eklund et al. 2016; Cox et al. 2017).

Whole-Brain fcMRI Analysis

Clusters of significant between-group ReHo effects were used
as seeds for whole-brain fcMRI analyses. An average BOLD time
series extracted from ReHo seeds in each participant was
Pearson correlated with the time courses of every other brain
voxel. Correlation coefficients were Fisher transformed to nor-
mally distributed z’-scores. Two-sample t-tests were conducted
to examine between-group iFC effects, and a gray matter mask
was applied to constrain results to gray matter. Statistical
maps were set to an uncorrected threshold of P < 0.01; this
rather liberal threshold was used to explore distal connectivity
patterns.

Post-hoc Selection of Regions-of-Interest

Two additional regions-of-interests (ROIs) that were maximally
distal to the ReHo seed were selected from the Harvard Oxford
atlas (Desikan et al. 2006). The left frontal pole (1792 voxels)
and right frontal pole (2110 voxels) were gray matter masked
and included in subsequent ReHo seed to ROI fcMRI analyses
(Fig. 1A).

Additionally, k-means clustering (10 000 iterations; tested
values from k = 1 to k = 6) was performed on iFC patterns
between the ReHo seed and frontal pole ROIs within the ASD
group. The optimal number of clusters was determined by the
silhouette criterion, using a squared Euclidean distance func-
tion. This clustering was implemented to examine ASD sub-
groupings on local and distal connectivity effects.

Correlational Analyses

Local (ReHo) and distal (ReHo seed to frontal pole) iFC (z’) data
were entered into correlational analyses with subdomains of
the ADOS (Lord et al. 2000) and ADI-R (Lord et al. 1994) to exam-
ine the links between neural patterns and autism symptom-
atology overall. Age and head motion (RMSD) were included as
covariates in these analyses.

Results
Local Connectivity (ReHo)

Direct group comparisons of ReHo patterns (with standardiza-
tion, but without GSR) showed a single cluster of increased
local connectivity in the ASD compared with the TD group with
peak in primary visual cortex (V1; Fig. 1B, Table 2). This locally
overconnected ReHo cluster (ASD > TD) was used as a seed in
whole-brain functional connectivity analyses.

Whole-Brain Distal Connectivity

Results of the whole-brain iFC analysis for the locally overcon-
nected V1 ReHo seed showed two overconnected clusters (ASD >
TD) in distal frontal regions, specifically, middle frontal gyri
(MFG; Fig. 1C, Table 2). While these findings did not survive strin-
gent cluster correction, effect sizes were medium to large (left
MFG cluster Cohen’s d = .71; right MFG d = .66). In addition, two
ROIs from the Harvard Oxford atlas that were maximally distal
to the seed – left and right frontal pole (FP; Fig. 1A) – were
selected. For these ROIs, BOLD correlations with the V1 seed

were predominantly higher in the ASD than the TD group with a
2.9:1 ratio (left FP) and a 3.2:1 ratio (right FP) of voxel-wise over-
versus underconnectivity (see Supplementary Fig. S1). ReHo (z’)
within the local overconnectivity cluster was not correlated with
distal connectivity in the frontal ROIs in either group.

ASD Subgroupings

K-means clustering revealed two subsets of participants with
ASD (optimal silhouette value = 0.49 for k = 2; Supplementary
Fig. S2). Despite distinct connectivity profiles (Fig. 2A), the two
subgroups showed overall little difference on demographic and
diagnostic measures (Table 3).

For local connectivity (ReHo) within the V1 cluster, the ASD1
subgroup showed high KCC (W) values, significantly above
those from the TD group and marginally above those from the
ASD2 subgroup (Fig. 2B, Table 4). A 2 (distal region pairs: V1 –

left MFG, V1 – right MFG) × 3 (group: ASD1, ASD2, TD) repeated
measures Analysis of Variance (ANOVA) indicated a main effect
of group (F(2,105) = 15.85, P < 0.001). Post-hoc two-sample t-
tests at the group-level showed higher V1 distal connectivity
(z’) in the ASD1 subgroup compared with both the ASD2 sub-
group and TD group, but no significant differences between the
ASD2 subgroup and TD group (Fig. 2C, Table 4). A 3 (ROI pairs:
V1 – left FP, V1 – right FP, left FP – right FP) × 3 (group: ASD1,
ASD2, TD) repeated measures ANOVA further showed main
effects of group (F(2,105) = 29.81, P < 0.001) and ROI pairing (F
(1.48,155.57) = 330.64, P < 0.001, MSe = 17.19), with a marginal
group by ROI pair interaction effect (F(2.96,155.57) = 2.28, P =
0.082, MSe = 0.12). Mauchly’s test indicated that the assumption
of sphericity of the main and interaction effects for ROI pairing
had been violated (χ2(2) = 44.79, P < 0001); therefore, degrees of
freedom were corrected using the Greenhouse-Geisser esti-
mates of sphericity (ε = 0.74). Post-hoc t-tests for this analysis
similarly indicated that functional connectivity (z’) was highest
in the ASD1 subgroup overall (Fig. 2D, Table 4). More specifi-
cally, connectivity between V1 and FP was increased in the
ASD1 subgroup compared with the TD group, whereas it was
atypically reduced in ASD2.

Correlations with Autism Symptomatology

In view of the distinct iFC patterns, correlational analyses were
performed separately in the two ASD subgroups. In ASD1, we
detected strong, positive correlations between distal connectivity,
particularly for V1 and right FP, and two subdomains of the ADOS
(Communication: R2(28) = 0.20, P = 0.013; Repetitive and
Restricted Behaviors: R2(28) = 0.23, P = 0.008; Fig. 3A), indicating
that increased iFC was associated with greater symptom severity.

Conversely, in the ASD2 subgroup, iFC between V1 and right
FP was negatively correlated with multiple subdomains of the
ADI-R (Communication: R2(20) = 0.27, P = 0.012; Repetitive and
Restricted Behaviors: R2(20) = 0.35, P = 0.004; Fig. 3B). As func-
tional connectivity in the ASD2 subgroup – which showed sig-
nificantly weaker distal connectivity compared with the TD
group – increased, autism symptom severity decreased.
Symptomatology and KCC (W) values in V1 were not signifi-
cantly correlated in either ASD subgroup.

Post-hoc Analyses with GSR

Results from ReHo analyses using GSR indicated a similar clus-
ter of local overconnectivity in visual cortex, although this
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between-group effect (ASD > TD), as well as the extent of the
cluster, was reduced compared to ReHo analyses without GSR
(Supplementary Fig. S3). Similar to previous findings (Qing et al.
2015), however, raw KCC (W) values were decreased with GSR
in this region (Supplementary Fig. S4). Also in accordance with

previous reports (Qing et al., 2015), spatial distributions of ReHo
with and without GSR were largely similar (Supplementary
Fig. S5–6). Importantly, the overall effects of distal connectivity
still remained (i.e., overconnectivity between visual cortex and
middle frontal gyrus; Supplementary Fig. S7).

Figure 1. Regions-of-Interest (ROIs) and statistical parametric maps. (A) Left and right frontal pole (FP) ROIs from the Harvard-Oxford atlas. (B) Map of between-group

differences (ASD > TD) in Regional Homogeneity (ReHo; P < 0.05, corrected). (C). Distal connectivity effects for V1 seed in left and right middle frontal gyri (MFG; P <

0.01, uncorrected). Data presented in radiological view; R = right.

Table 2 Clusters of between-group differences (ReHo: P < 0.05, corrected; ReHo seed to whole-brain: P < 0.01, uncorrected)

Cluster Subregions % of cluster vol. Peak z Vol. (voxels) MNI peak coordinates

x y z

V1 (ReHo) R calcarine gyrus 40.5 3.60 76 9 −72 16
L calcarine gyrus 34.8
R lingual gyrus 22.4

L MFG L middle frontal gyrus 83.7 2.98 17 −37 55 4
L middle orbital gyrus 4.5

R MFG R middle frontal gyrus 78.5 2.98 10 39 61 4
R middle orbital gyrus 21.5
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Discussion

While atypical iFC is often reported in ASDs, specific patterns of
local and distal over- versus underconnectivity findings have
been diverse and often inconsistent. In the current study,
regional homogeneity (ReHo) was used to examine the links
between local and distal connectivity in children and adoles-
cents with ASDs compared with TD peers. We found local over-
connectivity in ASDs in an occipital cluster with peak in primary
visual cortex. For this posterior region, BOLD correlations with
prefrontal regions were predominantly stronger in the ASD than
in the TD group. However, two subgroups within our ASD cohort
showed different connectivity patterns and behavioral correlations.

One of them (ASD1) showed a robust pattern of occipital local over-
connectivity and distal frontal overconnectivity, which was associ-
ated with autism symptom severity.

General Local Overconnectivity and Distal
Underconnectivity? Doubly Wrong

According to the Belmonte hypothesis, atypically increased
local connectivity is associated with reduced distal connectivity
in autism (Belmonte et al. 2004). Early deviations in synaptic
development may impact local cellular organization, as well as
global, large-scale network structure (Uddin et al. 2010), and
atypically increased synaptic connectivity on a local level may

Figure 2. (A) Two ASD subgroups based on k-means clustering on functional connectivity (z’) data: ASD1 (centroid: [0.281, 0.346, 0.838]) and ASD2 (centroid: [−0.080,
−0.029, 00.663]), where centroid coordinates represent functional connectivity (z’) between V1 and left FP, V1 and right FP, and left FP and right FP. (B–D) Group com-

parisons between the two ASD subgroups and TD group: (B) KCC (W) in the V1 seed from ReHo analyses; (C) Distal functional connectivity (z’) between V1 and left and

right middle frontal gyri (MFG); (D) Distal functional connectivity (z’) between V1 and left and right FP, and interhemispheric functional connectivity (z’) between left

and right FP. See Table 4 for symbol denotations.
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be paradoxically associated with reduced “computationally
meaningful” connectivity between distal regions (Belmonte
et al. 2004). While we did indeed observe local overconnectivity
in our cohort of children and adolescents with ASDs, this effect

was regionally specific and detected only in an occipital region
(with peak in primary visual cortex). There was no evidence of
generalized local overconnectivity (cf. Supplementary Fig. S5-6),
in agreement with previous findings of regionally mixed

Table 3 Demographic and diagnostic information for ASD subgroups

ASD1 (n = 32) ASD2 (n = 25) Group comparison

Mean (SD) Range Mean (SD) Range

Gender 6 female 4 female χ2(1) = 0.1, P = 0.79
Handedness 7 left 2 left χ2(1) = 2.0, P = 0.15
Age (years) 14.0 (2.4) 10.4–18.0 13.4 (2.9) 9.0–17.8 t(55) = 0.9, P = 0.38
Verbal IQ 102.3 (18.1) 73–147 101.7 (16.7) 70–131 t(55) = 0.1, P = 0.90
Non-verbal IQ 104.4 (19.6) 53–140 109.5 (17.6) 70–145 t(55) = −1.0, P = 0.32
Full-Scale IQ 103.6 (17.7) 66–141 105.4 (16.8) 73–139 t(55) = −0.4, P = 0.70
RMSD 0.07 (0.03) 0.02–0.11 0.06 (0.02) 0.03–0.11 t(55) = 1.3, P = 0.20
ADOSa

Social interaction 7.2 (2.4) 2–12 8.2 (3.1) 3–14 t(52) = −1.4, P = 0.18
Communication 3.8 (2.3) 0–13 4.1 (1.9) 2–8 t(52) = −0.6, P = 0.55
Repetitive/Restricted 2.2 (1.4) 0–5 2.1 (1.6) 0–5 t(52) = 0.2, P = 0.84

ADI-Rb

Social interaction 17.7 (4.7) 7–28 19.2 (5.4) 6–28 t(54) = −1.1, P = 0.28
Communication 12.1 (4.4) 2–22 15.3 (5.2) 6–24 t(54) = −2.4, P = 0.02*
Repetitive behavior 6.3 (2.0) 2–12 5.7 (2.4) 1–11 t(54) = 1.1, P = 0.26

Psychotropic medication use 15 reported 12 reported χ2(1) = 0.01, P = 0.93
Comorbidities (ADHD, depression, anxiety) 10 reported 9 reported χ2(1) = 0.14, P = 0.71
Speech Onset Delayc

Age of first words 18.4 (8.5) 9–36 28.6 (13.2) 10–50 t(39) = 0.37, P = 0.71
Age of first phrases 19.5 (9.7) 10–36 34.4 (12.0) 14–48 t(39) = 1.41, P = 0.17

aSubdomain data not available for 3 ASD2 participants.
bSubdomain data not available for 1 ASD2 participant.

*Indicates an uncorrected significance level of P < 0.05.
cData in months obtained from ADI-R not available for 7 ASD1 participants and 9 ASD2 participants.

Table 4 Post-hoc statistical comparisons between groups

t-Statistic P-value Signif. symbol

V1 KCC (W)
ASD1 > ASD2 t(55) = 1.85 P = 0.070 +
ASD1 > TD t(81) = 5.48 P < 0.001 ***
ASD2 > TD t(74) = 2.88 P = 0.005 **

V1 – Left middle frontal gyrus fc (z’)
ASD1 > ASD2 t(55) = 2.74 P = 0.008 **
ASD1 > TD t(81) = 4.66 P < 0.001 ***
ASD2 > TD t(74) = 1.30 P = 0.198 n.s.

V1 – Right middle frontal gyrus fc (z’)
ASD1 > ASD2 t(55) = 3.51 P = 0.001 ***
ASD1 > TD t(81) = 5.17 P < 0.001 ***
ASD2 > TD t(74) = 0.60 P = 0.549 n.s.

V1 – Left frontal pole fc (z’)
ASD1 > ASD2 t(55) = 7.13 P < 0.001 ***
ASD1 > TD t(81) = 5.14 P < 0.001 ***
ASD2 < TD t(74) = 3.32 P = 0.001 ***

V1 – Right frontal pole fc (z’)
ASD1 > ASD2 t(55) = 8.66 P < 0.001 ***
ASD1 > TD t(81) = 5.02 P < 0.001 ***
ASD2 < TD t(74) = 3.42 P = 0.001 ***

Left frontal pole – Right frontal pole fc (z’)
ASD1 > ASD2 t(55) = 2.58 P = 0.013 *
ASD1 > TD t(81) = 1.90 P = 0.061 +
ASD2 < TD t(74) = 0.75 P = 0.456 n.s.
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patterns of local over- and underconnectivity in ASDs (Keown
et al. 2013; Dajani and Uddin 2016; Nair et al. 2017), including
findings generated without ReHo standardization (Maximo
et al. 2013). Moreover, the locally overconnected occipital region
predominantly showed distal frontal overconnectivity. In combi-
nation, these findings suggest that the theory of generalized
local overconnectivity and long distance underconnectivity as a
principle of atypical network organization in ASDs may be dou-
bly wrong (cf. Picci et al. 2016).

Links Between “Early” Visual and Supramodal
Prefrontal Cortex

Findings of robust local overconnectivity in primary visual cor-
tex may relate to the special status of visual functioning in the
neuropsychological profile of ASDs (Dakin and Frith 2005;
Simmons et al. 2009). Evidence suggests that some perceptual
abilities, especially in the visual modality, remain relatively
spared in autism, with some potential islands of superior func-
tioning (O’Riordan et al. 2001; Mottron et al. 2006; Eussen et al.
2016; Horlin et al. 2016). According to the “weak central coher-
ence” model, however, visual processing is less directed in a
“top-down” manner in autism (Frith 2003), and local processing
biases may be at the expense of global processing (Happé 1996;

Ropar and Mitchell 2002; Frith 2003; Happé and Frith 2006).
Based on this model, overstimulated and underselective visual
processing areas may dominate high-order cognitive processes,
leading to impairments in integrating contextual information
in complex perceptual and executive tasks (Belmonte et al.
2004). This may in turn relate to the frequent finding of atypi-
cally increased activity and connectivity of visual cortices
(Kana et al. 2006; Simmons et al. 2009; Groen et al. 2010; Shen
et al. 2012; Jao Keehn et al. 2016). A meta-analysis of fMRI stud-
ies examining a variety of visual processing tasks in autism
reported overall higher task-related activity in occipital regions
(Samson et al. 2012). Moreover, in studies examining interhemi-
spheric communication, increased connectivity between visual
regions (and weaker connectivity between frontal motor areas)
across hemispheres was found in individuals with ASDs com-
pared with TD individuals, suggesting intact interhemispheric
transfer of visual information and enhanced perceptual proces-
sing (Barbeau et al. 2015; Clawson et al. 2015). This is consistent
with current findings of the locally overconnected cluster in V1,
which spans visual cortex bilaterally. Local overconnectivity in
posterior regions has also been observed in ASDs in multiple
rs-fMRI studies (Keown et al. 2013; Washington et al. 2013; Nair
et al. 2017). Combined, these findings imply regionally specific
abnormalities of local connectivity within visual cortex in
autism, but do not provide insight regarding the links between
local and distal iFC.

Our finding of predominant overconnectivity between
(locally overconnected) visual cortex and distal prefrontal
regions may appear inconsistent with the oft-cited hypothesis
of fronto-posterior underconnectivity in ASDs (Just et al. 2012)
and the hypothesis of early overgrowth in ASDs resulting in
distal underconnectivity due to increased conduction delays
(Lewis and Elman 2008). While the latter hypothesis is attractively
mechanistic, many fcMRI studies supporting fronto-posterior
underconnectivity tested task-driven BOLD correlations rather
than iFC (cf. Müller et al. 2011), and such co-activation
approaches have been shown to inflate underconnectivity find-
ings in ASDs (Jones et al. 2010; Nair et al. 2014). A few previous
resting state fcMRI studies have in fact reported fronto-posterior
overconnectivity in ASDs (Supekar et al. 2013; Fishman et al.
2014; Abbott et al. 2016). Note that the present study did not
show robustly significant occipito-frontal overconnectivity at the
group-level. Instead, a predominance of higher means (i.e.,
slightly greater iFC) was found in the entire ASD group – an effect
that was driven by a subgroup including just over half of the ASD
participants (see below).

Functional Interpretation Requires Distinction of
Autism Subtypes

Heterogeneity in ASDs, initially acknowledged based on behav-
ioral observations (Happé et al. 2006), is highlighted by recent
genetic findings suggesting that non-syndromic autism may
encompass hundreds of disorders with differential causes and
etiologies (Geschwind and State 2015; Vorstman et al. 2017).
Although there may be convergence of etiological pathways
(e.g., gene modules predominantly affecting synapses and cir-
cuit formation; Sahin and Sur 2015), it is likely that neurobio-
logical diversity in ASDs persists into adolescence and beyond.
This may be compounded by differences in early development
of domain-general brain areas (e.g., perceptual cortex vs. lan-
guage regions) in individuals with and without speech onset
delays (for a review, see Mottron et al. (2014)), as well as in life
experience (e.g., treatment history) that further add to

Figure 3. Correlations between distal (V1 – right FP) functional connectivity (z’)

and autism symptomatology in: (A) the ASD1 subgroup for ADOS; (B) the ASD2

subgroup for ADI-R.
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variability within the ASD population. Tests for group-level dif-
ferences between TD and ASD cohorts may therefore only
detect atypical neurofunctional patterns that are shared across
ASD variants. These may be common, but small, denominators
that are only modestly informative of crucial patterns of brain
anomalies in any given individual within the cohort. Testing
ASD samples for clusters (subgroups) of participants character-
ized by shared neural features of interest is crucial to overcome
the limitations of group-level analyses.

We indeed identified two subgroups of ASD participants that
were distinctly differentiated by their occipito-frontal iFC pat-
terns. Interestingly, these two subgroups were similar with
regard to demographic and diagnostic measures, and comorbid-
ities. Connectivity differences were also not explained by psy-
chotropic medication use (despite recent findings reported by
Linke et al. (2017)). In one ASD subgroup (ASD1), very high levels
of local connectivity in visual cortex were accompanied by
abnormally strong distal iFC with bilateral prefrontal regions. In
this subgroup, this pattern of local to distal overconnectivity
was associated with greater symptom severity. Conversely, in a
second subgroup (ASD2), local overconnectivity in primary visual
cortex was associated with more typical patterns of overall weak
distal iFC with prefrontal regions. This group displayed inverse
links with diagnostic measures (i.e., lower occipito-frontal iFC
was associated with greater symptom severity).

The pattern across both ASD subgroups suggests that diver-
gence from neurotypical patterns at both extremes may be
linked to more severe symptomatology. However, both connec-
tivity patterns and brain–behavior relationships were distinct
and largely opposite in the two ASD subgroups. This does not
imply a claim that our analyses may have identified two ASD
subtypes. K-means clustering was based only on a few iFC fea-
tures, whereas the number of neural features needed to iden-
tify a broader catalog of ASD subtypes will presumably be very
large. Nevertheless, the stark iFC differences accompanied by
opposing brain–behavior links suggests that the two ASD sub-
groups capture a small aspect of neurobiological variability
within the population.

The two subgroups also differed in their connectivity
between visual cortex and MFG bilaterally (i.e., the regions
found to be maximally overconnected at the whole-group level
with the occipital site of local overconnectivity). In the TD
group, iFC between visual cortex and the smaller ROI in task-
positive dorsolateral prefrontal cortex was negative. In typical
development, such anticorrelations are thought to indicate a
division of labor between functionally specialized networks
(here: visual and executive; Fransson 2006) and to reflect net-
work segregation, with activity being correlated within, but
anticorrelated across networks (Greicius et al. 2003; Fox et al.
2005; Easson et al. 2017). Our findings suggest that neurotypical
segregation between visual and executive regions was severely
affected – and in fact reversed – in the ASD1 subgroup (which
showed instead positive BOLD correlations), whereas it
appeared only weakened in the other ASD subgroup. However,
note that in ASD2, anticorrelations between V1 and prefrontal
regions overall were associated with more severe symptomatol-
ogy, suggesting that in this subgroup, brain–behavior links also
differed from neurotypical.

Limitations

Several limitations are worth noting. As BOLD ReHo examines
local connectivity at a macroscopic level with relatively modest
spatial resolution, it may not relate straightforwardly to microscopic

findings at the cellular level. It would therefore be speculative to
link our results to postmortem evidence of minicolumnar anoma-
lies with reduced lateral inhibition (Casanova et al. 2003; Casanova
and Trippe 2009) or to the more general model of increased excita-
tion/inhibition ratios in ASDs (Rubenstein and Merzenich 2003;
Nelson and Valakh 2015).

Methodological differences related to eye status must also
be considered. Our local overconnectivity finding in occipital
lobe during eyes-open rs-fMRI scans contrasts with a large
sample study by Di Martino et al. (2014). However, the inclusion
of resting-state data from participants with eyes closed in this
latter study was recently shown by Nair et al. (2017) to heavily
impact regional homogeneity patterns, particularly in the
occipital lobe (see also Yang et al. 2007; McAvoy et al. 2008; Xu
et al. 2014). Local occipital overconnectivity in eyes-open states
has indeed been found in several independent ASD cohorts
(Washington et al. 2013; Nair et al. 2017).

Conclusions
Contrary to a popular hypothesis, ASDs are not associated with
general local overconnectivity accompanied by distal under-
connectivity. Instead, we found local overconnectivity to be
regionally specific and robust only in and around primary
visual cortex. This site showed predominantly increased distal
iFC with bilateral prefrontal regions, compared with a TD
group. The effect was only pronounced in a subgroup of ASD
participants, where it was associated with greater symptom
severity; inverse symptom correlations were seen in a second
ASD subgroup. Findings suggest that simple generalizing
accounts of connectivity anomalies cannot capture nuanced
and regionally specific patterns in ASDs, and that group-level
analyses do not adequately reflect the neurofunctional hetero-
geneity within the ASD population.
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