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Abstract
Background  Tumor mutational burden (TMB) is a 
significant predictor of immune checkpoint inhibitors (ICIs) 
efficacy. This study investigated the correlation between 
deep learning radiomic biomarker and TMB, including its 
predictive value for ICIs treatment response in patients 
with advanced non-small-cell lung cancer (NSCLC).
Methods  CT images from 327 patients with TMB data 
(TMB median=6.067 mutations per megabase (range: 0 
to 42.151)) were retrospectively collected and randomly 
divided into a training (n=236), validation (n=26), and 
test cohort (n=65). We used 3D-densenet to estimate 
the target tumor area, which used 1020 deep learning 
features to distinguish High-TMB from Low-TMB patients 
and establish the TMB radiomic biomarker (TMBRB). The 
TMBRB was developed in the training cohort combined 
with validation cohort and evaluated in the test cohort. 
The predictive value of TMBRB was assessed in a cohort 
of 123 NSCLC patients who had received ICIs (survival 
median=462 days (range: 16 to 1128)).
Results  TMBRB discriminated between High-TMB and 
Low-TMB patients in the training cohort (area under 
the curve (AUC): 0.85, 95% CI: 0.84 to 0.87))and test 
cohort (AUC: 0.81, 95% CI: 0.77 to 0.85). In this study, 
the predictive value of TMBRB was better than that of a 
histological subtype (AUC of training cohort: 0.75, 95% CI: 
0.72 to 0.77; AUC of test cohort: 0.71, 95% CI: 0.66 to 
0.76) or Radiomic model (AUC of training cohort: 0.75, 
95% CI: 0.72 to 0.77; AUC of test cohort: 0.74, 95% CI: 
0.69 to 0.79). When predicting immunotherapy efficacy, 
TMBRB divided patients into a high- and low-risk group 
with distinctly different overall survival (OS; HR: 0.54, 
95% CI: 0.31 to 0.95; p=0.030) and progression-free 
survival (PFS; HR: 1.78, 95% CI: 1.07 to 2.95; p=0.023). 
Moreover, TMBRB had a better predictive ability when 
combined with the Eastern Cooperative Oncology Group 
performance status (OS: p=0.007; PFS: p=0.003). Visual 
analysis revealed that tumor microenvironment was 
important for predicting TMB.
Conclusion  By combining deep learning technology 
and CT images, we developed an individual non-invasive 
biomarker that could distinguish High-TMB from Low-TMB, 
which might inform decisions on the use of ICIs in patients 
with advanced NSCLC.

Introduction
Lung cancer is the leading cause of cancer-
related mortality worldwide.1 Immune 
checkpoint inhibitors (ICIs), which target 
programmed cell death protein 1 (PD-1) and 
its ligand (PD-L1) or cytotoxic T lympho-
cyte antigen-4 (CTLA-4) can elicit durable 
antitumor responses in multiple cancer 
types, including non-small-cell lung cancer 
(NSCLC).2–5 Yet, only a minority of patients 
with advanced NSCLC derive clinical benefit 
from this treatment.6 Therefore, there is an 
urgent need to investigate the predictive 
biomarkers for ICIs treatment effectiveness.

With the development of next-generation 
sequencing, tumor mutational burden 
(TMB) has become a research focus. TMB has 
been suggested as capable of predicting the 
response to PD-1/PD-L1 blockade in patients 
with NSCLC.7–10 In addition, other poten-
tial biomarkers have been investigated, such 
as PD-L1 expression,11–13 tumor-infiltrating 
lymphocytes,14 15 specific gene mutations,16–18 
and inflammatory cytokines.19 However, all 
these potential biomarkers require an inva-
sive biopsy combined with time-consuming 
and labour-intensive laboratory and clinical 
testing. As such, a non-invasive biomarker 
to predict the efficacy of immunotherapy in 
NSCLC would be valuable.

In this context, radiomics has been 
proposed as a tool to quantitatively analyze 
tumor characteristics.20 This process involves 
dig deep features of tumors, which are not 
detected by the human eye and which have 
been suggested as a valuable aid in clin-
ical diagnostics. Previous studies based on 
radiomics have yielded results relevant to 
auxiliary diagnosis,21 22 choice of treatment 
options,23 24 and assessment of patient prog-
nosis.25 26 In addition, existing studies have 
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confirmed that the CT images of tumors emerge signif-
icant differences during different ICIs therapy cycles 
through radiomics technology.27 With an increase in 
availability of and access to modern technologies, deep 
learning as a method for analyzing tumors has gained 
popularity among researchers. In fact, working with deep 
learning technologies has helped identify new research 
areas within the field of radiomics and integrate knowl-
edge of tumor microenvironment in clinical analysis.

To our knowledge, there have been few previous 
attempts at quantitative imaging analyzes, using the deep 
learning approach in studies assessing predictive value of 
TMB in immunotherapy response.28 29 Moreover, only few 
previous studies focused on patients with NSCLC treated 
with ICIs.27 Given these considerations, the aim of the 
present study was to develop and validate a deep learning-
based TMB radiomic biomarker (TMBRB), using CT 
images of patients with NSCLC. The secondary aim of 
this study was to assess the predictive value of TMBRB for 
clinical outcomes in patients with advanced NSCLC who 
had received ICIs treatment.

Materials and methods
Patients
Two data sets, TMB (n=327) and immunotherapy data set 
(n=123), were included in this study. The purpose of the 
TMB data set, randomly divided into training (n=236) 
validation (n=26) and test cohort (n=65), was to develop 
and validate TMRRB. It should be noted that the training 
cohort was used to identify the potential predictive value 
of CT images, the validation cohort was used to optimize 
the hyperparameters, and the test cohort was used to eval-
uate the TMBRB. The purpose of the immunotherapy 
data set was to assess the predictive value of TMRRB.

For the TMB data set, we retrospectively identified 
patients who had undergone complete resection of lung 
adenocarcinoma or squamous cell carcinoma at the 
Shanghai Pulmonary Hospital from 2012 to 2015. First, 
we checked the histological subtype of each patient using 
his or her electronic medical records. Subsequently, two 
experienced pathologists (ZWD and LKH) independently 
evaluated eligible specimens, according to the 2015 WHO 
classification of lung cancer. Major exclusion criteria 
were: inadequate or poor-quality samples, missing data 
on baseline clinicopathological features, mixed histology, 
and incomplete follow-up data. The details of the whole-
exome sequencing and data processing are described in 
our previous study.30 The major baseline characteristics 
included in the TMB data set were age, sex, tumor stage, 
and tumor histology. Consistent with a previous study,18 
we defined High-TMB as TMB value ≥10 mutations per 
megabase (mut/Mb), and Low-TMB as TMB <10 mut/
Mb. These TMB cut-offs are commonly used, as they 
constitute a brief way of clarifying relevant investigations.

For the immunotherapy data set, data from patients 
diagnosed with advanced NSCLC who had received anti-
PD-1/PD-L1 monotherapy at the Shanghai Pulmonary 

Hospital from 2015 to 2018 were collected. The major 
baseline characteristics included in this data set were age, 
sex, Eastern Cooperative Oncology Group performance 
status (ECOG PS), smoking history, tumor stage, tumor 
histology, Epidermal Growth Factor Receptor (EGFR) 
mutations, progression-free survival (PFS), and overall 
survival (OS). A never-smoker was defined as a patient 
who had smoked fewer than 100 cigarettes ahead of 
receiving systemic treatment. PFS was defined as the time 
from initial immunotherapy until disease progression or 
intolerable treatment toxicity. OS was calculated from the 
date of tumor diagnosis to death from any cause or was 
censored at the date of last follow-up. Clinical response 
to immunotherapy was evaluated based on the Response 
Evaluation Criteria in Solid Tumours (RECIST) V.1.1.31

CT image and tumor segmentation
Patients whose CT images taken prior to treatment 
were unavailable were excluded from both data sets. 
The included CT images were obtained with scanners 
manufactured by Siemens (Somatom Definition AS+, 
Biograph64), Philips (Brilliance 40, iCT256, Ingenuity 
Flex, MX 16-slice), GE Medical System (Bright Speed), 
and United Imaging (uCT 510, uCT 760, uCT S-160). All 
images were reconstructed using slice thickness of 0.6, 1, 
1.25, 2, 3, or 5 mm.

Two thoracic radiologists (TTW and YY) independently 
reviewed all scans. Assigned marks were determined by 
the consensus of the third thoracic radiologists (XWS). 
The region of interest annotation was performed with 3D 
slicer (http://www.​slicer.​org) for each lesion.32 The 3D 
centre-of-mass location was marked, and a bounding box 
was constructed to include the whole tumor.

Before training the model, we first normalized the CT 
images to eliminate radiographic differences between 
images acquired with different scanners. Afterwards, we 
generated new data by moving the bounding box marked 
by the doctors. This data augmentation operation 
provided new training samples for the model and helped 
reduce the errors introduced by the doctor’s annotation. 
Detailed data augmentation methods are described in 
online supplementary appendix 1.

TMBRB construction and validation
To generate TMBRB, we built a deep learning model 
(figure 1B). We used the patient's tumor area as training 
data to identify patients with High-TMB. In this study, 
TMBRB was defined as the model’s score for High-TMB 
output.

The deep learning model included two main modules: 
feature extraction and classification module. The input 
of the feature extraction module was the tumor region 
assessed based on the patient’s CT image. Structurally, it 
was mainly composed of Densenet with a 3D convolution 
kernel (3D-densenet).33 The module contained a total of 
four blocks, with dense connections within each block. 
This network structure could learn deeper information 
from the CT images, accelerate convergence, and, to 
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Figure 1  Study protocol workflow. (A) The main experiments in this study included: establishment and verification of TMBRB, 
and exploration of TMBRB value in predicting immunotherapy efficacy. (B) Structural diagram of the deep learning model. 
(C) The methods we used to evaluate TMBRB. AUC, area under the curve; ROI, region of interest; TMBRB, tumor mutational 
burden radiomic biomarker.

a certain extent, avoid over-fitting. The output of this 
module included 1020 deep learning features.

For the classification module, we chose the fully 
connected network as the classifier, composed of an input 
layer, a hidden layer, and an output layer. The input layer 
of this module contained all the deep learning features. 
The hidden layer contained 128 nodes, and the output 
layer consisted of the patients’ High-TMB and Low-TMB 
scores. Details of network training configurations and 
training mode are described in online supplementary 
appendix 2.

For comparisons, we used ‘radiomics’ method to 
build the model (radiomic model), which quantitatively 
extracts predefined features from CT images. Details 
about the radiomic model is shown in online supple-
mentary appendix 3. In addition, a clinical model was 
constructed employing the clinicopathological charac-
teristics that were significantly related to the TMB level. 
Meanwhile, we also incorporated the comparative analysis 
of the maximum 3D-diameter and volume of the tumor.

The receiver operating characteristic curve (ROC) 
was used to evaluate the model’s ability to distinguish 
High-TMB from Low-TMB. The area under the curve 
(AUC), sensitivity, and specificity were calculated to 
compare performance between cohorts and models. The 
Delong test was used to compare the ROC between the 
models. In addition, a decision curve was drawn to quan-
tify the net benefit under different threshold probabilities 

and evaluate the clinical utility of TMBRB. To further 
explore the potential of the biomarker, we verified its 
performance at different TMB cut-off points.

The predictive value of TMRRB for immunotherapy
In the immunotherapy data set, TMBRB was applied to 
evaluate risk stratification at the individual level. All cut-
off points for TMBRB were calculated by X-tile.22 For the 
evaluation method, we used the Kaplan-Meier curves to 
assess the OS and PFS. The log-rank test was used to assess 
different survival curves. In addition, the Cox proportional 
hazard model was used in multivariate analysis of TMBRB 
and clinicopathological characteristics. By comparing the 
significance of the model derived in multivariate anal-
ysis and the results of the survival curve comparison, we 
identified potential clinicopathological characteristics 
that could be combined with the biomarker to improve 
the model’s overall predictive value. TMBRB verification 
process is shown in figure 1C.

Statistical analysis
Patients’ baseline characteristics were compared using 
Pearson χ2 test or Fisher’s exact test for categorical vari-
ables, when appropriate, and independent t-test for 
continuous variables. For the correlation study of TMB 
and TMBRB, we chose Spearman correlation coefficient 
as the evaluation standard. Furthermore, we performed 
all analyzes in R (V.3.5.2; http://www.​R-​project.​org) and 
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Table 1  Clinicopathological characteristics of the immunotherapy data set

Characteristics
All
(n=123)

Overall survival Progression-free survival

High-risk 
group
(n=79)

Low-risk 
group
(n=44) P value

High-risk 
group
(n=91)

Low-risk 
group
(n=32) P value

Age, year 61.8±10.2 61.5±10.9 62.4±8.7 0.646 62.5±10.7 60.0±8.2 0.247

Sex  �   �   �  0.424  �   �  0.512

 � Male 101 (82.1) 67 (84.8) 34 (77.3) 73 (80.2) 28 (87.5)

 � Female 22 (17.9) 12 (15.2) 10 (22.7) 18 (19.8) 4 (12.5)

Smoking status  �   �   �  0.685  �   �  0.533

 � Current or former smoker 77 (62.6) 51 (64.6) 26 (51.9) 55 (60.4) 22 (68.8)

 � Never smoked 46 (37.4) 27 (40.9) 18 (40.9) 36 (39.6) 10 (31.2)

ECOG performance-status 
score

 �   �   �  0.364  �   �  0.993

 � 0 11 (8.9) 7 (8.9) 4 (9.1) 8 (8.8) 3 (9.4)

 � 1 104 (84.6) 65 (82.3) 39 (88.6) 77 (84.6) 27 (84.4)

 � 2 8 (6.5) 7 (8.9) 1 (2.3) 6 (6.6) 2 (6.2)

Tumor histologic type  �   �   �  0.728  �   �  0.247

 � Adenocarcinoma 80 (65.0) 50 (63.3) 30 (68.2) 56 (61.5) 24 (75.0)

 � Squamous cell carcinoma 43 (35.0) 29 (36.7) 14 (31.8) 35 (38.5) 8 (25.0)

Pathological stage  �   �   �  0.974  �   �  0.492

 � III 18 (14.6) 11 (13.9) 7 (15.9) 15 (16.5) 3 (9.4)

 � IV 105 (85.4) 68 (86.1) 37 (84.1) 76 (83.5) 29 (90.6)

EGFR mutation  �   �   �  0.618  �   �  0.983

 � No mutation 94 (76.4) 62 (78.5) 32 (72.7) 69 (75.8) 25 (78.1)

 � Mutation 29 (23.6) 17 (21.5) 12 (27.3) 22 (24.2) 7 (21.9)

TMBRB  �   �   �  <0.001  �   �  <0.001

 � Mean 0.55±0.16 0.46±0.13 0.71±0.05 0.62±0.10 0.34±0.11

 � Range 0.07 to 0.83 0.07 to 0.61 0.61 to 0.83 0.46 to 0.83 0.07 to 0.46

Categorical data are shown as numbers (%) and continuous data as mean±SD.
ECOG, Eastern Cooperative Oncology Group; EGFR, Epidermal Growth Factor Receptor; TMBRB, tumor mutational burden radiomic 
biomarker.

Python (V.3.6.5, https://www.​python.​org/). A two-sided 
p value<0.05 was regarded as statistically significant. The 
R and Python packages are summarized in online supple-
mentary appendix 4.

Results
Clinicopathological characteristics of the cohorts
The clinicopathological characteristics of the TMB data 
set are summarized in online supplementary table S1. 
The number of patients in the training, validation, and 
test cohorts were 236, 26, and 65, respectively. In total, the 
sample of 327 patients included 180 (55.0%) men and 181 
adenocarcinomas (55.4%), with median age of 61.5 years. 
The majority of them (74.3%, n=243) were classified into 
Low-TMB, with the remainder of the sample classified 
as High-TMB, with the overall mean value of 7.64 mut/
Mb. No significant differences were observed between the 
training, validation, and test cohorts regarding age, sex, 

histological subtype, pathological stage, and TMB value. 
In the training cohort (online supplementary table S2), 
histological subtype was identified as a significant inde-
pendent predictor of High-TMB (p<0.001). In the immu-
notherapy data set (table  1), most of them were men 
(82.1%) and current or former smokers (62.6%), with 
mean age of 61.8 years. The most common tumor patho-
logical stage was stage IV (85.4%) and the most common 
histological type was adenocarcinoma (65.0%).

TMBRB construction and validation
The AUC for TMBRB distinguishing between High- and 
Low-TMB groups was 0.85 (95% CI: 0.84 to 0.87) in the 
training cohort and 0.81 (95% CI: 0.77 to 0. 85) in the 
test cohort (figure 2A and B). In addition, although the 
radiomic model obtained good results in the training 
cohort (0.75; 95% CI: 0.72 to 0. 77) and the test cohort 
(0.74; 95% CI: 0.69 to 0.79), both were slightly lower than 
TMBRB. For the clinical model, since histological subtype 
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Figure 2  Ability of TMBRB to distinguish High-TMB from Low-TMB. (A) and (B) The receiver operating characteristic curve of 
the training and test cohorts based on TMBRB, radiomic model, clinical model, maximum 3D-diameter, and volume. (C) and 
(D) Decision curves for the training and test cohorts based on TMBRB, radiomic model, clinical model, maximum 3D-diameter, 
and volume. (E) and (F) AUC values for the training and test cohort with the TMBRB at different cut-off values of TMB and their 
difference line graphs; (G) Results of correlation analysis between TMB and TMBRB. (H) AUC values of different models in 
training and test cohorts. AUC, area under the curve; TMBRB, tumor mutational burden radiomic biomarker.

was found significant, we used histological subtype to test 
the results in the training cohort (0.75; 95% CI: 0.72 to 
0. 77) and test cohort (0.71; 95% CI: 0.66 to 0.76). We 
found that although the results of the training cohort 
and the test cohort are acceptable, they are not as good 
as TMBRB. This finding was confirmed by the deci-
sion curve. Overall, using TMRRB for decision-making 
emerged as a more robust approach compared with the 
radiomic or the clinical model (figure 2C and D). For the 
maximum 3D-diameter and volume, they did not yield a 
reliable and stable model. However, it is still necessary to 
discuss their impact on TMBRB. We conducted a Strati-
fied analysis of patients according to the maximum 3D-di-
ameter and volume. The results showed that TMBRB can 
perform better in different sizes and volumes (online 
supplementary figure S2B and S2C). In addition, we also 
found that the thickness did not affect TMBRB (online 
supplementary figure S2A). The details were shown in 
online supplementary appendix 5.

To excavate the potential ability of TMBRB, we used 
TMBRB and histological subtype for logistic regression. 
In the multivariate analysis, both p values of variables were 
less than 0.05 and the results were significantly improved 
in the training cohort (0.86; 95% CI: 0.84 to 0. 88; p<0.05) 
and the test cohort (0.83; 95% CI: 0.78 to 0. 87; p<0.05). 
For the relationship between histological subtypes and 
TMBRB, we can be sure that they will interact to improve 
the accuracy of prediction, but deeper interactions still 
need to incorporate more data for experimentation and 
verification.

Furthermore, we assessed the relationship between 
TMBRB and TMB in two ways. Since TMB is a continuous 
variable, we used the Spearman correlation coefficient for 

evaluation at first and the results showed that TMBRB and 
TMB have a strong correlation (correlation coefficient: 
0.57; p<0.001; figure 2G). Moreover, we also checked the 
performance of TMBRB at different TMB cut-off, which 
can also clearly indicate the sensitivity distribution of 
TMBRB to TMB. As shown in figure 2E, TMBRB could 
effectively distinguish between two types of samples with 
cut-off points within the range 3 to 10 mut/Mb. The AUC 
for the 4 to 10 mut/Mb groups was each greater than 
0.70 (including training cohort and test cohort), while 
the corresponding AUC differences between training 
and test cohorts were <0.10 (figure 2F). When the TMB 
cut-off value was 3 mut/Mb, the TMBRB exhibited good 
robustness, while the AUC of test cohort was about 0.69.

Predictive value of TMBRB in the immunotherapy data set
TMBRB was able to divide patients into two risk cohorts 
(p=0.030; cut-off point=0.61; HR: 0.54, 95% CI: 0.31 to 
0.95; figure  3A) with significantly different OS. In the 
dichotomy, the median OS was 301 days in the high-risk 
group and 533 days in the low-risk group. For PFS, TMBRB 
was also able to divide patients into two risk groups with 
better significant difference (p=0.023; cut-off point=0.46; 
HR: 1.78, 95% CI: 1.07 to 2.95; figure 3B). Moreover, the 
median PFS in the low-risk group was more than twice 
as much as the median PFS in the high-risk group (288 
vs 134 days). Furthermore, the ROC curves for the high- 
and low-risk groups and TMB showed the optimal thresh-
olds for TMB were 9.27 and 9.35, when the cut-off value 
was 0.46 and 0.61, respectively (figure  3D–F). We spec-
ulated that the best cut-off points of TMB for high- and 
low-risk stratification of NSCLC patients is between 9 and 
10 for OS and PFS.
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Figure 3  Prognostic value of TMBRB in immunotherapy. (A) and (B) The Kaplan-Meier curves depicting OS in high- and low-
risk groups of OS and the high- and low-risk groups of PFS. (C) The receiver operating curves for TMB to distinguish between 
high- and low-risk groups and its best cut-off points (OS: 0.61; PFS: 0.46), which reflects the most likely cut-off points of TMB 
to be used for risk stratification (OS: 9.35; PFS: 9.27). (D) The distribution of TMBRB in immunotherapy data set, and the best 
cut-off points of TMBRB for OS and PFS. AUC, area under the curve; OS, overall survival; PFS, progression-free survival; 
TMBRB, tumor mutational burden radiomic biomarker.

We recorded the results of univariate analysis of each 
clinical characteristic (online supplementary table S3) 
and the results of the log-rank test after combination of 
each characteristic and TMBRB for OS and PFS separately 
(figure 4A). We found that ECOG PS alone had a good 
stratification ability (OS: p=0.020; PFS: p=0.010). However, 
the combination of TMBRB and ECOG PS showed more 
significant stratification performance (OS: p=0.005; PFS: 
p=0.003). Figure 4A lists the p value for multivariate anal-
ysis after combination of each feature and TMBRB for OS 
and PFS, respectively. We found that the combination of 
ECOG PS and TMBRB improved the stratification results 
of the model and each variable remained statistically 
significant in the combined model. This situation appears 
not only in the analysis of OS (TMBRB: p=0.031; ECOG 
PS: p=0.020), but also in the analysis of PFS (TMBRB: 
p=0.029; ECOG PS: p=0.014). Figure 4B shows the hazard 
ratios of clinical characteristics and TMBRB binding for 
OS and PFS, respectively. In the model that included 
ECOG PS and TMBRB, for the analysis of OS, increase in 
the ECOG PS (HR: 2.33, 95% CI: 1.14 to 4.77) was asso-
ciated with an increase patients’ risk; concurrently, an 
increase in TMBRB (HR: 0.54, 95% CI: 0.31 to 0.95) was 
associated with a decrease in patients’ risk. For PFS, the 
increase in TMBRB (HR: 1.76, 95% CI: 1.06 to 2.92) and 
ECOG PS (HR: 1.90, 95% CI: 1.14 to 3.19) are all associ-
ated with increased patient risk.

Excluding ECOG PS, we found that both sex (p=0.030) 
and smoking status (p=0.040) can stratify PFS risk very 
well. However, when combined with TMBRB analysis, sex 

(p=0.064), and smoking status (p=0.067) are not signifi-
cant. For OS, the combination of EGFR mutation and 
TMBRB can significantly improve the performance of the 
model (p<0.05). In the model, both factors are significant 
(EGFR mutation: p=0.019; TMBRB: p<0.01). Moreover, 
although sex cannot be used for risk stratification alone 
(p=0.100), it has significant performance in combination 
with TMBRB (TMBRB: p=0.009; sex: p=0.024). And, the 
overall forecast level also improved significantly (p=0.010).

Visualization and analysis of deep learning features
To further examine the relationship between CT images 
and TMB, we exported the category activation map of 
TMBRB for research, as TMBRB had shown that it could 
effectively divide patients into high- and low-risk groups in 
the immunotherapy data set. The high importance area of 
TMBRB to some extent also covers areas that are important 
for improvement of OS to immunotherapy. The model 
diagram is shown in figure 5. For class activation maps, we 
found that, regardless of tumor histology type, the deep 
learning model paid more attention to the surrounding 
of the tumor and hilum. In addition, after resampling the 
class activation map and plotting the 3D space lattice, as 
well as separating the tumor and non-tumor regions, we 
found that the tumor microenvironment contributed no 
less to accuracy of prediction than did tumor region.

Discussion
In this study, we constructed the TMBRB based on deep 
learning approach and found it could effectively divide 

https://dx.doi.org/10.1136/jitc-2020-000550
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Figure 4  Clinicopathological characteristics associated with TMBRB in immunotherapy prediction. Evaluation of TMBRB and 
various clinicopathological characteristics. (A) The p value of each clinical characteristic and TMBRB in two-variable analysis 
by Cox regression and the log-rank p value of its model for OS and PFS. (B) Hazard rates of TMBRB and clinical characteristics 
in each two-variable model. ECOG PS, Eastern Cooperative Oncology Group performance status; OS, overall survival; PFS, 
progression-free survival; TMBRB, tumor mutational burden radiomic biomarker.

patients into High-TMB and Low-TMB, as well as predict 
outcomes of NSCLC patients treated with ICIs. In addi-
tion, we discovered that the ECOG PS and TMRRB are 
mutually reinforcing at predicting treatment efficacy in 
this group of patients. Immunotherapy targeting PD-1 
and PD-L1 is considered a ‘breakthrough’ treatment for 
advanced NSCLC.16–18 34 Despite durable response and 
improved prognosis, anti-PD-1/PD-L1 antibodies benefit 
a minority of patients. How to select patients most likely 
to benefit from immunotherapy is the current leading 
challenge in the field. In this context, the present study 
suggests that TMB has the potential to identify patients 
most likely to benefit from treatment with anti-PD-1/
PD-L1 antibodies.19 34 However, multiple tumor sampling, 
invasive tissue biopsy, poor sample quality, and high asso-
ciated costs limit the clinical applications of TMB. There-
fore, development of a non-invasive approach to TMB 
calculation is required.

Due to the limited amount of training samples, it is 
difficult to train and obtain a satisfactory TMB predic-
tive model via a regression method. A recent clinical trial 
reported that a TMB of at least 10 mut/Mb was an effec-
tive cut-off for predicting efficacy of immunotherapy.18 

To simplify this model, we converted the TMB regression 
problem to a classification problem of High- and Low-
TMB with a 10 mut/Mb cut-off. In addition, we not only 
found that TMBRB and TMB had a significant correla-
tion via the Spearman correlation coefficient (correlation 
coefficient: 0.57; p<0.001), but also performed a classi-
fication assessment of TMBRB at different TMB cut-off 
points and found that TMBRB exhibited good classifica-
tion performance within the TMB cut-off range of 3 to 11 
mut/Mb. We infer that this was related to the distribution 
of the TMB data, as we observed that the closer to the 
median, the better the classification performance. In the 
case of a small amount of data, the classification problem 
makes the model more targeted than processing all TMB 
data for regression. Meanwhile, the distribution of some 
data will be ignored. As shown in the present study, the 
TMBRB can only distinguish between samples with TMB 
cut-offs range of 3 to 11 mut/Mb. For samples with TMB 
>11 mut/Mb, the classification ability of the model is 
insufficient.

In this study, we further validated the predictive value 
of TMBRB in an ICI-treated cohort. To the best of our 
knowledge, this is the first study to investigate the radiomic 
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Figure 5  Visual analysis of TMBRB. Class activation maps for two types of samples and 3D visualization. (A) Clinical 
information of four patients. (B) The category activation map of TMBRB and the CT scans of patients. (C) The spatial lattice map 
of tumor and its microenvironment for Patient 3. TMB, tumor mutational burden; TMBRB, TMB radiomic biomarker.

biomarker for TMB prediction in patients with advanced 
NSCLC. A previous study has shown that quantified radio-
mics features of lesions might function as non-invasive 
biomarkers for immunotherapy response, following 
analysis of 1055 primary and metastatic lesions from 203 
patients with advanced melanoma and NSCLC.29 These 
imaging features were associated with pathways involved 
in mitosis, indicating a relationship between preferential 
response to immunotherapy and increased proliferative 
potential of a tumor. Similarly, our results revealed that, 
using a deep learning neural network, TMBRB could 
capture some high-level imaging features related to 
immunotherapy response and high-level TMB. Regard-
less of radiomics or deep learning technology, their 

advantage is not only that the data is easy to obtain, but 
also non-invasive for patients. Therefore, we believe our 
results offer evidence in support of a new non-invasive 
approach to survival evaluation in immunotherapy.

A previous study has indicated that radiomic signature 
of tumor-infiltrating CD8 cell was promising at predicting 
the immune phenotype of tumors and associated clinical 
outcomes in patients with NSCLC receiving anti-PD-1/
PD-L1 treatment.29 In this study, all features, including 
technical variables, volume of interest locations, radiomic 
features of tumor, and peripheral rings were included in 
a linear elastic-net model. Moreover, the final radiomics 
signature included eight features, three of which repre-
sented the peripheral ring of the tumor. These findings 
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are similar to our results, indicating that the periph-
eral tumor area is an important factor in determining 
TMBRB and immunotherapy response, and there may 
be a correlation between the peritumoral image and 
the abundance of CD8 cells. Meanwhile, Khorrami et al 
reported that there is a very important value in the ICIs 
therapy in the peritumoral period.27 One of the findings 
of the study is that the changes in a radiomic texture 
(DelRADx) feature named Haralick entropy shows signif-
icant differences in ICIs therapy. Moreover, this study also 
found a significant correlation between tumor-infiltrating 
lymphocyte (TIL) density and the peritumoral Gabor 
filter DelRADx feature. In the present study, we gener-
ated a class activation map to visualize TMBRB. We found 
that the area of interest of TMBRB to distinguish TMB is 
within as well as outside the tumor, concentrated at the 
tumor’s root and periphery. These results were similar 
to previous research, which maintains a high degree of 
attention to the peritumoral area.27 29 We also speculated 
that the area of interest of TMBRB is probably related 
to CD8 cell abundance and TIL density. Meanwhile, this 
area may be a relatively important location in the peritu-
moral area.

Our study had several limitations that should be 
acknowledged. First, this was a retrospective study based at 
a single medical center, including only Chinese patients. 
Selection bias was inevitable and whether the present 
findings apply to other ethnicities remains unknown. To 
be confirmed, the present findings require a multi-center, 
prospective study with a large, multi-ethnic sample. 
Second, TMBRB was constructed and validated using a 
cohort of patients with early-stage NSCLC. Its value in 
distinguishing TMB levels among advanced-stage NSCLC 
patients needs further investigation. Besides, since the 
number of patients with immunotherapy information has 
just exceeded 100, we have not divided an independent 
test set. For the effect of characteristics such as ECOG PS 
on TMBRB, we only speculated based on existing statis-
tical results. In subsequent studies, we will include more 
patients for verification. Finally, recent studies revealed 
that several specific gene alterations (such as KEAP1, 
STK11, KRAS, among others.) could affect the efficacy 
of immunotherapy in NSCLC. Due to lack of sequencing 
data, we could not account for their role in determining 
TMB level and immunotherapy efficacy.

Conclusion
In conclusion, our study indicated that deep learning 
could be a non-invasive method to evaluate TMB. The 
imaging biomarker derived from TMB could effectively 
predict clinical outcomes associated with ICIs treatment 
in patients with advanced NSCLC.
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