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A call for an ethical framework when using social 
media data for artificial intelligence applications 
in public health research
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Abstract

Advancements in artificial intelligence (AI), more precisely the subfield of machine learning, 
and their applications to open-source internet data, such as social media, are growing faster 
than the management of ethical issues for use in society. An ethical framework helps scientists 
and policy makers consider ethics in their fields of practice, legitimize their work and protect 
members of the data-generating public. A central question for advancing the ethical framework 
is whether or not Tweets, Facebook posts and other open-source social media data generated 
by the public represent a human or not. The objective of this paper is to highlight ethical 
issues that the public health sector will be or is already confronting when using social media 
data in practice. The issues include informed consent, privacy, anonymization and balancing 
these issues with the benefits of using social media data for the common good. Current ethical 
frameworks need to provide guidance for addressing issues arising from the use of social media 
data in the public health sector. Discussions in this area should occur while the application of 
open-source data is still relatively new, and they should also keep pace as other problems arise 
from ongoing technological change.
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Introduction

Rapid technological advancements in artificial intelligence (AI), 
and more specifically, natural language processing (NLP) using 
machine learning techniques, are enabling easy access and 
use of open-source big data. NLP allows computers to analyze 
datasets of natural language discourse (i.e. text not structured 
for quantitative analysis). 

In public health, digital epidemiology has emerged as a new 
field that focuses on using non–public health sector data such 
as open-source internet data (e.g. Google Trends, news media) 
and social media data (e.g. Twitter and Facebook posts), whereas 
traditional epidemiology uses data collected for the purposes of 
health care, such as reporting of notifiable diseases by healthcare 
professionals to contribute to data for the surveillance of disease 
cases.

Researchers and policy makers recognize the potential of digital 
epidemiology data for advancing early warning of public health 
threats (1–3). Odlum & Yoon (4) used NLP to assess Twitter data 
and reported that Tweets related to Ebola increased in the days 

leading up to the official alert of the 2014 Ebola outbreak in 
Africa. Yousefinaghani et al. (5) showed that 75% of real-time 
outbreak notifications of avian influenza were identifiable from 
Twitter; one-third of outbreak notifications were reported on 
Twitter earlier than official reports. These observations support 
using Twitter volumes to predict the occurrence of outbreaks, 
and even forecast expected case counts, has also been shown 
with Google Trends data (1,6). Furthermore, refinement of social 
media data into various disease-relevant categories, by using 
NLP to classify Tweets into symptom types (e.g. fever, vomit), or 
focusing analysis on specific search terms from Google Trends, 
helps increase the accuracy in predictions of outbreak occurrence 
and forecast estimates.

Research that uses data from human participants requires 
ethical approval. A review process by a government body or 
university committee independent of the researchers assesses 
if use of these data ensures the safety, dignity and rights of the 
participants. Researchers need to demonstrate to the research 
ethics board (REB) that their study minimizes harm to participants 
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and respects their autonomy, generates and maximizes benefit 
(e.g. to society, science, participants) and acts with integrity, 
fairness and transparency to all stakeholders (e.g. participants, 
beneficiaries of the research). However, in a systematic review 
of the utilization of Twitter for health research, only 32% of the 
studies acquired ethical approval (7).

This is an example of technology moving faster than policy, 
in that the availability of newer data sources, such as from 
social media, have outpaced the need to assess the ethics 
of their use. This has led to studies with questionable ethical 
actions, which casts a shadow on all fields that use big data. An 
example is the “Tastes, Ties, and Time” study in 2007, where 
the researchers published an anonymized dataset of a group 
of university students and a codebook with information about 
the dataset; the dataset was identifiable from the codebook (8). 
Similarly, in 2012, evidence of online emotional contagion was 
sought, without prior consent, by manipulating the Facebook 
news feed of thousands of people to see if doing so changes 
sentiments in individuals’ posts (9).

In this article, we explore issues to do with traditional ethical 
frameworks in relation to research based on AI, particularly in the 
field of public health and digital epidemiology. We then present 
ethical frameworks that allow scientists and policy makers to use 
data from social media and their applications.

Contemporary ethics

In contemporary science, researchers need ethical approval for 
the use of human data. This very criterion is the main problem in 
big data–based research. It raises a seemingly simple question: 
Does a post or a Tweet represent human data or text data? (10). 
Several issues and points of view arise from this question, leading 
to a necessary debate given that the popularity of using social 
media data is increasing in several scientific fields, including 
digital epidemiology.

Currently, studies that use social media data are usually 
perceived as outside the scope of ethics committees’ evaluation 
because these data are commonly not considered to be human 
data (11,12). Many researchers, policy makers and practitioners 
assume that they can use open-source data, for example, 
Tweets, public posts on Facebook, public photos on Instagram 
and Google Trends queries, which do not require passwords to 
access (8,13). However, for many users of social media, posting 
publicly does not equate with giving their consent for the post 
to be used for research (8,11,12). This issue is not covered by 
existing ethical review mechanisms (14). 

Furthermore, the ease of access to social media data (in the 
absence of ethical regulations and using rapid data capture via 
AI) means that the number of data points is often much larger 
than from traditional epidemiological datasets. Therefore, 
decisions about the use and implications of social media data 

can potentially affect more people (14). For example, the 
number of people accidentally or maliciously reidentified in a 
Twitter database is only limited by the resources used to compile 
and analyse the database, which is far less than traditional 
surveillance systems (14).

Informed consent
Informed consent in the way it exists in contemporary ethics fits 
poorly with social media data. Firstly, it is almost impossible to 
obtain the informed consent of people whose data contribute 
to digital epidemiology because there are often insufficient 
resources to contact such high numbers of people who can be 
living anywhere (15). 

Secondly to obtain informed consent, scientists need to confirm 
the identity of the social media users (16). There is no way to 
ensure that the person behind the social media profile is who 
they claim to be or to confirm whether the social media post was 
not generated by a bot (i.e. “robot” responsible for computer-
generated social media posts). Because of this complication, 
some researchers consider consent to the terms and services of a 
social media platform, which users must give to use the platform, 
to be a surrogate for informed consent (16). However, users 
often do not read the terms and services or understood them 
well (17–19); nor do these stipulate the terms and conditions 
under which the data will be used for research, which calls into 
question the legitimacy and integrity of using terms and services 
as a surrogate for informed consent. Many “participants” in 
digital epidemiology are not aware that their data were collected 
or used (20).

Privacy and anonymization issues
We are becoming increasingly reliant on technology to structure 
and analyze the data proliferating in our digital societies. 
Data mining helps researchers find complex and unintuitive 
data patterns. However, data mining methods can also reveal 
confidential information from seemingly harmless social media 
data, for example, political affiliations (12,21). In addition, 
Wang et al. (22) reported being able to identify people’s sexual 
orientation by processing pictures of people from a dating 
website.

An anonymized dataset is the minimal requirement to protect 
the identity of subjects in social science (23) or in traditional 
epidemiology (20). According to the Common Rule, also 
known as 45 CFR 46 Subpart A, the principal regulation for 
human research from the Department of Health and Human 
Services of the United States (24), 17 identifiers need to be 
removed to consider a dataset anonymized. These include, 
among others, name, location of residence, all dates except the 
year and biometric identifiers (25). The Canadian Institutes of 
Health Research (CIHR), the Natural Sciences and Engineering 
Research Council of Canada (NSERC) and the Social Sciences 
and Humanities Research Council (SSHRC), identify similar 
identifiers (26). However, removing the 17 Common Rule 
identifiers is often not enough to ensure a dataset is anonymized. 
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This is because social media data are highly complex (i.e. 
have high dimensionality). Many non-traditional attributes can 
enable identification, such as reidentification from assessing the 
structure of the social networks (i.e. human connections) from 
multiple social media platforms (15,27). The advancements in 
AI algorithms and computational power to extract information 
and assess patterns means it is no longer possible to have 
anonymous databases (28,29). Many examples in the scientific 
literature demonstrate this issue by reidentifying an anonymized 
and subsequently published dataset (12,21).

The common good
The common good takes roots in the utilitarian vision of ethics. In 
this vision, the common good that research can do is considered 
versus the potential harm to individuals. A certain level of harm 
can be tolerated if the result is “positive morality". In the context 
of social media, the harm is mostly an invasion of privacy (30). 
People are more willing to sacrifice their privacy if they perceive 
that usage of their data will benefit the common good (31,32). 
For the most enthusiastic social media users in the Mikal et 
al. study (31), “it’s cool when it’s stuff [...] like the flu, because 
then that’s how [public health decision-makers] know to get 
the vaccines to a place.” Similarly, for the social media users in 
the Golder et al. study (32), it “could give a voice to patients 
and others groups, uncover true prevailing issues, and improve 
patient care.” Factors that influence people’s compliance in 
sharing their data for the common good include the type 
of research and the researchers affiliations (i.e. university, 
company, government) (32–34). 

Ultimately, while the majority of people agree with the concept 
of the common good, there is no agreed-upon threshold for 
which an invasion of privacy can, and should, be tolerated for 
public health research.

New ethical frameworks
New frameworks that respond to new ethical challenges 
regarding the use of AI for research have been proposed by the 
Association of Internet Researchers (AoIR) (35) and Zook et al. 
(36) (Table 1).

Following a framework can help to legitimize research for the 
population (37). Since the AoIR framework (35) is accepted in the 
scientific literature, with the Association being one of the most 
cited organizations in terms of ethics and big data, scientists may 
want to use this framework rather than the lesser-known Zook 
et al. framework. However, the Zook et al. (36) framework is less 
restrictive and easier to follow. 

Many points in these guidelines are already considerations 
that public health scientists have to address (e.g. protection 
of the vulnerable population, the potential harms of the study, 
the anonymization process). Public health scientists already 
frequently use highly confidential data. The main difference 
between social media data and traditional data is the way 
the data are accessed; the original intent for which the data 

are produced; and the limited ability for social media users to 
provide informed consent. The data still represent humans, and 
can result in unintentional consequences such as identifying 
the individual behind their social media content. Public health 
scientists have an obligation to protect the individuals behind 
their data while balancing this with the common good; this 
subjective decision is extremely difficult to agree upon.

Discussion

As technology advances rapidly and more research is done with 
AI and social media data, an established ethical framework is 
essential to prevent improper use of social media data in public 
health applications. Researchers in public health, computer 
science and ethics need to come together to develop a 
framework that will help scientists conduct responsible research. 
In general, existing frameworks have been developed for use in 
every scientific field. Public health-related decisions can have an 
important impact on the population, however, going as far as 
to restrict the freedom of movement of persons in the case of a 
highly infectious disease, as an example (20).

The REB is an important part of the process to ensure the 
research is within the ethical framework. Inherent in using open-
source social media data is that people do not know, or do not 
have the opportunity to consent, with their data being used. 
Thus, the REB provides the means to defend the safety, dignity 
and rights of the participants as stipulated through the ethical 
framework. 

Table 1: Proposed ethical frameworks

Authors Guidelines

AoIR (35) 1.	 Protect vulnerable populations
2.	 Assess potential harm from research studies on 

a case-by-case basis
3.	 Consider data from humans to be human
4.	 Balance the rights of all involved parties (i.e. 

the right of privacy for the subject and the 
right to do research for the scientist)

5.	 The temporal variability of ethical 
considerations must be resolved when it 
occurs

6.	 Discuss ethical problems with qualified 
professionals when these arise

Zook et al. (36) 1.	 Acknowledge that data are people and can do 
harm

2.	 Recognize that privacy is more than a binary 
value

3.	 Guard against the reidentification of your data
4.	 Practice ethical data sharing
5.	 Consider the strengths and limitations of your 

data; big does not automatically mean better
6.	 Debate the tough, ethical choices
7.	 Develop a code of conduct for your 

organization, research community or industry
8.	 Design your data and systems for auditability
9.	 Engage with the broader consequences of 

data and analysis practices
10.	Know when to break these rules

Abbreviation: AoIR, Association of Internet Researchers
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The REB and ethical framework are also needed to address the 
limitations of social media data. Many social media platforms 
are available, and the predominance in their use can differ by 
location. For example, Twitter and Facebook are used extensively 
in Western countries but banned in the People’s Republic of 
China; the Chinese government authorizes the use of Sina 
Weibo and WeChat as the respective Twitter and Facebook 
equivalents. Furthermore, the demographics of use can vary 
among applications. Older generations tend to use Twitter and 
Facebook, while younger generations tend to use Snapchat, 
Instagram and TikTok. This is known as the digital divide (38). 
Some profiles may be underrepresented (e.g. children and 
elderly), depending of the social media platforms.

Conclusion
The ethical issues to do with using social media data for AI 
applications in public health research centre around whether 
these data are considered human. Current ethical frameworks 
are inadequate for public health research. To prevent further 
misuse of social media data, we argue that considering social 
media to be human would facilitate an REB process that ensures 
the safety, dignity and rights of social media data providers. 
We further propose that there needs to be more consideration 
towards the balance between the common good and the 
intrusion of privacy. Collaboration between ethics researchers 
and digital epidemiologists is needed to develop ethics 
committees, guidelines and to oversee research in the field.
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