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Introduction

There is a growing interest in deploying artificial intelligence 
(AI) strategies to achieve public health outcomes, particularly 
in response to the global coronavirus disease 2019 (COVID-19) 
pandemic where novel datasets, surveillance tools and models 
are emerging very quickly. 

The objective of this manuscript is to provide a framework for 
considering natural language processing (NLP) approaches 
to public health based on historical applications. This 
overview includes a brief introduction to AI and NLP, suggests 
opportunities where NLP can be applied to public health 
problems and describes the challenges of applying NLP in 
a public health context. Particular articles were chosen to 
emphasize the breadth of potential applications for NLP in public 
health as well as the not inconsiderable challenges and risks 
inherent in incorporating AI/NLP in public health analysis and 
decision support.

Artificial intelligence and natural 
language processing
AI research has produced models that can interpret a radiograph 
(1,2), detect irregular heartbeats using a smartwatch (3), 
automatically identify reports of infectious disease in the 
media (4), ascertain cardiovascular risk factors from retinal 
images (5) and find new targets for existing medications (6,7). 
The success of these models is built from training on hundreds, 
thousands and sometimes millions of controlled, labelled and 
structured data points (8). The capacity of AI to provide constant, 
tireless and rapid analyses of data offers the potential to 
transform society’s approach to promoting health and preventing 
and managing diseases. AI systems have the potential to “read” 
and triage all of the approximately 1.3 million research articles 
indexed by PubMed each year (9); “examine” comments from 
1.5 billion Facebook users or “monitor” 500 million tweets of 
people struggling with mental illness on a daily basis, foodborne 
illness or the flu (10,11); and simultaneously interact with each 
and every person seeking answers to their health questions, 
concerns, problems and challenges (12).
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NLP is a subfield of AI that is devoted to developing algorithms 
and building models capable of using language in the same 
way humans do (13). It is routinely used in virtual assistants 
like “Siri” and “Alexa” or in Google searches and translations. 
NLP provides the ability to analyze and extract information 
from unstructured sources, automate question answering and 
conduct sentiment analysis and text summarization (8). With 
natural language (communication) being the primary means 
of knowledge collection and exchange in public health and 
medicine, NLP is the key to unlocking the potential of AI in 
biomedical sciences.

Most modern NLP platforms are built on models refined 
through machine learning techniques (14,15). Machine learning 
techniques are based on four components: a model; data; a loss 
function, which is a measure of how well the model fits the data; 
and an algorithm for training (improving) the model (16). Recent 
breakthroughs in these areas have led to vastly improved NLP 
models that are powered by deep learning, a subfield of machine 
learning (17). 

Innovation in the different types of models, such as recurrent 
neural network-based models (RNN), convolutional neural 
network-based models (CNN) and attention-based models, 
has allowed modern NLP systems to capture and model more 
complex linguistic relationships and concepts than simple 
word presence (i.e. keyword search) (18). This effort has been 
aided by vector-embedding approaches to preprocess the data 
that encode words before feeding them into a model. These 
approaches recognize that words exist in context (e.g. the 
meanings of “patient,” “shot” and “virus” vary depending on 
context) and treat them as points in a conceptual space rather 
than isolated entities. The performance of the models has also 
been improved by the advent of transfer learning, that is, taking 
a model trained to perform one task and using it as the starting 
model for training on a related task. Hardware advancements 
and increases in freely available annotated datasets have also 
boosted the performance of NLP models. New evaluation tools 
and benchmarks, such as GLUE, superglue and BioASQ, are 
helping to broaden our understanding of the type and scope of 
information these new models can capture (19–21).

Opportunities

Public health aims to achieve optimal health outcomes within 
and across different populations, primarily by developing and 
implementing interventions that target modifiable causes 
of poor health (22–26). Success depends on the ability to 
effectively quantify the burden of disease or disease risk factors 
in the population and subsequently identify groups that are 
disproportionately affected or at-risk; identify best practices 
(i.e. optimal prevention or therapeutic strategies); and measure 
outcomes (27). This evidence-informed model of decision 
making is best represented by the PICO concept (patient/
problem, intervention/exposure, comparison, outcome). PICO 

provides an optimal knowledge identification strategy to frame 
and answer specific clinical or public health questions (28). 
Evidence-informed decision making is typically founded on the 
comprehensive and systematic review and synthesis of data in 
accordance with the PICO framework elements.

Today, information is being produced and published (e.g. 
scientific literature, technical reports, health records, 
social media, surveys, registries and other documents) at 
unprecedented rates. By providing the ability to rapidly analyze 
large amounts of unstructured or semistructured text, NLP has 
opened up immense opportunities for text-based research and 
evidence-informed decision making (29–34). NLP is emerging as 
a potentially powerful tool for supporting the rapid identification 
of populations, interventions and outcomes of interest that 
are required for disease surveillance, disease prevention and 
health promotion. For example, the use of NLP platforms that 
are able to detect particular features of individuals (population/
problem, e.g. a medical condition or a predisposing biological, 
behavioural, environmental or socioeconomic risk factor) in 
unstructured medical records or social media text can be used to 
enhance existing surveillance systems with real-world evidence. 
One recent study demonstrated the ability of NLP methods to 
predict the presence of depression prior to its appearance in 
the medical record (35). The ability to conduct real-time text 
mining of scientific publications for a particular PICO concept 
provides opportunities for decision makers to rapidly provide 
recommendations on disease prevention or management that 
are informed by the most current body of evidence when timely 
guidance is essential, such as during an outbreak. NLP-powered 
question-answering platforms and chatbots also carry the 
potential to improve health promotion activities by engaging 
individuals and providing personalized support or advice. Table 1 
provides examples of potential applications of NLP in public 
health that have demonstrated at least some success.

Challenges

Despite the recent advances, barriers to widespread use of NLP 
technologies remain.

Similar to other AI techniques, NLP is highly dependent on the 
availability, quality and nature of the training data (72). Access 
and availability of appropriately annotated datasets (to make 
effective use of supervised or semi‑supervised learning) are 
fundamental for training and implementing robust NLP models. 
For example, the development and use of algorithms that are 
able to conduct a systematic synthesis of published research on a 
particular topic or an analysis and data extraction from electronic 
health records requires unrestricted access to publisher or 
primary care/hospital databases. While the number of freely 
accessible biomedical datasets and pre‑trained models has been 
increasing in recent years, the availability of those dealing with 
public health concepts remains limited (73).
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The ability to de-bias data (i.e. by providing the ability to inspect, 
explain and ethically adjust data) represents another major 
consideration for the training and use of NLP models in public 
health settings. Failing to account for biases in the development 
(e.g. data annotation), deployment (e.g. use of pre-trained 
platforms) and evaluation of NLP models could compromise 
the model outputs and reinforce existing health inequity (74). 
However, it is important to note that even when datasets and 
evaluations are adjusted for biases, this does not guarantee an 
equal impact across morally relevant strata. For example, use of 
health data available through social media platforms must take 
into account the specific age and socioeconomic groups that 
use them. A monitoring system trained on data from Facebook 
is likely to be biased towards health data and linguistic quirks 
specific to a population older than one trained on data from 
Snapchat (75). Recently many model agnostic tools have been 
developed to assess and correct unfairness in machine learning 
models in accordance with the efforts by the government and 
academic communities to define unacceptable AI development 
(76–81).

Currently, one of the biggest hurdles for further development 
of NLP systems in public health is limited data access (82,83). 
Within Canada, health data are generally controlled regionally 
and, due to security and confidentiality concerns, there is 
reluctance to provide unhindered access to these systems and 
their integration with other datasets (e.g. data linkage). There 
have also been challenges with public perception of privacy and 
data access. A recent survey of social media users found that the 
majority considered analysis of their social media data to identify 
mental health issues “intrusive and exposing” and they would 
not consent to this (84). 

Before key NLP public health activities can be realized at 
scale, such as the real-time analysis of national disease trends, 
jurisdictions will need to jointly determine a reasonable scope 
and access to public health–relevant data sources (e.g. health 
record and administrative data). In order to prevent privacy 
violations and data misuse, future applications of NLP in the 
analysis of personal health data are contingent on the ability to 
embed differential privacy into models (85), both during training 
and postdeployment. Access to important data is also limited 
through the current methods for accessing full text publications. 
Realization of fully automated PICO-specific knowledge 
extraction and synthesis will require unrestricted access to journal 
databases or new models of data storage (86).

Finally, as with any new technology, consideration must be given 
to assessment and evaluation of NLP models to ensure that 
they are working as intended and keeping in pace with society’s 
changing ethical views. These NLP technologies need to be 
assessed to ensure they are functioning as expected and account 
for bias (87). Although today many approaches are posting 
equivalent or better-than-human scores on textual analysis tasks, 
it is important not to equate high scores with true language 
understanding. It is, however, equally important not to view 

Table 1: Examples of existing and potential applications 
of natural language processing in public health

Abbreviation: NLP, natural language processing 

Type of 
activity

Public health 
objective

Example of NLP use

Identification 
of at-risk 
populations or 
conditions of 
interest 

To continuously measure 
the incidence and 
prevalence of diseases 
and disease risk factors 
(i.e. surveillance)

Analysis of unstructured 
or semistructured text 
from electronic health 
records or social media 
(36–42)

To identify vulnerable and 
at-risk populations 

Analysis of risk 
behaviours using social 
media (43–45)

Identification 
of health 
interventions

To develop optimal 
recommendations/
interventions 

Automated systematic 
review and analysis of the 
information contained in 
scientific publications and 
unpublished data (46–50)

To identify best practices Identification of 
promising public health 
interventions through 
analysis of online grey 
and peer reviewed 
literature (51)

Identification 
of health 
outcomes 
using 
real‑world 
evidence

To evaluate the benefits 
of health interventions

Analysis of unstructured 
or semistructured text 
from electronic health 
records, online media and 
publications to determine 
the impact of public 
health recommendations 
and interventions (52,53)

To identify unintended 
adverse outcomes related 
to interventions 

Analysis of unstructured 
or semistructured text 
from electronic health 
records, social media and 
publications to identify 
potential adverse events 
of interventions (54–58)

Knowledge 
generation 
and translation

To support public health 
research 

Analysis and extraction 
of information from 
electronic health records 
and scientific publications 
for knowledge generation 
(59–62)

To support evidence-
informed decision making 

Use of chatbots, 
question/answer systems 
and text summarizers 
to provide personalized 
information to individuals 
seeking advice to 
improve their health and 
prevent disease (63–65)

Environmental 
scanning and 
situational 
awareness 

To conduct public 
health risk assessments 
and provide situational 
awareness

Analysis of online content 
for real-time critical event 
detection and mitigation 
(66–70)

To monitor activities that 
may have an impact on 
public health decision 
making

Analysis of decisions of 
international and national 
stakeholders (71) 
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a lack of true language understanding as a lack of usefulness. 
Models with a “relatively poor” depth of understanding can still 
be highly effective at information extraction, classification and 
prediction tasks, particularly with the increasing availability of 
labelled data.

Natural language processing and the 
coronavirus disease 2019 (COVID-19)
With the emergence of the COVID-19, NLP has taken a 
prominent role in the outbreak response efforts (88,89). NLP has 
been rapidly employed to analyze the vast quantity of textual 
information that has been made available through unrestricted 
access to peer-review journals, preprints and digital media (90). 
NLP has been widely used to support the medical and scientific 
communities in finding answers to key research questions, 
summarization of evidence, question answering, tracking 
misinformation and monitoring of population sentiment (91–97).

Conclusion

NLP is creating extraordinary opportunities to improve evidence-
informed decision making in public health. We anticipate that 
broader applications of NLP will lead to the creation of more 
efficient surveillance systems that are able to identify diseases 
and at-risk conditions in real time. Similarly, with an ability to 
analyze and synthesize large volumes of information almost 
instantaneously, NLP is expected to facilitate targeted health 
promotion and disease prevention activities, potentially leading 
to population-wide disease reduction and greater health equity. 
However, these opportunities are not without risks: biased 
models, biased data, loss of data privacy and the need to 
maintain and update models to reflect the evolving language 
and context of public communication are all existing challenges 
that will need to be addressed. We encourage the public health 
and computer science communities to collaborate in order to 
mitigate these risks, ensure that public health practice does not 
fall behind in these technologies or miss opportunities for health 
promotion and disease surveillance and prevention in this rapidly 
evolving landscape.
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