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Abstract

Rapidly maturing technologies for sensing and activity recognition can provide unprecedented 

access to the complex structure daily activity and interaction, promising new insight into the 

mechanisms by which experience shapes developmental outcomes. Motion data, autonomic 

activity, and “snippets” of audio and video recordings can be conveniently logged by wearable 

sensors (Lazer et al., 2009). Machine learning algorithms can process these signals into 

meaningful markers, from child and parent behavior to outcomes such as depression or teenage 

drinking. Theoretically motivated aspects of daily activity can be combined and synchronized to 

examine reciprocal effects between children’s behaviors and their environments or internal 

processes. Captured over longitudinal time, such data provide a new opportunity to study the 

processes by which individual differences emerge and stabilize. This paper introduces the reader to 

developments in sensing and activity recognition with implications for developmental phenomena 

across the lifespan, sketching a framework for leveraging mobile sensors for transactional analyses 

that bridge micro- and longitudinal- time-scales of development. It finishes by detailing resources 

and best practices to facilitate the next generation of developmentalists to contribute to this 

emerging area.
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1 | INTRODUCTION

Across individuals, development proceeds with remarkable regularity. By and large, most 

children become experts in language, motor control, and social interaction, with 

recognizable milestones along the way. At the same time, there are meaningful differences 

between individuals. Some differences appear to be systematically related to past 

experiences, whereas others exist despite ostensible similarities in circumstances. We know 

variation in genes is related to variation in many outcomes (Plomin, DeFries, Knopik, & 

Neiderhiser, 2016), and at the same time, we know that even from the first stages of 
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embryonic development, the structure of an organism is not prespecified by the genes, but 

rather is determined by interactions between prior structure and what is present in the local 

cellular environment (Gottlieb, 1998; Stiles, 2008). Studies indicate that experiences across 

the lifespan matter for long term outcomes (Sroufe, Egeland, Carlson, & Collins, 2005), but 

at the same time, even extreme factors like trauma, abuse, and neglect do not affect all 

individuals in the same way.

It is no longer contentious that development is the product of complex interactions between 

organism-internal and organism-external factors. However, moving beyond debates about 

nature versus nurture to characterize “the way in which biology and experience work 

together throughout thick and thin” (Gottesman & Hanson, 2005; p. 263) continues to be a 

challenge for developmental science.

In this paper, we argue that the key to this puzzle lies in characterizing daily activity: the 

mundane day-in and- day out of what we perceive and do, who and what we interact with, 

and the internal states that occupy the minutes, hours, and days of our lives. Technological 

advances now make capturing and analyzing large volumes of daily activity occurring in 

natural environments possible. From wearable cameras and step trackers to smart homes and 

smart thread, sensors to capture daily activity are literally being woven into the fabrics of our 

daily lives. The widespread adoption and presence of these sensors, paired with the coming 

of age of powerful algorithms to automatically extract meaningful activities from raw sensor 

data, allows unprecedented access to dynamics of activity in the daily contexts in which 

development happens. Captured over longitudinal time, such data provide a radical new 

opportunity to tackle the oldest puzzles of development; namely, the mechanisms by which 

experience shapes developmental outcomes.

1.1 | Sensing daily activity: A new lens into development

Broadly, wearable or mobile sensors are computer chips small enough to be carried or worn 

(Starner et al., 1997). Developments in micro-processing have led to increasingly smaller 

devices without compromising storage, battery life or computing power. Devices embedded 

with mobile sensors have ushered in an era of “ubiquitous” computing, referring to the fact 

that such devices can now be found everywhere: in our pockets, on our bodies, our homes 

and communities (Abowd & Mynatt, 2000; Weiser, 1991).

The use of mobile sensors to collect objective, ecologically valid data to gain insight into 

human behavior began in the late 1990s (Pentland, 2000). The pioneering studies of Sandy 

Pentland (Eagle & Pentland, 2006) used Bluetooth scans to log proximity between office 

workers’ cell phones. With simple measures of physical presence and distance between 

individuals, they were able to characterize numerous aspects of social behavior, from 

friendships to work habits and places of informal gathering. This paper was the first 

suggestion that engineering techniques could provide insight into the complexity of human 

interactions.

The initial efforts of this new “computational social science” (Lazer et al., 2009) were led by 

computer scientists and engineers. However, the field has matured such that it is now 

increasingly feasible and common for social scientists to be involved with and even lead 
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mobile sensing studies. Indeed, it has been nearly 20 years since the first mobile sensing 

publications geared toward social scientists were published (Goodwin, Velicer, & Intille, 

2008; Healey, 2000; Miller, 2012), with high-profile calls-to-action continuing to emerge 

(Harari, Müller, Aung, & Rentfrow, 2017; Schmid Mast, Gatica-Perez, Frauendorfer, 

Nguyen, & Choudhury, 2015; Timmons et al., 2017). Empirical findings from mobile 

sensing research are no longer limited to engineering and computer science journals, but 

now span a range of disciplinary perspectives, from clinical psychology to personality 

research (Ben-Zeev, Scherer et al., 2017; Chin, Goodwin, Vosoughi, Roy, & Naigles, 2017; 

Lathia, Sandstrom, Mascolo, & Rentfrow, 2017).

This paper will begin with a review and synthesis of existing research in psychology and 

developmental science focused on analyzing daily activity collected via mobile and wearable 

sensors. This work indicates the feasibility and unique potential of such data to contribute 

new theories and insights into developmental processes. Next, we introduce research from 

the field of ubiquitous computing. Advances in this field provide new opportunities to 

capture daily activity across the nested layers of the developmental system, with 

implications for a range of phenomena (outlined in Table 1). In the fourth section (“Pushing 

the envelope”) we sketch a framework for leveraging mobile sensors to access the reciprocal 

transactions between participants’ behaviors and their internal, social and physical 

environments as well as the accumulation of these feedback cycles over longitudinal time. 

This is the holy grail of dynamical systems approaches to development (Thelen & Smith, 

1994) and represents the ultimate promise of what mobile sensors could bring to 

developmental science research. The fifth and final section of the paper provides practical 

advice for developmental scientists wishing to leverage these tools within their own work, 

including advice for collaborations and training for students.

2 | DAILY ACTIVITY: A UNIQUE CONTRIBUTION

The study of free-flowing behavior is not common in psychology research, which has been 

dubbed the science of “self-reports and finger-movements” (Baumeister, Vohs, & Funder, 

2007). The psychological is largely considered to reside within the skull (Hutchins, 1995), 

and activity has generally been treated as an indirect way to access the internal workings of 

the mind. Developmental science is unique within psychology for its long-standing focus on 

observations of interactions. This is likely due to the difficulties in administering typical 

standardized measures to preverbal children, as well as the consideration of the impacts of 

social partners and embodied interactions to developmental outcomes.

Historically, however, developmental research has rarely involved studies of natural daily 

activity (Bronfenbrenner, 1977; Lee, Cole, Golenia, & Adolph, 2018). Video recordings of 

scripted laboratory interactions are the data of choice in observational studies across 

development (Adolph, 2016), owing to the fact that they provide high fidelity access to free-

flowing behaviors that can be endlessly observed and systematically characterized. Scripted 

interactions allow researchers to elicit specific phenomena that would only rarely occur 

during the short time of a laboratory visit. Video records thus function as a microscope for 

human activity (Goguen, 1997), allowing researchers to carefully and methodically capture 

both emergent qualities of interactions as well as the precise micro-dynamics of children’s 
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activity and interactions (Bakeman & Gottman, 1997). The vast benefits of video in 

laboratory settings are such that it is irreplaceable in developmental research. However, 

leveraging mobile and wearable sensors to capture activity in daily life can provide unique 

access to structure and variability unlikely to be captured or present in the laboratory.

2.1 | Existing research

A rapidly growing body of research points to the value of characterizing truly ecological 

daily activity within developmental science. This research indicates that daily activity, far 

from being simply “noisy” or “random,” has consequences for child outcomes across 

domains.

Wearable sensors have provided key insights into the relationship between sensorimotor 

development and early cognition. Embodied cognition perspectives emphasize the 

fundamental link between perception and action (Gibson, 1988). The particulars of a 

learner’s body, and the actions available to a learner, determine what is perceivable and 

therefore, what is learnable (Kretch, Franchak, & Adolph, 2014; Smith & Gasser, 2005). In 

turn, these changing experiences can elicit novel inputs for social and cognitive development 

(Campos et al., 2000; Soska, Adolph, & Johnson, 2010). Sensors that can capture the rapid 

changes in sensorimotor experience across children’s first months and years of life have 

provided new insight into these early processes.

Much of this work stems from the use of lightweight cameras positioned on children’s 

foreheads to capture “what’s in view” for infants and toddlers (Borjon et al., 2018). Using 

such techniques, Fausey and colleagues (Fausey, Jayaraman, & Smith, 2016) were able to 

record six hours of daily visual experience of individual infant participants. Analyses of the 

footage indicated that the distribution of faces in infants’ view is highest within the first 

months of life and then decreases in the first 2 years, whereas the distribution of hands in 

infants’ view shows the reverse trajectory. These striking regularities have implications for 

what is learned and learnable across the first 2 years of life (Smith, Jayaraman, Clerkin, & 

Yu, 2018). For example, the frequency with which particular objects appeared in view 

aligned with early word learning, suggesting the importance of these daily exposures for 

learning outcomes (Clerkin, Hart, Rehg, Yu, & Smith, 2017).

A wide variety of regularities in daily exposure matter for children’s outcomes. Traditional 

measures indicate that the presence of household chaos (Vernon-Feagans, Willoughby, & 

Garrett-Peters, 2016), TV and electronics (Christakis et al., 2009), books (Raikes et al., 

2006) and neighborhood institutions (Leventhal & Brooks-Gunn, 2000) all have implications 

for cognitive development. However, questionnaire measures and even objective scans of the 

home (Caldwell & Bradley, 1984) are an imperfect proxy of lived experience: just because 

there are books in the home does not mean a child is engaging with them. Emerging sensor 

research has begun linking some dynamic measures of experience to developmental 

outcomes. For example, research with teenagers has found that objective GPS-based (but not 

subjective) measures of physical proximity to liquor stores are associated with an increased 

likelihood of underage drinking (Byrnes et al., 2017). Such objective measures of the 

structure of daily experience will likely continue to reveal new insights into developmental 

trajectories.
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Perhaps the most extensive focus of developmental sensing research is on children’s early 

language environments. In the Human Speechome Project, Deb Roy famously outfitted his 

own home with enough cameras to capture a near-continuous record of his own child’s 

experiences from birth to 3 years of age. A combination of automated analyses and extensive 

human annotation was used to create a massive dataset characterizing his child’s language 

exposures: including the words, physical locations, and motion of multiple speakers in the 

house. Analyses revealed that the distinctness of the context in which a word was uttered–

from its physical location to the other words around it–helped to predict the age of 

production of individual words (Roy, Frank, DeCamp, Miller, & Roy, 2015). However, the 

vast resources required to create this dataset are arguably yet to outweigh its overall 

contributions to the field. Mobile and wearable sensors are a creative counterpoint to such a 

relatively heavy-weight setup. By virtue of being able to be placed on the body, a single 

camera or audio recorder can be used in place of an integrated multi-camera system to 

capture various aspects of a child’s daily exposures.

In this vein, a sizeable body of research has emerged using the LENA, a lightweight 

wearable audio recorder developed to study language development (Zimmerman, 2009). The 

LENA includes specialized algorithms developed to identify onset and offset of individual 

parent and child vocalizations, which are then used to identify patterns of contingent speech 

(i.e., conversations) between children and their caregivers. Research with the LENA has 

demonstrated that, over and above parental speech, it is the volume of conversations that 

predicts children’s vocabulary size and school achievement (Chin et al., 2017; Weisleder & 

Fernald, 2013). The LENA has been used to study language environments across many 

populations (reviewed by Wang, Chen et al., 2017). While additional algorithms for 

processing ambulatory audio recordings continue to be developed (e.g., Ludwig, 2018), 

developmentalists have also begun to supplement LENA’S automated detection algorithms 

with human coding to pursue additional questions, such as the impacts of parent-ese speech 

style (Ramírez-Esparza, García-Sierra, & Kuhl, 2014) or how speech varies according to 

activity (Soderstrom & Wittebolle, 2013).

Audio data from wearable devices has also been successfully used to characterize aspects of 

caregiving quality and family interactions across the lifespan. Daily conflict behaviors 

between parents and children have been associated with parental trait emotionality (Slatcher 

& Trentacosta, 2012) and depression symptoms (Slatcher & Trentacosta, 2011). More daily 

family conflict has also been associated with children’s lower cortisol at awakening and 

flatter diurnal slope over the day, indicating more maladaptive responses (Slatcher & Robles, 

2012). Conversely, more daily maternal responsiveness, characterized by warmth, emotional 

support, and expressions of pride, is associated with better immune response in teenagers 

with asthma (Tobin et al., 2015). We are unaware of any work that compares objective 

caregiving measures of daily activity with gold-standard lab situations, or that examines 

variability in caregiving within or across days and its potential associations with child 

outcomes; both key directions for future research. However, these studies indicate the 

feasibility and predictive validity of objective measures of daily family interactions across a 

wide age range.
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Physical activity is another readily available marker of daily activity with implications for 

many domains of development (Pellegrini & Smith, 1998). In a pioneering series of studies 

in the 1980s, Buss and colleagues compared the amount of free-flowing physical movement 

as captured by an early motion sensor, the actometer, in a longitudinal sample of 3-, 4-, and 

7-year-olds. Findings indicated strong stability in children’s activity across time, as well as 

strong correlations with concurrent and future measures of children’s personality measures. 

More active children were independently judged by teachers as more outgoing; additionally 

they were more likely to be resistant to adult demands (Buss, Block, & Block, 1980). A 

follow-up study indicated that mothers of children identified as more active via actometer 

were more likely to be impatient, hostile, and physically intrusive in their interactions with 

their children (Buss, 1981). The longitudinal stability of these measures, and their strong 

associations with personality and parenting measures is striking. These associations lead us 

back to the main puzzles of developmental science: how do relationships between children’s 

daily experiences and their outcomes become established? While child activity may lead to 

parental aggression, it is also feasible that the relationship is bidirectional, that is, that 

parental aggression could also contribute to child hyperactivity, perhaps mediated by 

difficulties regulating emotions. Additionally, while the observed correlations were strong, a 

complete developmental account would provide some insight into both lawful continuity and 

lawful change (Sroufe et al., 2005), or why certain children showed stable patterns of 

activity across time, whereas others varied across these three timepoints. Advances in 

sensing mean that future research could begin to disentangle parent and child characteristics 

to quantify how they interact and influence one another over time, a proposition we will 

return to below.

2.2 | Existing research: Lessons learned

Existing research indicates the feasibility and value of sensing daily activity to provide 

insight into development. Below, we synthesize this research to highlight four potential 

contributions of these emerging techniques.

First, while some research indicates a strong correspondence between measures derived 

from structured laboratory paradigms and unstructured home activity, other research 

indicates key differences between these measures. For example, the total volume of speech 

in structured interactions is strongly (r = 0.7) predicted by speech in unstructured 

interactions (Tamis-LeMonda, Kuchirko, Luo, Escobar, & Bornstein, 2017). However, as 

reported by the NICHD Early Child Care Research Network, sensitivity in free play and 

unstructured home interactions showed only moderate correlations (r = 0.4), and only 

sensitivity in unstructured interactions showed a main effect on attachment outcomes 

(NICHD Early Child Care Research Network, 1997). Additionally, negative impacts of 

caregivers exhibiting less sensitive care were shown to be reduced when children spent more 

time with their caregivers, suggesting that both the quality and quantity of care are distinct 

and interacting factors relevant for understanding outcomes (Ibid).

Second, other aspects of natural activity are simply not present in structured laboratory 

interactions. These include extended periods of non-interaction between parents and their 

children (Tamis-LeMonda et al., 2017), the propensity to walk in circles rather than in a 
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straight line (Lee et al., 2018), or the low proportion of faces present in the view of toddlers 

(Jayaraman, Fausey, & Smith, 2015). These common but seldom observed-in-laboratory 

features of experience may have critical developmental functions (Smith et al., 2018): 

children may learn to gaze follow not from looking at eyes but looking at hands (Deak, 

Krasno, Triesch, Lewis, & Sepeta, 2014); extended silences between interactions may be 

critical for consolidation and marking of semantic boundaries (Tamis-LeMonda et al., 2017). 

Sensing daily activity can provide new access to these previously unmeasured aspects of 

children’s experiences.

Third, sensors allow for the collection of much larger volumes of data than would be 

possible to obtain in the lab. This means that we have a chance to capture activities that 

occur rarely but may have developmental import (VanDam, 2016). Additionally, large 

volumes of data allow researchers to access temporal structure and variability of activity, 

which can predict outcomes over and above traditional summary measures (Li & Lansford, 

2018; Sherman, Mumford, & Schnyer, 2015).

Finally, the possibility to capture activity over long periods of time means sensors can 

provide access to phenomena which may take hours, days, or weeks to unfold, such as the 

cumulative impact of multiple extended tantrums on parental responses to their children, and 

the resulting impacts on children’s behavior. The ability to capture such transactive 

reciprocal processes across time holds perhaps the greatest promise of sensors for 

developmental science, a proposition we explore further in Section 4 (“The future of mobile 

sensing in developmental science”) following a review of ongoing research and 

developments from the ubiquitous computing community.

3 | ADVANCES IN SENSING AND UBIQUITOUS COMPUTING

Developmental science stands to benefit from ongoing developments from the field of 

ubiquitous computing. These include technological advances for capturing novel 

datastreams as well as powerful “activity recognition” algorithms which transform raw 

sensor data into meaningful markers of activity. In the next section, we provide a primer on 

activity recognition followed by an overview of mobile sensing research within ubiquitous 

computing, focusing on relatively stable solutions that hold the most potential for immediate 

incorporation into research. We organize this research according to its potential to provide 

access to nested levels of the developmental system, considering aspects of individual 

psychobiological activity, interpersonal activity, and daily ecological contexts.

3.1 | Introduction to activity recognition

Much of raw sensor data is uninterpretable or meaningless to humans: a log of physical 

changes in patterns of light, motion, or pressure. Activity recognition is the process by 

which these signals are transformed into markers of meaningful activity, such as steps or 

changes in affect (Bulling, Blanke, & Schiele, 2014). The basis of activity recognition 

algorithms is to identify distinctive physical signatures of meaningful activities, which, once 

learned by a model, can be used to predict new instances of behavior.

de Barbaro Page 7

Dev Psychobiol. Author manuscript; available in PMC 2020 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These algorithms are developed via a “training” process, during which labels of identified 

behaviors or activities (“outputs”, known in the field as “ground truth”) are paired with raw 

sensor data (the “inputs”). Training consists of the learning of optimal “betas” for predicting 

ground truth labels from sensor inputs, akin to learning the weights on a regression (indeed, 

regressions are a commonly used machine learning model). Via this process, smart watches, 

for example, use changes in light reflected at the wrist to detect changes in the blood flow 

corresponding to heart beats. Similarly, the algorithms in a Fitbit can identify steps (and 

distinguish them from bike riding or driving in a car) via characteristic patterns in motion, 

using features such as the typical speed and direction of acceleration of the arm as it swings 

with each step. For research grounded in theory, an important question is whether and how 
reliably raw sensor data can be translated into meaningful markers of individual, 

interpersonal, and ecological activity.

3.2 | Sensing individual activity

3.2.1 | Physiological activity—A variety of wearable sensors can capture continuous 

markers of autonomic nervous system activity while participants are fully ambulatory, 

including markers of heartbeat, skin conductance, respiration, and temperature. While 

typically requiring direct contact with the skin, the current generation of ambulatory 

physiological sensors are much more comfortable than older generations, such that it is 

feasible to collect 11+ hours/day of usable data for upwards of 4 weeks (Rahman et al., 

2014). The quality of ambulatory psychophysiological recordings is highly variable. 

Electrode-based and chest-strap monitors should be used when high accuracy data are 

required, as it is known that wrist-worn smart-bands provide relatively low-quality indicators 

of heart rate (Wang, Blackburn et al., 2017). Most wrist-based sensors do not provide the 

resolution necessary to reliably detect short-lasting or subtle physiological changes, or 

calculate high-resolution physiological indices such as heart rate variability (i.e., vagal tone). 

Multiple companies now also provide physiological monitoring solutions that include 

wearable amplifiers (biopac.com; mindwaretech.com). While larger and more cumbersome, 

these amplified setups allow for accurate identification of complex markers of blood flow 

such as PEP (Cacioppo, Uchino, & Berntson, 1994).

While typically developed for adults, our pilot testing of a variety of commercially available 

and research-grade devices–both chest-worn straps and wrist-bands (worn on children’s 

ankles)–indicates that they appear to provide valid data with young subjects, although 

systematic testing of these claims is warranted.

A major issue with even the highest quality physiological sensors is that the magnitude of 

effects of physical activity typically overwhelms the subtle physiological signals associated 

with affect and emotion. Thus, it is rare for these signals to be directly used on their own as 

markers of stress, for example. One common solution to this is to restrict analyses of ANS 

data to periods of reduced motion (e.g., Hovsepian et al., 2015). Interestingly, this may be 

less so an issue with infants in particular, as motor activity appears to be a more precisely 

valid indicator of arousal level for pre-locomotor infants (Wass, de Barbara, & Clackson, 

2015) relative to older (self-locomoting) participants.
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3.2.2 | Affect—Active-sensing techniques which require participants to actively log data 

or responses are the gold standard for ambulatory assessment of affect and internal 

experiences (Ebner-Priemer & Trull, 2009; Mehl & Conner, 2011). Repeated surveying of 

subjective experience, also referred to as ecological momentary assessment (EMA), was 

pioneered in the 1980s by Csikszentmihalyi and colleagues (Csikczentmihalyi & Larson, 

1983; Shiffman, Stone, & Hufford, 2008) and is now a well-established method within 

psychology (Bolger & Laurenceau, 2013). Today, EMAs are typically administered on 

participants’ mobile phones via a variety of open-source and commercially available 

applications (Kubiak & Krog, 2011; Wilhelm, Perrez, & Pawlik, 2012). Many common 

mood assessments are based on the PANAS (Watson, Clark, &Tellegen, 1988) or similar 

affect scales (Peeters, Berkhof, Delespaul, Rottenberg, & Nicolson, 2006), and it is common 

in EMA studies to administer approximately 30 items 4–6 times a day for periods ranging 

from 1 week to 1 month (as reviewed by aan het Rot, Hogenelst, & Schoevers, 2012).

Within ubiquitous computing research, novel designs for collection of EMA data are being 

explored, including picture selection (Poliak, Adams, & Gay, 2011), lock-screen (Zhang, 

Pina, & Fogarty, 2016) and smart-watch designs (Intille, Haynes, Maniar, Ponnada, & 

Manjourides, 2016) as well as methods to record images, audio, or video in lieu of survey-

based responses. The latter can provide much higher dimensional data and may be less 

burdensome than traditional methods (see, e.g., the use of images in place of food diaries; 

Cordeiro, Bales, Cherry, & Fogarty, 2015). With such novel methods, certain caution is 

required when addressing data validity (Chan et al., 2018). While EMA has historically not 

been subject to the same standards as traditional questionnaires within psychology, experts 

in EMA design now emphasize these concerns (Stone, 2017; Stone & Shiftman, 2002), 

recommending, for example, that a minimum of three items be used to address individual 

constructs when examining within-person across-time variation (Bolger & Laurenceau, 

2013; Cranford et al., 2006).

Ambulatory affect has also been characterized through a variety of “passive” methods where 

sensor data are logged without active intervention by participants. Passive-sensing affect 

models have been developed using physiological, audio, and motion data (Sharma & 

Gedeon, 2012), as well as social media data (De Choudhury, Counts, & Gamon, 2012). An 

array of algorithms that map physiological parameters to affective states have been 

published in the computer science literature (Guo et al., 2013; Kim, Bang, & Kim, 2004). 

However, given the complex theoretical and conceptual issues surrounding affect (Frijda, 

1986), combined with the relatively lax standards of validation within the ubiquitous 

computing community, passive affect sensing is of variable quality and many published 

models would likely not pass more thorough quality control standards. This is not surprising 

given that much laboratory research indicates that physiological signals alone cannot 

differentiate a wide spectrum of emotions (Wilhelm & Grossman, 2010). However, some 

promising models distinguishing a more restricted subset of affective states have been 

developed. The best combine physiological and motion signals, such as a model developed 

by the MD2K consortium which uses respiration, heart rate and motion to predict stress 

levels (Hovsepian et al., 2015). Note that this model was designed with both social scientists 

and engineers, is based on training data from a widely recognized stressor (Trier social stress 
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task, Kirschbaum, Pirke, & Hellhammer, 1993), and has been validated with concurrent 

EMA in a completely naturalistic situation. We emphasize such critical quality control 

measures further in the practical considerations section.

The use of high-fidelity audio or linguistic content is perhaps the most promising avenue for 

automated assessment of affect. Ambulatory audio recordings have been used to identify a 

variety of paralinguistic vocalizations, such as laughing or crying, in both adults and 

children (Rao, Kim, Clements, Rozga, & Messinger, 2014; Yatani & Truong, 2012). 

Acoustic features have also been used to identify affect and tone within speech, including 

identification of basic emotions (Basu, 2002; Rachuri et al., 2010), stress (Lu et al., 2012) 

and emotional arousal (Juslin & Scherer, 2005) as well as clinical symptoms, such as 

depressive (i.e., flat) tone (Moore II, Clements, Peifer, & Weisser, 2008; Taguchi et al., 

2018). While promising, as above, many of these models have been developed with small 

samples and require additional validation to ensure their robustness. Given the importance of 

affect for social and emotional developmental outcomes as well as, e.g., assessments of well-

being this is a key area for future research.

Analyses of textual content, known as natural language processing (NLP), have also been 

successfully used to identify mood as well as other individual state and trait characteristics. 

NLP methods have been widely implemented in ambulatory psychological research with 

content transcribed from audio snippets (Mehl, 2017, as detailed above). More recently, NLP 

techniques have been used on data collected from social media sites or messaging platforms 

(De Choudhury et al., 2012). Both audio snippet and social media data have been used 

successfully to assess mood and affect (De Choudhury et al., 2012; Gill, French, Gergle, & 

Oberlander, 2008), depressive symptoms (De Choudhury, Gamon, Counts, & Horvitz, 2013; 

Rude, Gortner, & Pennebaker, 2004), and suicidality (De Choudhury, Kiciman, Dredze, 

Coppersmith, & Kumar, 2016; Stirman & Pennebaker, 2001), among other states. While 

promising, there are some challenges with obtaining sufficient text content for NLP 

analyses. In particular, while audio snippets are now feasible to collect at large scale via cell-

phones, automated transcription of ambulatory recordings is still not feasible, meaning these 

recordings require time-consuming human transcription (Mehl, 2017). Additionally, many 

people do not post frequently enough on social media to derive multiple daily markers of 

affect, and they may be unwilling to share content from higher-density but more private chat 

or messaging platforms, meaning that researchers are often relegated to use of platforms 

with relatively volumes of data. Advances in automated audio transcription (LeCun, Bengio, 

& Hinton, 2015) as well as privacy-preserving techniques may increase the feasibility of 

these techniques for large-scale high-density research.

3.2.3 | Embodied activity—Reports of activity can be collected via active (via 

calendars or EMAs) or passive methods. The most common passive activity recognition 

models use inertial sensors (i.e., accelerometer and gyrometer, which measure linear and 

angular acceleration of motion, respectively) relative position sensors (barometric pressure, 

magnetometer, geolocation data) and ambient light and audio sensors. These sensors are 

present in all off-the-shelf smart phones and many inexpensive wearables (Harari et al., 

2016; Lara & Labrador, 2013).
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The most robust and commonly used markers of activity in both social and computer science 

are related to locomotion and sleep (Bussmann & Ebner-Priemer, 2012). Movement can be 

accurately calculated via GPS by simply summing travelled distance, or via algorithms that 

consider speed and patterns of motion to summarize type or quantity of motion. Movement 

patterns have been used in a number of large-scale longitudinal studies (Brocklebank, 

Falconer, Page, Perry, & Cooper, 2015; McConnell et al., 2017).

Sleep is another common and robustly detected activity used in various large-scale studies 

(e.g., Robillard et al., 2015). Actigraphy cannot reliably detect certain subtle sleep measures 

such as sleep cycles, night wakings, or sleep efficiency. (Sadeh, 2011). However, when 

compared with gold-standard polysomnography measures, sleep-wake cycles and total sleep 

time show over 90% agreement in both children and adults (Sadeh, Sharkey, & Carskadon, 

1994; Sitnick, Goodlin-Jones, & Anders, 2008). Another developmental^ relevant and 

highly robust measure is mobile phone use, commonly logged by apps used in ubiquitous 

computing research (Harari et al., 2017).

In smaller scale studies, wearable motion sensors have also been used to identify a wide 

variety of activities of daily living, for example, distinguishing between eating, drinking, 

reading, watching TV, and vacuuming (Lara & Labrador, 2013; Thomaz, Essa, & Abowd, 

2015), as well as subtle behaviors such as aggressiveness or self-injury (Ploetz, Hammerla et 

al., 2012). Indeed, two studies have developed models that can distinguish children’s 

locomotor states, including rolling, walking, sitting, crawling, and climbing (Busser, Ott, 

Van Lummel, Uiterwaal, & Blank, 1997; Nam & Park, 2013). Generally, recognition of 

activity appears to be imminently possible. However, distinguishing between activities 

which are physically similar may require users to wear multiple sensors (Arif & Kattan, 

2015). A powerful alternative is to combine sensors from multimodal sensing platforms, 

such as cellphones (as reviewed by Harari et al., 2017; Miller, 2012). For example, Campbell 

et al. (Wang, Chen et al., 2014) developed algorithms to infer likely studying and partying 

behaviors by combining multiple cellphone data streams, including ambient noise (loud vs. 

quiet), activity level (high vs. low), and geo-coded location (fraternity vs. library) via GPS 

data. For younger children, it may be possible to use a similar approach to access moments 

of focused attention, for example. Namely, cell phone use data combined with motion 

sensors embedded in a headband may be able to identify a steady focus of gaze while 

differentiating it from sleeping or focus on the phone itself. Similar markers have been used 

to identify quality of attention while driving (Tawari, Martin, & Trivedi, 2014).

There is already widespread interest in ambulatory markers of risk- and health-promoting 

behaviors (Bertz, Epstein, & Preston, 2018), of particular relevance for research in 

adolescence and early adulthood. The use of alcohol and other drugs of abuse can be 

captured via transdermal patches or other physiological signals (Simons, Wills, Emery, & 

Marks, 2015), including, for example, the use of wrist-worn sensors and respiration belts to 

detect smoking behaviors (Saleheen et al., 2015). Considering less obtrusive platforms, 

binge drinking has been detected via cell phone features such as changes in speed of typing 

(Bae, Chung, Ferreira, Dey, & Suffoletto, 2017).
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Critically however, the validity of such less-common activity models must be carefully 

assessed as they are often developed with small samples using laboratory-based data. For 

these reasons they are best considered a proof of concept requiring thorough quality control 

and additional development prior to use in studies.

3.3 | Sensing interpersonal activity

Within the ambulatory assessment community in psychology, the gold-standard for objective 

markers of social interaction are qualitative ratings of audio snippets. In contrast, within the 

ubiquitous computing community, “social sensing” has primarily focused on markers of 

proximity and basic acoustic features of audio recordings.

Proximity (i.e., relative distance) between individuals can be detected through a variety of 

methods (Barrat, Cattuto, Tozzi, Vanhems, & Voirin, 2014). For example, radio-frequency 

signals and infrared beams can be used to can detect close contact (1–5 feet) as well as 

directionality, which can be used to detect face-to-face contact between individuals (Olguin 

et al., 2009). In contrast, Bluetooth radio waves are relatively far-ranging but provide 

relatively coarse spatial resolution (e.g., distinguishing whether participants are 1–2, 3–4 vs. 

5–10 feet from one another) (Boonstra, Larsen, Townsend, & Christensen, 2017; Montanari, 

Nawaz, Mascolo, & Sailer, 2017; Osmani, Carreras, Matic, & Saar, 2014). However, 

Bluetooth is an omnidirectional signal and thus cannot be used to detect face-to-face contact. 

While it is technically possible to obtain Bluetooth scans every 5–20 s, on most cell phones 

it is only feasible to log scans once every five minutes or so due to battery constraints 

(Boonstra et al., 2017).

Beyond proximity, algorithms have been developed to detect the presence or absence of 

conversation from audio snippets as a marker of social interaction (Berke, Choudhury, Ali, 

& Rabbi, 2011; Wyatt, Choudhury, & Bilmes, 2007; Wyatt, Choudhury, Bilmes, & Kitts, 

2011). For behavioral scientists used to coding caregiver warmth or sensitivity, these simple 

audio and proximity features fall painfully short of the complex qualities of a parent-child 

bond or peer relationships. However, it is worth considering the insights into daily 

interactions they may be able to provide.

Algorithms to detect qualitative features of interactions from ambulatory audio recordings 

have not yet been developed. However, data from laboratory settings suggest this is feasible. 

Models using features of vocal arousal have been used to automatically identify empathy 

and conflict as well as distinguish between blame and acceptance in adult-adult problem-

solving interactions (Black et al., 2013; Imel et al., 2014; Weusthoff, Baucom, & Hahlweg, 

2013). This is another area where collaborations between developmentalists and engineers 

could provide novel contributions.

3.4 | Sensing the broader ecology

Sensors also hold possibility for capturing aspects of the broader contexts of daily activity. 

For example, specialized sensors can measure chemical and pollutant exposure (Mead et al., 

2013). GPS can be combined with publicly available data to characterize neighborhood 

quality scores or momentary environmental exposures (Chaix et al., 2013), as well as likely 
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activities at locations such as libraries, parks, museums, or fast-food establishments 

(Hariharan, Krumm, & Horvitz, 2005).

Basic characteristics of the environment can also be automatically determined via analysis of 

audio snippets or sporadic images (Hodges et al., 2006), including whether an individual is 

near a road, on a bus, in a library or in a lecture (Eronen et al., 2006; Pirsiavash & Ramanan, 

2012).

Finally, a number of techniques have been developed for recognition of household activities 

with static sensors placed in the environment, leveraging Bluetooth and Infrared signals 

(Cook, Duncan, Sprint, & Fritz, 2018), or water and electricity use by appliances (Froehlich 

et al., 2009; Gupta, Reynolds, & Patel, 2010; Olguin, Gloor, & Pentland, 2009). These 

techniques could be used to unobtrusively capture a number of developmentally interesting 

characteristics, from the number of people in the home to the timing and regularity of meals. 

Out-of-the-box commercial options for such sensors are not yet widely available but active 

research in this area suggests they may soon be, as we further discuss in Section 5 

(“Practical considerations”).

3.5 | Summary and challenges

The possibilities for sensing ambulatory activity are vast, and novel technologies continue to 

be developed. We summarize opportunities to leverage these techniques to study 

developmental questions in Table 1, which pairs developmental constructs and outcomes 

with theoretically relevant daily activities as well as potential sensing solutions for accessing 

those activities. Admittedly, some of the links are somewhat tenuous. To take full advantage 

of the promise of mobile sensors, developmentalists must collaborate with engineers and 

computer scientists to obtain valid and high-quality markers of daily activity. Translating 

traditional constructs into automatically sense-able activity will require creativity, as well as 

some openness to considering simpler physical analogues of subtle behaviors, such as in the 

case of focused attention or caregiver sensitivity. While sensed activities may not always 

map directly onto known laboratory behaviors or constructs, they may still provide valuable 

insight into the developmental process. Ultimately, this is an area with many avenues to 

explore.

4 | PUSHING THE ENVELOPE: THE FUTURE OF MOBILE SENSING IN 

DEVELOPMENTAL SCIENCE

Dynamical systems theories emphasize that development is an accumulation of 

decentralized and local interactions occuring in real time (Smith & Thelen, 2003, p. 343). 

Factors internal and external to the individual–from genetic, to neural, behavioral and 

environmental–are completely bidirectional over the course of individual development 

(Gottlieb, 2000, p. 96). The complexity and scale of this system of reciprocal influences 

means that it has been all but impossible to objectively characterize, leaving developmental 

processes largely obscured. However, advances in sensing mean we could now collect 

multiple precisely time-locked and synchronized dimensions of organism-internal and -

external factors repeatedly and at scale. Such data will allow developmentalists to begin to 
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disentangle complex reciprocal interactions between these factors and quantify how they 

drive developmental trajectories, a truly radical proposition for developmental science.

4.1 | An ecological approach: Capturing synchronized activity across the developmental 
system

Today, it is possible to collect multiple synchronized datastreams that capture not just the 

actions of a child, but simultaneously, a vast array of possible determinants of their actions: 

from their perceived environments and internal states, to aspects of caregiving behaviors, 

and even ecological factors such as household chaos or access to museums.

Datasets which can speak to this ecological approach are relatively rare. In the most 

impressive example to date, Andrew Campbell and colleagues (Wang, Chen et al., 2014) 

examined how first-year students’ activity over the course of a semester would predict their 

end-of-year academic performance as well as daily measures of self-reported stress and 

mental health symptoms. Students’ phones were outfitted with an app that collected widely 

available sensor datastreams, such as screen unlockings, motion patterns, light, and GPS 

data, as well as snippets of ambient sound. Algorithms were developed to transform these 

raw datastreams to access various aspects of students’ activity, from internal states such as 

mood and fatigue, to daily care activities, such as time spent sleeping and exercising, and 

proxies for social interactions and studying. Analyses revealed that while well-being 

indicators and self-care activities begin high at the start of the semester, there was a reliable 

drop leading up to exam period (Wang, Chen et al., 2014). Additionally, changes in early 

versus late semester activities successfully predicted students end of year GPA (Wang, 

Harari, Hao, Zhou, & Campbell, 2015; Wang, Hartman et al., 2017). Within the mobile 

sensing community, there is a growing interest in such comprehensive ecological 

approaches, with efforts to predict and intervene upon physical and mental health outcomes 

such as psychosis onset and failures in smoking cessation (Ben-Zeev, Brian et al., 2017; 

Chatterjee et al.., 2016; Insel, 2017).

However, these efforts have not yet leveraged the full potential of these datasets for gaining 

insight into developmental processes. To do so, analyses of such comprehensive ecological 

datasets need to provide interpretable access to theoretically meaningful mechanisms of 

stability and change across longitudinal time. At first blush, this is at odds with typical 

computer science and engineering approaches which have historically led the majority of 

mobile sensing efforts. In these fields, the goal is often simply accurate prediction of 

outcomes rather than insight into mechanisms. This can lead to a “kitchen sink” approach–

where sensor streams are selected only by virtue of being available on a given platform, or, 

even when theoretically relevant activities are considered, little attention is paid to how these 

may influence one another over time.

Additionally, the models used to analyze these data are often uninterpretable. Today, data 

science is increasingly “hands off”: models are provided raw or lightly preprocessed data as 

input and left to independently discover regularities in the data that can be used to predict 

outcomes of interest. These algorithms are powerful: recent innovations in network-based 

modeling have found solutions to problems that have been considered unsolvable for 

decades (LeCun et al., 2015). However, there are tradeoffs between computational power 
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and interpretability. At the heart of the issue is the fact that the more parameters included in 

a model, and the more complex the transformations between inputs and outputs, the more 

powerful the computational advantage for identifying patterns in the data. However, these 

same features obscure the relations between inputs and outputs, making the models 

themselves less interpretable. From an engineering standpoint, when the goal is to solve a 

problem, be it to predict the weather or identify a face within a crowd, model interpretability 

is not required (Breiman, 2001). Similarly, within developmental science, if the goal is 

intervention, including prediction of children who may be at greatest risk or identification of 

who may benefit most from a certain intervention, such complex models may be the 

direction of choice.

However, if the goal of developmental science is to learn why and how outcomes emerge, 

these “black box” solutions are problematic (but see, e.g., Bongard & Lipson, 2007). Insight 

into developmental processes will require analyses that provide interpretable and meaningful 

descriptions about what matters for development.

4.2 | Characterizing transactional dynamics within the developmental system to bridge 
micro and longitudinal timescales

Sensor data provide a novel opportunity to characterize and quantify the transactional 

processes by which daily activity accumulates to drive longitudinal trajectories.

Current gold-standard transactional analyses typically examine lagged temporal 

relationships across data collected at discrete time points, often months apart. We know, 

however, that individuals dynamically affect one another at much shorter timescales, minute-

by-minute, hour-by-hour, and day-by-day (Granic, Hollenstein, & Lichtwarck-Aschoff, 

2016). Sensor data are precisely time stamped, meaning that they could be leveraged to 

study the micro-dynamic transactions between factors driving developmental outcomes. For 

example, real-time child activity data could be synchronized with audio recordings 

characterizing the content or quality of parent-child interactions to examine whether 

variation in a child’s activity across the day predicts subsequent changes in parenting quality 

or vice versa, or, as may be expected in a complex bidirectional system: both, with the 

possibility of feedback processes which amplify initial differences over time. This is critical 

as recent research suggests, for example, that children with more reactive temperaments may 

be more sensitive to parenting practices (Belsky, Bakermans-Kranenburg, & Van IJzendoorn, 

2007) while also being more likely to stress and overwhelm their parents (Belsky, 1984), 

thereby potentially exacerbating their own early biological predispositions. Similar 

approaches could be used to examine reciprocal processes theorized to drive individual 

functioning, such as proposed feedforward relationships between difficulties focusing and 

household chaos (Sroufe, 2012), or mood and cellphone use (Twenge, 2017).

We know of two LENA studies that have begun to move in this direction. In the first, 

Warlaumont and colleagues observed that parents of children with and without autism were 

more likely to respond to children’s vocalizations if they were speech-like rather than non-

speech like (e.g., laughter, coughing, etc.). In turn, children’s vocalizations were more likely 

to be speech like if parents had contingently responded to their previous utterance 

(Warlaumont, Richards, Gilkerson, & Oiler, 2014). These data suggest a “snowballing” 
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feedforward system where more contingent responding begets more speechlike 

vocalizations, begetting more contingent responding. Related analyses by Gordon Ramsey 

have indicated how such feedback loops appear to drive longitudinal differences between 

vocalization rates of children at high-risk of autism relative to typically developing controls 

(Ramsay, Bailey, & Ghai, 2016). However, in the first study, the compounded effects of 

these micro-transactions were not examined at the longitudinal timescale; in the second, the 

resolution of the analytic technique did not allow for examination of the micro-dynamics. 

Together though, these studies indicate the potential for transactional analyses that bridge 

micro- and longitudinal timescales.

Empirically characterizing such developmental trajectories is not simply a matter of 

searching for traditional (A->B) causal relationships. In accord with systems thinkers across 

disciplines (Forster, 2002; Isabela Granic & Patterson, 2006; Hutchins, 1995; Oyama, 

1985/2000; Taylor, 2000), success in characterizing such complex dynamic system will 

require a shift in empirical goals as well as models of causality. In particular, rather than 

searching to identify the direction of causality between characteristics of parent and child 

behaviors, for example, the goal of a DST approach may be to identify factors which 

differentiate dyads who frequently lock into such amplifying or feedforward patterns from 

those who do not. Alternatively, it may be possible to identify conditions which lead to a 

shift in the typical trajectory of an interaction, such as what might lead a troubled dyad to 

adaptively respond, or what might destabilize typically adaptive functioning.

Previous efforts with high-density data indicate that there are few if any “off the shelf” 

analyses, and no single analytic tool that can characterize the dense, multi-modal dynamics 

of interaction (Gnisci, Bakeman,&Quera, 2008). However, methods developed to study the 

micro-dynamics of activity in laboratory settings are readily utilized on daily sensor data 

(Gottman & Roy, 1990). Additionally, methods papers by Granic and colleagues and others 

(Granic & Hollenstein, 2003; Granic et al., 2016; de Barbara, Johnson, Forster, & Deak, 

2013) detail the discovery and quantification of theoretically meaningful structure in high-

density multimodal repeated measures data with consideration of longitudinal outcomes. 

Finally, sophisticated tools have been developed for longitudinal analyses of high-density 

repeated-measures data (Bolger & Laurenceau, 2013; Kirn-Spoon & Grimm, 2016; Krull, 

Cheong, Fritz, & MacKinnon, 2016). A combination of such analysis techniques will likely 

be required to quantitively characterize complex longitudinal trajectories.

Sensor data provide an opportunity to access repeated measures of objective high-density 

daily activity at a large scale. This proposition is at once exciting and terrifying: exciting 

because we can now collect unprecedented datasets to investigate complex developmental 

trajectories, and terrifying because analyses of such complex processes is largely uncharted 

territory.

5 | PRACTICAL CONSIDERATIONS

In the final section of the paper, we lay out a number of practical considerations for 

developmental scientists interested in incorporating mobile sensors into their research. These 

considerations fall into three categories: collection of raw data, translation of raw data into 
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markers of behavior, and analyses of behavioral markers. We finish with a section on 

collaborations and advice for training the next generation of students to skillfully leverage 

sensing technology to advance the future of developmental science.

5.1 | Collection of raw data

The main considerations for collection of raw sensor data include form factor and 

placement, commercial versus bespoke solutions, single versus multi-system platforms, and 

protection of privacy.

5.1.1 | Sensor selection—Currently, the main options for form factor and placement 

are mobile phones, wearable on-body sensors and static (i.e., environmental) sensors. 

Mobile phones are perhaps the most widely used in contemporary computational social 

science efforts, owing to their ubiquity and the extensive range of raw datastreams collected 

by a single platform (Harari et al., 2017). The ubiquity of smart phones means there is a 

potential to engage diverse and hard-to reach populations (Sandstrom, Lathia, Mascolo, & 

Rentfrow, 2016). Given that mobile phones are already being charged and cared for by 

participants, they do not pose much burden beyond privacy concerns. Both open source and 

commercial applications to collect sensor data from phones exist, and we point the interested 

reader to recently published existing guides for more information (Harari et al., 2016).

In contrast, on-body sensors are more inconvenient, in that they are an additional device that 

requires active care by participants (e.g., charging, diligence with taking on and off, and 

correct positioning). However, as they are positioned directly on the body, wearable sensors 

typically provide much higher quality markers of individual activity. To reduce participant 

burden in extended recording sessions, comfortable devices with long battery life and quick-

charging capabilities are critical. Alternatively, multiple devices can be provided to be 

alternated while charging. Another relevant consideration is the availability and size of on 

board storage. Devices that stream data require an additional device and may be more prone 

to data loss. Additionally, access to high-density raw data as well as tools for visualization or 

analysis of data may should be considered when selecting sensors.

While our sensing review above focused on data collected from wearable and mobile 

sensors, static location sensors can capture a variety of interesting datastreams, from 

physiological data (Adib, Mao, Kabelac, Katabi, & Miller, 2015) and sleep (Rahman et al., 

2015) to physical presence (Olguin et al., 2009). Such static sensor systems are not currently 

available commercially for research purposes but their active development within the 

ubicomp community suggests that they may soon be. The main benefits of static-device 

sensing is that they beyond privacy concerns they are very low burden for participants, as 

they require no charging or active care, and they can be much more powerful as they can be 

directly connected to wifi and power sources. However, as it is expensive to instrument 

many spaces with such sensors, data from static sensors will likely not be continuous. Thus, 

one consideration when considering static sensors is whether interactions of interest are 

spatially localized or could be adequately characterized in a single spatial area, for example, 

activity surrounding dinner or bed times.
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Several platforms exist for each of these form factors, with consumer market, do-it-yourself 

(DIY), or bespoke (customizable) options. While consumer-market sensors are typically the 

most user-friendly, the challenge with using them for research is that raw, high-temporal 

resolution signals may be inaccessible. Raw sensor data are almost always heavily pre-

processed via a proprietary algorithm–which may, for example, average over much data to 

make up for noisy or low-quality sensors. Whether this is a concern depends on the nature of 

the phenomenon under study. As with all other sensors, it is advisable to test data validity 

against a gold-standard in a setting analogous to the true protocol.

It is not difficult to find engineers and computer scientists at local universities interested in 

collaborating on device construction or in modifying a commercially available open-source 

sensor platform (e.g., Arduino or Raspberry Pi). The benefit of DIY-sensors is in the direct 

control over the configuration of the device, including sensed modalities and data precision. 

While a novel sensor can be developed in a semester or two by a good graduate student, a 

major consideration is the ultimate usability of the device. Commercial products have teams 

of designers to ensure comfort, look, and ease of use of devices. Without significant 

investments there is danger of a functional but practically unusable device. Also, depending 

on the complexity of the request, for example, whether circuit boards can be purchased or 

need to be assembled, these devices can quickly become physically unwieldly.

Customizable wearable devices (e.g., mbientlabs.com, move-sense.com) or those built 

specifically for the research community (e.g., axivity.com, movisens.com, empatica.com) 

combine many of the benefits of commercial and DIY options. These companies employ 

both engineers and designers, typically resulting in a functional and usable device. 

Additionally, because they are catering to researchers, they typically provide access to raw 

data and potentially relevant activity detection algorithms (e.g., heart beats or sleep 

detection). While customization may be possible, it will likely be more expensive than 

working with someone local, and the company may not be willing to work on specialized 

datastreams if they are not of financial gain. Also, companies may go out of business, or go 

in a different direction and stop supporting a certain device.

5.1.2 | Single versus multi-sensor platforms—Characterizing complex activity may 

require multiple datastreams. For example, examining parental responses to child tantrums 

might involve combining audio, motion and proximity sensing. Some off-the shelf options 

exist that combine wearable sensors with mobile phone apps that collect additional data. 

However, existing options may be limited in terms of available datastreams, meaning a 

single-platform solution may not be feasible. When considering multi-sensor platforms, a 

major concern is synchronization. Even if each device logs time information, the clocks of 

individual devices may not be synchronized. Additionally, clocks may drift over the course 

of data collection, meaning some datapoints (i.e., time-value pairs) are lost or skipped and 

time is effectively “compressed.” This may not be an issue if high-temporal precision is not 

required for expected analyses. For example, if hourly summaries of motion data are going 

to be compared with EMA responses, then a few seconds of drift is not cause for concern. 

However, if planned analyses require synchronization to within five or even 10 minutes, 

testing and potentially correcting for time lags drift is advised.
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As drift can irregularly affect individual devices, it may be necessary to provide 

synchronization signals throughout the course of the recordings. One solution is to build a 

central “timekeeping” device that pings multiple devices. However, this may be impossible 

if your platform includes commercial devices that cannot be reprogrammed, such as the 

LENA. An alternative solution is to devise a manual synchronization protocol. The key to 

developing a synchronization routine is to identify a signal that will be registered by at least 

one datastream on each device: a clap, for example, can be both heard and seen (via audio or 

video) and has a unique motion signal (detectable via accelerometer), and thus functions as a 

good synching cue between these devices. “Synch signals” may not be easy to detect in the 

milieu of a long (1 hr–2 week) session, especially if they occur sporadically throughout an 

extended session and other activities could mask the synch cue. In this case, something that 

will stand out more may be necessary. Our favorites include: a very rapid motion (12–16 g 

“slam” onto a soft surface), especially if in a sequence of motions (e.g., two slams, a zigzag 

on the table, and then two slams; see also Ploetz, Chen, Hammerla, & Abowd, 2012). 

Additionally, adding event-markers around the synch routine is useful for identifying 

roughly when synch signals will occur. Given these challenges, complete synchronization 

pipelines should be piloted and assessed before study data are collected.

5.1.3 | Privacy issues—The possibility to capture activity in high-resolution begs the 

question of participant privacy (Klasnja, Consolvo, Choudhury, Beckwith, & Hightower, 

2009). Several high-profile cases indicate that sensor data can have legal consequences, 

including a recent case in which audio-recordings stored by a voice-controlled speaker were 

used as evidence in a trial (Sweetland Edwards, 2017; Tokson, 2017). These issues may be 

disproportionately faced by vulnerable populations such as undocumented immigrants, 

activists, and people of color, all of whom are more likely to be targets of police violence 

and intimidation. For high-risk individuals it may be preferable to simply not collect high-

density data.

Ultimately, we need to educate potential participants about what might happen with their 

data if it is breached or legally requested (e.g., whether it can be linked back to them, and 

what it might be able to tell others about them) before they decide to participate. The 

ubiquity of consumer sensors means that potential participants are likely already sharing 

various datastreams with companies. However, consumers may be unaware of this. For 

example, in a recent survey we completed, over 40% of participants who marked they were 

unwilling to collect random samples of audio data for research purposes also indicated that 

they have or would use a voice-controlled device if it were free (Levine et al, in preparation). 

Thus, while educating participants appears proper, it remains unclear whether providing 

individuals with information about their existing devices will make them more or less 

comfortable participating in sensing research. However, even individuals who are somewhat 

uncomfortable with data use and sharing policies are often willing to share personal data 

when they perceive concrete benefits to doing so (Matthews, Abdullah, Gay, & Choudhury, 

2014; Zhang, De Choudhury, & Grudin, 2014).

There are a number of ways to build in privacy protections for research participants. The 

basis of these techniques is that the collection and storage of low-resolution data will suffice 

for many analyses (e.g., storing GPS coordinates at the block rather than address level). The 
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more that the scale of data obscures identification of an individual participant, the more 

privacy protection is afforded. Similarly, audio and image data can be subsampled to obscure 

continuous content. Another technique is to store features of interest rather than raw data, a 

technique that has been deployed both with audio (Wyatt et al., 2011) and image data 

(Thomaz, Parnami, Bidwell, Essa, & Abowd, 2013). Computations can be done on the 

collection device, meaning that it is not necessary to store or transfer data to devices or study 

servers. Note that at preliminary stages of research it may be necessary to collect and store 

continuous raw datasets which is often critical for the development of novel activity 

recognition algorithms.

5.2 | Translating raw data into markers of meaningful activity

High-quality tutorials for activity recognition are available (Bulling et al., 2014). 

Additionally, many machine learning models commonly used for activity recognition are 

freely available online (e.g., Python sci-kit). Thus, even with no prior experience with 

activity recognition, advanced undergraduate or masters level computer science students can 

train and test activity-recognition models.

When working to develop novel activity-recognition models, or when simply evaluating an 

existing model, there are a number of considerations. First, it is necessary to carefully plan 

and evaluate the dataset used to train the algorithm. Training datasets collected under “ideal” 

laboratory conditions may be vastly different than the real-world conditions in which they 

will be used, ultimately reducing the validity of the detected markers. For example, while 

developing a model to identify holding and carrying behaviors, early model performance 

went from 90% accuracy to less than chance after transitioning from a cued paradigm to a 

naturalistic, free-flowing recording. In the former case, caregivers always picked infants up 

off the ground beginning from a standing position. In the latter case, there was much more 

variation in pick-up behaviors–infants were lifted from standing and sitting positions on 

couches, changing tables, and the floor, which proved to be much more challenging to 

detect. Our naturalistic recording also included many more negative instances of our 

behaviors of interest, such as picking a toy up off the ground. The presence of such negative 

training examples is critical for developing a robust algorithm that will succeed in real-world 

conditions (for final model, see Yao, Ploetz, Johnson & de Barbara, under review). For these 

reasons, training data should map onto the true study data as closely as possible, and 

performance should be assessed in real-world conditions whenever possible.

Next, while an algorithm may have high accuracy overall, it is necessary to consider 

accuracy for each individual distinction interest within the class, considering both precision 

(i.e. positive predictive value) as well as recall (i.e. sensitivity). Additionally, it is advisable 

to assess the performance of algorithms qualitatively via visualizations in addition to 

quantitatively. Algorithms are designed only to optimize correct predictions, and thus may 

grossly underperform. For example, the optimal solution algorithmically may be to predict 

the most common behavior for the entire session, an unappealing solution that may be 

masked by overall accuracy scores. Finally, measures of accuracy utilized within these 

studies are different from those traditionally relied upon in social science and thus it is worth 
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additionally assessing reliability using metrics familiar to other psychologists (e.g., Cohen’s 

Kappa; see Bakeman & Quera, 2011).

5.3 | Analysis of behavioral markers

The scale of data possible to collect with sensors is much larger and less bounded than data 

collected in laboratory settings, meaning that the timescales, operationalization, and impacts 

of daily activity may not be specified by existing research or theory. Ultimately, 

identification and operationalization of relevant constructs and their role in shaping 

developmental trajectories will involve experimentation and, above all, a willingness to 

become familiar with the data.

5.3.1 | Visualization and iterative processing of data—Data visualizations can 

provide insight into the structure of phenomena of interest and its variation over time or 

participants. They can also aid in the generation of hypotheses without the constraints of 

predetermined analyses that might obscure structure in the data (de Barbara, Johnson, 

Forster et al., 2013; Gnisci et al., 2008). In particular, iterative cycles between visualizations 

of raw and semi- processed data can be useful for converging upon variables that can 

accurately capture phenomena of interest (Fricker, Zhang, & Yu, 2011; Yu, Yurovsky, & Xu, 

2012). In later stages, visualizations are key for identifying and refining appropriate 

quantitative methods to describe or model behaviors of interest. A number of papers detail 

the process of visualizing high-density mobile sensor data to provide these insights (Polack 

et al., 2018; Sharmin et al., 2015; Zisook, Hernandez, Goodwin, & Picard, 2013).

5.3.2 | Nested timescales in the analysis of continuous behavior—Leveraging 

the temporal organization of behavior can be useful for structuring analyses. Behavior is 

organized across many time- scales. At the timescale of seconds, we can observe contingent 

gaze shifts and vocalizations, at timescales of minutes and hours, we can observe episodes of 

play or arguments, and at the timescale of months or years, we can observe the blossoming 

of a relationship. These nested timescales are relevant when considering how to analyze 

many hours of data possible to collect with mobile sensors. Parsing continuous datastreams 

of frame-by-frame activity into meaningful episodes at the timescale of minutes and hours–

such as episodes of distress, play or joint activity–is a useful way to structure analyses of 

high-density data. This can be particularly insightful if these episodes occur repeatedly 

within a single session as well as within sessions across longitudinal data collection. For 

example, to study the changing nature of triadic activity across the first year, de Barbara and 

colleagues identified all instances of “maternal bids” within mother-infant free-play 

interactions (de Barbara, Johnson, Forster & Deak, 2016). By comparing changes in infants 

object looking and touching following maternal bids across the longitudinal time period, it 

was possible to characterize more gradual and continuous shifts in multiple dimensions of 

activity which contributed to the emergence of classic triadic interactions around the end of 

the first year (de Barbara, Johnson, & Deak, 2013; de Barbara, Johnson, Forster, & Deak, 

2016). In effect, the maternal bid episodes functioned as a naturally occurring spontaneous 

“trigger” for an event-related analysis. This allowed us to summarize and compare the event-

related micro-dynamics of activity across longitudinal time (see also Forster & Rodriguez, 
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2006, and de Barbara, Johnson, Forster et al., 2013, for a more extensive discussion of this 

approach).

5.3.3 | Avoiding datamining—The iterative nature of the analysis of high-density data 

makes it susceptible to the critique of datamining. Insofar as tinkering with data can lead to 

spurious results, this is a legitimate concern. However, it cannot be a paralyzing fear as 

iterative analyses are likely necessary at the early stages of computational social science 

research.

To avoid spurious findings, it is best to select a subset of data which will be used for the sake 

of gaining insight into the structure of the dataset. Later, this subset can be used to develop 

and test that any new measures or variables validly and appropriately capture the phenomena 

of interest. The remainder of the sample should be analyzed only after measures have been 

finalized within this subset (see also de Barbara, Johnson, Forster et al., 2013). This is a 

logic analogous to that used in machine learning where a subset of training data is “held out” 

to test the results of the model. Testing on a subset ensures that the model is not overfit to 

the particulars of the training dataset. Finally, just as in any scientific paper, accurate 

reporting of the complete analysis protocol (including all variations tested) is necessary for a 

fair assessment of the quality and legitimacy of the results.

5.4 | Collaborations and Training

Mobile sensing research requires expertise across domains. Electrical engineers build circuit 

hardware and the low-level “firmware” that runs on them. Experts in human-computer 

interaction design the platforms and form factors that allow sensors to seamlessly integrate 

into daily interactions. Data security and privacy ethicists are necessary to understand and 

communicate the potential risks of data breaches as it becomes increasingly difficult to 

guarantee that data are not identifiable. Computer science and data analysts provide 

powerful algorithms and visualization tools that aid in making sense of the immense 

amounts of data that can now be collected.

Critically, social scientists provide motivation and insight into phenomena of interest, as 

well as theoretical and practical knowledge that can carve meaning from multitudes of data, 

and ultimately construct new theories of development.

For those wanting to become involved in mobile sensing research, the range of necessary 

expertise may appear a daunting challenge. Given traditional disciplinary boundaries, this 

will typically be an interdisciplinary effort requiring wide-reaching collaborations. For 

psychology students wanting to become pursue computational social science research, we 

provide some training guidelines.

The availability of off-the-shelf sensors is relatively good and thus it is not necessary to gain 

electrical engineering skills to pursue sensing research. However, for those interested, there 

are a number of basic hands-on tutorials which provide basic understanding of circuits and 

the firmware that runs on them, (e.g., the Arduino Starter Kit, available online). Experience 

with synchronization of sensors and merging data across diverse timescales will need to be 
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learned independently by experimentation, or from working in a developmental lab that 

collects and annotates video data (see also Bakeman & Quera, 2011; Gottman, 1981).

The basic programming necessary to work with and analyze sensor data can be attained in 

two to six college-level courses. Introductory programming courses will cover necessary 

basics of data structure, manipulation, and visualization. This material is also available in 

online tutorials and user manuals (e.g., at mathworks.com or python.org). Some training in 

timeseries analyses or machine learning is also beneficial. A timeseries analysis course will 

cover basics such as interpolation, filtering and time- and frequency- domain analyses used 

to quantify and describe timeseries. There are excellent resources for timeseries analyses 

written specifically for those without extensive quantitative or computational training 

(Gottman, 1981). Nearly every computer science department will have a machine learning 

course which should be accessible with basic statistics and programming experience. More 

specialized experience in activity recognition may also be desired, and is available in select 

engineering or computer science departments, or via online tutorials.

Note that basic formatting, manipulation, and visualization of sensor data can be done in 

Excel, and commercial software for video annotation and sensor data collection typically 

include visualization and analysis capabilities. These programs are often restrictive, 

especially when complex or flexible operationalizations are necessary, and they are typically 

not programmable, meaning that any work done on an individual session must be repeated 

over the complete dataset. However, they can be a good start for students uncertain about 

committing to more extensive computational training. These programs can also be very 

useful as they allow rapid examination of data and where basic tools are sufficient for 

analyses.

6 | CONCLUSIONS

Insofar as we can leverage sensor data to access the processes by which daily activity and 

interaction shape trajectories across the lifespan, mobile sensing tools provide a unique–

indeed, transformative–opportunity for developmental science. If successful, these tools can 

provide insight into new mechanisms of development: how structure and variation in our 

daily environments and experiences matter for outcomes. With repeated samples at large 

scale, such data can move us beyond simple causal models of behavior to understanding how 

complex non-linear dynamics can shape developmental trajectories.

Much work remains to be done before this grand promise of mobile sensors for 

developmental science can become a reality. Meeting these challenges will require 

coordinated interdisciplinary efforts with social scientists involved throughout the research 

process. The involvement of social scientists is critical for guiding not only the questions 

that are asked, but the next generation of engineering and computer science research: what is 

sensed and how algorithms discover meaningful structure in data.
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