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Abstract

The entwined nature of perceptual and conceptual processes renders an understanding of the 

interplay between perceptual recognition and conceptual access a continuing challenge. Here, to 

disentangle perceptual and conceptual processing in the brain, we combine 

magnetoencephalography (MEG), picture and word presentation and representational similarity 

analysis (RSA). We replicate previous findings of early and robust sensitivity to semantic 

distances between objects presented as pictures and show earlier (~105 msec), but not later, 

representations can be accounted for by contemporary computer models of visual similarity 

(AlexNet). Conceptual content for word stimuli is reliably present in two temporal clusters, the 

first ranging from 230 to 335 msec, the second from 345 to 665 msec. The time-course of picture 

induced semantic content and the spatial location of conceptual representation were highly 

convergent, and the spatial distribution of both differed from that of words. While this may reflect 

differences in picture and word induced conceptual access, this underscores potential confounds in 

visual perceptual and conceptual processing. On the other hand, using the stringent criterion that 

neural and conceptual spaces must align, the robust representation of semantic content by 230-240 

msec for visually unconfounded word stimuli significantly advances estimates of the timeline of 

semantic access and it’s orthographic and lexical precursors.

1 Introduction

Successful interaction with the environment requires both the perception of objects and 

access to their meaning. At the neural level, the entwined nature of these two processes 

renders an understanding of the interplay between perceptual recognition and conceptual 

access a continuing challenge. The neural substrates of visual object perception are known to 

be highly sensitive to different semantic classes or ‘object-categories’ (e.g. faces, Kanwisher 

et al., 1997; places, Epstein & Kanwisher, 1998; body parts, Downing et al., 2001). 

However, visual features strongly covary with object category and the selective activation of 

visual cortex may reflect variations in visual rather than semantic processing. Model-driven 
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analytical techniques such as representational similarity analysis (RSA; Kriegeskorte et al., 

2008), which allow the assessment of concordance between neural and cognitive 

representational spaces, might have potential to disentangle the specific contribution of each 

process. In visual perception, functional magnetic resonance imaging (fMRI) indexed neural 

representational distances between object categories conforms to the subjective similarity 

ratings in object-selective ventral visual cortex and to Hmax (Serre et al., 2007) computer 

model of vision in V1 (Connolly et al., 2012). RSA has further shown that MEG 

representational space of visually presented object evident at 90 msec conform to fMRI 

representational spaces in V1, while MEG representational spaces at 130 msec conform to 

fMRI representational spaces in ventral visual cortex (Cichy et al., 2014).

However in both these cases, representation in ventral visual cortex may also be attributable 

to visual features (Kaiser et al., 2016). Further attempts have been made to resolve this 

ambiguity using competing models to disentangle visual from semantic features. Clarke and 

colleagues (2015) demonstrated that semantic-feature models explained variance beyond 

that accounted for by Hmax visual models from 110 msec post stimulus onset (see also 

Bankson et al., 2018). However, also in this context, dissociating perceptual from conceptual 

contributions to content sensitivity is an ill posed problem, contingent on the capacity of 

visual models to capture all perceptual contributions. As conceptual representations can be 

accessed not only through pictures but also words, word offer a perceptually unconfounded 

method to cue conceptual representations. A growing number of fMRI studies that have 

employed word, or cross modal (word/picture) stimuli have observed sensitivity to semantic 

content in a much-reduced subset of brain regions, largely distinct from those showing 

sensitivity to object category when viewing pictures (Bruffaerts et al., 2013; Fairhall & 

Caramazza, 2013; Liuzzi et al., 2017; Simanova et al., 2014). These studies provide insight 

into the locus of conceptual representation in the brain but cannot provide insight into the 

temporal properties of access.

The goal of the present study is to identify the differential time course of conceptual and 

perceptual processing. We used magnetoencephalography with RSA to assess the 

relationship between conceptual representational spaces and neural representational spaces 

during picture presentation. Then, similar to previous research, we controlled for visual 

similarity using a contemporary neural network models of vision, AlexNet (Krizhevsky et 

al., 2012). Finally, and critically, we examine the relationship between conceptual similarity 

and neural similarity spaces elicited by words, where perceptual features are dissociated 

from meaning, providing an unclouded view of conceptual access as well as a baseline for 

the extent to which current computer models of vision can fully account for human 

perceptual processes.

2 Materials & Methods

2.1 Participants

Twenty-five right-handed native Italian speakers underwent an MEG recording session (14 

male; mean age 25.1 years, SD = 5.36). All participants had normal or corrected-to- normal 

vision and reported no history of neurological disorders. Prior to recording they gave written 
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informed consent to participate in the experiment. All procedures were approved by the 

ethical committee of the University of Trento.

2.2 Stimuli

Stimuli consisted of written Italian words and corresponding pictures of exemplars from five 

semantic categories: fruits, tools, clothes, mammals and birds. Each category was composed 

of 32 exemplars for a total of 160 exemplars. Word length did not differ between categories 

(F(4,155)=1.83, p=.126) and was uncorrelated with the conceptual model (r=-0.004). 

Likewise, word frequency (Lyding et al, 2014) did not differ across categories 

(F(4,155)=1.02, p=.40) or correlate with the conceptual model (r=0.03). In picture 

presentation trials, pictures were randomly selected from 5 different images of that object.

2.3 Procedure

The experiment was composed of a total of seven runs, the first two using word stimuli 

while the other five pictures. A greater number of picture runs were presented as the 

availability of differing exemplars was anticipated to engage participants more than the 

presentation of the necessarily identical stimulus in the word runs. While this different 

number of runs for words and pictures may affect variability across participants, it will not 

influence the magnitude of the similarity effect. Two subjects completed only three runs of 

pictures. Each run consisted in the presentation of all the 160 exemplars, divided in 20 

blocks of 8 stimuli from one category. Blocks were preceded by a word cue indicating the 

upcoming category (750 msec) followed by a fixation cross (750 msec). Block order was 

pseudo randomised within runs. Trials consisted of a stimulus (word or picture) presented 

for 400 msec followed by a fixation cross 2100 ms. On each trial, participants rated the 

typicality of the exemplar as a member of the category on a scale from 1 (very typical) to 4 

(not typical) via a bi-manual VPixx button box (VPixx technologies, Canada). Having 

blocks of stimuli from the same category was important for subjects to perform the 

behavioral typicality task. Presentation was controlled using Psychtoolbox (Brainard, 1997). 

Each image was back-projected with a VPixx PROPixx projector at the centre of a 

translucent screen placed 120 cm from the eyes of the participants. Refresh rate of the screen 

was 120 frames per second. Timing was verified with a photodiode.

2.4 MEG data acquisition

Continuous MEG data were recorded at the Center for Mind and Brain Sciences of the 

University of Trento using Elekta Neuromag 306 MEG system (Elekta, Helsinki, Finland), 

composed of 102 magnetometers and 204 planar gradiometers, placed in a magnetically 

shielded room (AK3B, Vakuumschmelze, Hanau, Germany). Prior to the experiment, 

participants’ head shape was recorded using a 3D digitizer (Fastrak Polhemus, Inc., 

Colchester, VA, USA), including the fiducial points (nasion, left and right periaricular sites) 

and the position of five coils (one on the left and right mastoid, three on the forehead). 

Before each run head position within the MEG helmet was recorded by inducing a non-

invasive current though the five coils. Data were collected at 1000 Hz and hardware filters 

were adjusted to bandpass the MEG signal in the frequency range of 0.01-330 Hz.
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2.5 MEG data preprocessing

Raw MEG data were visually inspected to identify bad channels, according to their overall 

noise level and signal jumps. An average of 7 channels per run were discarded. After this 

procedure 4 subjects were discarded due to the high number of bad channels (>12). For each 

subject a reference run was calculated as the one that minimizes the distance in head 

position. This was then used to realign all other runs and thus have a uniquely defined head 

position. Realignment and bad channel interpolation were conducted through the temporal 

signal space separation method (TSSS; Taulu & Simola, 2006) as implemented in the 

MaxFilter software thus reducing dimensionality of the data by retaining only components 

that are not correlated to noise. Additional preprocessing was then conducted using the 

Fieldtrip package (Oostenveld, Fries, Maris, & Schoffelen, 2011). Maxfiltered data were 

low-pass filtered at 80 Hz and high-pass filtered at 0.8 Hz to remove slow drifts in the signal. 

Although recent evidence shows that high pass filtering has moderate effects on the temporal 

profile of classifiers performance (van Driel et al., 2019), no such effect has been reported in 

the context of RSA analyses. In order to understand its impact, we examined the time course 

of RSA results on a single random subject with and without filtering. The observed results 

show a diminished effect as the filter cut-off increases, thus the current filter settings should 

not lead to any false positives. A notch filter was applied at 50 Hz to remove line noise. 

Photodiode was used to correct for timings recorded by the MEG system. These corrected 

timings were used to segment epochs of 1 second (from -0.2 to 0.8 s), resulting in 160 trials 

per run. Data were then down-sampled to 200 Hz to increase signal-to-noise ratio in the 

multivariate analysis and to reduce computational time (Grootswagers, Wardle, & Carlson, 

2017). Runs were concatenated and visually inspected. Using the function ft_rejectvisual 

with the summary method, single-trial variance over time was computed and the mean over 

channels was plotted to identify trials that exceeded the general trend of the individual 

subject. An average of 19 trials per subjects were discarded. Each trial was baseline 

corrected, subtracting the mean activity in the baseline window (from -.2 to 0 s) from the 

subsequent time points. To take into account the different measurement units of 

magnetometer (T) and gradiometers (T/m) sensors, the signal recorded by magnetometers 

was multiplied by a factor of 17 corresponding to their distance in mm from the 

gradiometers so to have them on the same scale and have a comparable influence on 

correlation value calculations.

2.6 Representational Similarity Analysis

In the present study we used Representational Similarity Analysis (RSA; Kriegeskorte, 

2008) to compare the representational structure between the MEG data and conceptual 

dissimilarity ratings (separately for pictures and words). We then used a computational 

model of the visual system to assess the influence of visual features on picture- based 

representational spaces. The goal of RSA is to compare the representational vector spaces 

associated with the different experimental conditions to obtain a measure of their 

(dis)similarity. This results in a representational dissimilarity matrix (RDM) containing in 

each cell the pairwise distance value between different conditions. The main advantage of 

RSA is the possibility to compare RDMs obtained from different kinds of data. These in fact 

reflect only the representational structure, not preserving the specific geometry of the 

Giari et al. Page 4

Neuroimage. Author manuscript; available in PMC 2020 July 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



features used in its construction. Neural RDMs can then be compared to models to test the 

hypothesis that brain activity is shaped accordingly to the model.

2.6.1 Neural RDMs—Preprocessed data were mean-centred by removing the mean 

across-trial pattern (Diedrichsen & Kriegeskorte, 2017). At each time point, we correlated 

the MEG activity between trial pairs, separately for the picture and word modality. This 

results in a distance value (1- Pearson correlation) that indicates the dissimilarity between 

trial pairs according to brain activity. By repeating this procedure for each trial pair we 

constructed RDMs that account for the whole representational space. Individual trials were 

used as input to the RDM calculation. To calculate the time-point by time-point RDMs, the 

vector for the 306 sensors was concatenated with those of the two preceding and the two 

succeeding time points, as implemented in CoSMoMVPA. This resulted in a vector length of 

1530 features reflecting brain activity spanning 20 ms. These were then correlated to 

conceptual similarity judgements (pictures and words) and to conceptual similarity 

judgements while removing visual similarity (pictures only).

2.6.2 Conceptual RDMs—An independent sample of 10 subjects took part in a separate 

behavioural experiment adapted from the Multi-Arrangement Method (Kriegeskorte & Mur, 

2012). Briefly, subjects positioned pictures of items in a 2-D space, with the mouse drag-

and-drop, according to overall conceptual similarity. The pairwise distance between items 

was then calculated as to obtain a conceptual RDM. This conceptual model was restructured 

for each participant to match the actual trials’ label and correlated with the neural RDMs 

produced by Picture and Word at each time point.

To characterize the information represented in our conceptual model we created a 

categorical model based on 1s and 0s (1-correlation) for different and similar categories, 

respectively. The estimated correlation with the conceptual model was r=.79, indicating that 

the categorical structure of individual concepts is represented in the model, but more fine-

grained differences persist.

2.6.3 Visual RDMs—Convolutional neural networks (CNNs) are considered a reliable 

model of the human isual system with their features reflecting its gradient in complexity 

( ichy et al., 1 ; G l & van Gerven, 2015). In the present study we used a pretrained AlexNet 

architecture (Krizhevsky, Sutskever, & Hinton, 2012) as implemented in Matlab. (Figure 1B. 

NN architecture was adapted from “Typical NN architecture” by Aphex34 used under BY-

SA 4.0) We gave as input to the neural network all the images used for this study and 

extracted the activations at four specific layers (conv1, conv3, conv5, fc8). Convolutional 

layers (conv) activation is a feature map representing progressively bigger local image 

features through arbitrary units. The final fully- connected (fc8) activation is instead a vector 

with 1000 entries, each one representing the probability of the input image to be classified as 

one of 1000 classes. For each subject then, we matched the activations of each layer to the 

actually presented images and calculated the pairwise dissimilarity between feature vectors 

as 1-Spearman correlation. We used these RDMs as regressors in a partial correlation 

approach, thus by correlating the pictures MEG RDM to the conceptual similarity RDM 

while removing the influence of visual similarity modelled through these RDMs. Visual 

Giari et al. Page 5

Neuroimage. Author manuscript; available in PMC 2020 July 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



RDMs have a mean (between-subject) correlation with the conceptual RDM of 

r= .19, .24, .25 and .47 for conv1, conv3, conv5 and fc8. respectively.

2.6.4 Searchlight analysis—To identify the spatially localised sources of information 

content, we ran a searchlight analysis over all channels in the four time windows showing 

maximal information content in the picture condition. Considering only planar gradiometers, 

we averaged data ±10 msec around 180, 280, 365 and 540 msec to perform the same RSA 

analysis described in previous sections on pictures, pictures controlled for visual similarity 

and words. For each sensor we selected the closest 24 planar channels (i.e. 12 gradiometer 

pairs) to be included as neighbours. The result of these analysis is a topography of 

correlation values that indicates the extent to which each sensor (including its neighbours) is 

correlated to our semantic model.

2.7 Multivariate Pattern Analysis

Multivariate pattern analysis (MVPA, Haxby et al., 2014) exploits machine learning 

algorithms to solve a supervised classification problem. A subset of the data is used to find a 

linear boundary between the multivariate neural activation patterns that best distinguishes 

two conditions of interest (training), whose reliability is tested on never before seen data. An 

accuracy value is returned indicating how well learned features are able to predict the class 

of unlabelled data. An above chance accuracy then indicates that some features are shared 

between data partitions and thus informative for the class distinction.

We used MVPA to investigate the extent to which the informational content represented in 

the MEG sensor array is shared across picture and word modalities. Specifically, we trained 

a Linear Discriminant Analysis (LDA) classifier to distinguish between object-categories. 

This procedure was reduced to a two-class classification problem by repeating the analysis 

for all possible combinations of category pairs. Importantly, the classifier was trained on one 

modality and tested on the other and vice versa. To avoid overfitting we implemented a 

leave-one-chunk-out cross validation approach. We partitioned the data in 8 chunks and 

repeated the analysis until all chunks were used both as training and as testing set.

To take into account possible delays between the processing time course of the two 

modalities (Leonardelli et al., 2019) we used the temporal generalization approach (King & 

Dehaene, 2014). The training and testing procedure was thus repeated for all possible time 

point combinations. The final result is a matrix of decoding accuracies indicating the time 

points in which the informational content that allows the distinction between object 

categories is shared across modalities.

2.8 Statistical analysis

RSA results were Fisher transformed prior to statistical analysis to have normally distributed 

values. Significance was assessed using one-tailed cluster-based permutation test. Following 

the approach described by Stelzer et al., (2013), 50 null distributions for each subject were 

created by randomly shuffling condition labels and repeating the RSA analysis with the 

resulting model. These random RSA time courses were combined across subjects to create 

1000000 null distributions against which the data were statistically compared with a t-test at 
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each time point. This approach allowed the construction of a null distribution which 

accurately reflected temporal correlation in the error term as well as other potential 

characteristics of the noise distribution. Correction for multiple comparisons was assessed 

through a cluster-based approach. Consecutive significant (p<0.05) timepoints in the interval 

from 100 to 700 msec were considered to form clusters, whose probability was given by 

their position within the null distribution A cluster-based permutation test (Maris & 

Oostenveld, 2007; 10000 permutations), as implemented in Fieldtrip, was used to identify 

spatial clusters from the searchlight analysis. A cluster-based permutation approach (10000 

permutations) was also used to assess statistical significance of the time generalised, cross-

modal MVPA in the time window between 100 and 600 msec.

2.9 Data and Code Availability Statement

Data will be made available on request.

3 Results

3.1 Behavioural

Due to equipment malfunction, behavioural data were not available for four subjects. Mean 

typicality rating did not differ as a function of modality (F1,20)=0.17, p=.68) or category 

F(1.9,37.5)=2.35, p=.113, Greenhouse-Geisser corrected), although there is a moderate 

interaction between these two factors F(4,80)=3.49, p=.011). Post-hoc pairwise comparisons 

between modalities did not reveal the origin of this interaction, even at uncorrected 

thresholds. Due to equipment asynchrony, absolute RTs were not available. However, 

relative (mean-centred) were preserved, permitting full statistical analysis. There was no 

overall effect of modality (F(1,20)=0.09, p=.77) but there was a strong effect of category 

F(4,80)=5.25, p=.001), and a modality by category interaction (F(4,80)=6.43, p<.0001). 

Critically, RT differences did not systematically correlate across participants with the 

conceptual RDM across subjects for either words (t=91) or pictures (t=.36) and will not 

influence RSA analyses.

3.2 Neuroconceptual Representational Similarity Analysis

We calculated dissimilarity matrices at each time point of MEG recordings in which subjects 

were presented with either pictures or words depicting objects from five different semantic 

categories (fruits, tools, clothes, mammals, birds). We correlated these RDMs with a 

semantic model obtained from behavioural ratings collected with the multi-arrangement 

method in a separate experiment. Additionally, for the picture condition we repeated the 

same analysis controlling for the visual features of each stimuli by regressing out the visual 

dissimilarity matrices calculated using the activation of four layers of the AlexNet CNN. 

Informational content was pronounced for picture stimuli, both before and after controlling 

for visual similarity via the AlexNet model (p < .00001, corrected) and the time course of 

information content was highly similar (Figure 2). Picture induced information content was 

characterised by four peaks with their centres at 180, 280, 365 and 540 msec. The sole 

exception to this pattern of an early peak in visual information at 105 msec which was 

absent after controlling for visual similarity. For words stimuli, two temporal clusters 
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survived corrections for multiple comparison, one from 230 to 335 msec (p = .0002, 

corrected) and a second from 345 to 665 msec (p < .00001, corrected).

3.2.1 Searchlight analysis—To identify spatially localised sources of information 

content contributing to the timeseries effects, we performed searchlight analyses on local 

subsets of 24 planar gradiometers within 20 msec time-windows centred peaks observed in 

the picture condition (see methods). Picture induced information content was detectable at 

each sensor location. Controlling for visual features did not alter this topographic 

distribution of information content. Within the first three time-windows, sensors over 

occipital sites contain the strongest representation of semantic content. In the last time 

window, information content is spread more evenly across the sensor space, with frontal 

recording sites contributing comparable information. Formal statistical inference is not 

reported as circularity between the definition of time-window of interest and the topographic 

data render this invalid. However, the extent and strength of the effect are such that 

significance would persist even after correction for the entire timeseries. In the word 

modality informational content is more precisely localised and survived correction for 

multiple comparisons across the four time-windows in three of the considered time windows 

(critical alpha=.0125). The first and second significant cluster of sensors at 280 (p=.005) and 

365 msec (p=.006) are present over occipital and temporal sites with the maximal 

information content present over left occipital temporal sites in the earlier time window and 

more anterior left temporal sites in the latter window. As was observed for picture stimuli, at 

540 msec additionally encompasses more frontal recording sites, with semantic information 

being present broadly across the brain (p<.001). A left-lateralised cluster of significant 

sensors evident in the first time-window for words (lower left topoplot), did not survive 

correction for multiple comparisons across the four time-windows (p<.03).

3.3 Cross-modal MVPA

To detect common conceptual representation produced by word and picture presentation, we 

performed cross-modal decoding analyses, training an LDA classifier on Pictures, Testing on 

words and vice versa (c.f. Fairhall & Caramazza, 2013). As access to conceptual 

representations may be faster during image presentation than word reading (Leonardelli et 

al, 2019) we performed time-generalized MVPA (e.g. King and Dehaene, 2014). 

Specifically, the analysis was aimed at decoding object-category, using a cross-validation 

strategy where we trained the classifier in one modality and tested in the other. This analysis 

failed to produce any significant effects (p=0.27)

3.4 Control Analyses

To determine the influence of conceptual similarity that extended beyond category, RSA 

between MEG data and subjective similarity was rerun partialling out the effect of category 

per se (Figure S1). The results show that neural representations of pictures capture the 

conceptual relationship between items extending beyond that of object category across all 

time-points (100-600 msec). On the other hand, word stimuli effects were only observed in 

two later time windows, from 405-460 msec and 485-540 msec. Thus, it is uncertain 

whether word effects are driven by category or a combination of category and non-

categorical semantic similarity.
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Given the relatively low-dimensionality underlying our conceptual model compared to richer 

word corpora, we repeated the same RSA analysis using a semantic model obtained from a 

word2vec algorithm trained on Italian Wikipedia (Berardi, 2015). Comparable timings of 

conceptual access are observed (Figure S2).

To evaluate the effectiveness of our visual model we repeated the searchlight analysis on the 

first informational content peak (105 msec). While the picture modality already engages the 

majority of sensors, controlling visual features using AlexNet effectively reduced the 

distribution of localised information content to a topography that is similar to the one 

observed in the word modality (Figure S3).

To further investigate the contribution of our visual features to the visual neural response, we 

performed an RSA analysis with separate hierarchical layer as the model RDM, while 

removing the contribution of the other layers through a partial correlation approach. 

However, there was a high degree of correlation between RDMs based on the individual 

layers of Alexnet (r-values: 0.18 - 0.86) and the contribution of individual layers across 

timepoints was unclear. Future work on this question should select stimulus sets which have 

clear and dissociable representational spaces across layers.

Given the particular nature of fc8 activations (class scores) and to safeguard against bias 

related to the presented object not being one of the fc8 labels, we performed the same partial 

correlation analysis using the earlier fully connected layer, fc 7. While fc8 explained 

moderately more variance than fc7, the time course of neural conceptual representation was 

identical when controlling for visual effect via either fc7 or fc8, indicating that the 

categorical nature of fc8 is not affecting our results.

Discussion

To disentangle perceptual and conceptual contributions to object processing, we conducted 

an MEG study in which stimuli representing exemplars from five semantic categories were 

presented to participants using two different input modalities, pictures and written words. 

We used RSA to compare neural representational similarity across time with a model of 

conceptual similarity constructed using behavioural judgements. Additionally, we used a 

neural network for visual recognition to control for the influence of perceptual processing in 

the picture modality. The richness of information content was not uniform across time and 

followed a similar time course for pictures, and pictures controlled for visual similarity. 

While an initial peak in information content around 105 msec was present only for pictures 

when not controlled for visual features, subsequent peaks at 180, 280, 365 and 540 msec 

were observed both for pictures and pictures when controlled for visual features. Words 

elicited semantic content across two significant clusters, the first ranging from 235 to 325 

msec, the second from 360 to 585 msec.

The first observed peak (105 msec) is present only for picture stimuli. Removing the 

influence of visual features both via the AlexNet computer model in the picture modality 

and using words, results in the attenuation of this early peak. Such conceptual-like 

representations then appear to be attributable to the perception of those visual features that 
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covary with semantic category. As noted previously, representational spaces present in MEG 

at these early latencies align most closely with fMRI-indexed V1 representations (Cichy et 

al, 2014), further supporting that cortical responses at these latencies are unrelated to 

conceptual processing.

In contrast, the second peak in conceptual-neural similarity at 180 msec was not fully 

explained by the AlexNet model. This result is in line with previous reports (Bankson et al., 

2018; Clarke et al., 2015). However, the reliance on pictorial stimuli and the ability of the 

visual model to capture all features relevant to human perception renders the meaning of this 

result ambiguous. While there was limited evidence for word-elicited conceptual 

representation at this time point in both the timeseries and topographic analyses, this effect 

did not survive correction for multiple comparisons. The timing of this peak coincides with 

the word selective N170 ERP, a left lateralised component elicited by letter strings more than 

non-letter stimuli, that is thought to reflect the first stage of orthographic processing (Bentin 

et al., 1999; Maurer et al., 2005; Tarkiainen et al., 1999). There is some evidence that more 

complex processing, orthographic lexical interactions (Coch and Mitra, 2010) or 

lexicosemantic interactions (Hauk et al., 2006; Kim & Lai, 2012) may occur at this latency. 

Moreover, there is some evidence that intracranial recording sites may be able to distinguish 

words denoting animals and man-made objects at similarly early time windows (Chan et al., 

2011).

The peak at 280 msec signifies the first robust representation of semantic content for word 

stimuli and also coincides with the maximal representation of semantic content in the image 

modality. Word induced evoked potentials within this period show sensitivity to words and 

pseudowords in comparison to unpronounceable letter strings, are sensitive to word 

repetition and are thought to reflect further pre-lexical orthographic processing or 

construction of the word form (Chauncey et al., 2008.; Cohen et al., 2000; Dehaene, 1995; 

Dufau et al., 2008; Simon et al., 2004). The present finding demonstrates the scope of 

multivariate pattern analysis in combination with magneto and electrophysiological 

measures to uncover neural processes normally inaccessible with univariate methodologies. 

The criteria that neural representational spaces conform to semantic representational spaces 

provides a strong and valid test that semantic representation underlies this neural response. 

This result significantly advances the timeline not only for semantic access but for 

prerequisite orthographic and lexical processing.

Our experimental paradigm might have played a role in the rapidity of this semantic access. 

Electrophysiological studies of word processing generally employ the random presentation 

of unrelated words. In the present experiment, stimuli were presented in blocks of related 

content allowing context to play a role in word processing. Context is an important aspect of 

skilled reading and can facilitate lexico-semantic processing enabling easier and earlier 

access (Kutas & Federmeier, 2011). Such contextual facilitations that are common during 

reading may be lost in paradigms were individual, unrelated words are presented.

A stable significant representation of conceptual content in all the modalities is observed 

later in the time course with an initial peak in the image modality at 365 msec. This 

coincides with the N400 potential, a negative deflection culminating at 400 msec in response 
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to semantic violations (Kutas & Federmeier, 2011). The N400 is one of the most well-

characterised indices of semantic processing, and has been observed following the 

presentation of words (Bentin et al., 1985) but also faces (Barrett et al., 1988) and objects 

(Barrett & Rugg, 1990). It has been demonstrated that its amplitude is greatly influenced by 

previous processing such as the predictability of a stimulus (Lau et al., 2008) and 

representations at this time may reflect the integration of semantic information with the 

working context (Hagoort, 2013). Analysis of the topographic distribution of localised 

information content shows that, for word stimuli, the relatively constrained occipitotemporal 

location of information extends to a more distributed representation at the later, 540 msec 

peak, encompassing occipital, temporal and frontal sites, a pattern also evident for image 

stimuli. Both this distributed representation of semantic knowledge and the finding that this 

potential follows from an earlier representation of semantic content further supports a model 

that the semantic-violation sensitive N400 reflects the integration of incoming semantic 

information within it’s working context, rather than indexing the first representation of 

semantic content.

While there is some consistency in the time course of semantic representation for pictures 

and words, the topography of information content differed. In the first three time-windows, 

the searchlight analysis showed that picture representations were detectable at all sensor 

locations but was strongest over occipital sites. In contrast, word representations were 

localized in sensors overlying occipitotemporal areas. This indicates that, different cortical 

generators are involved in representing conceptual-like information in word and picture 

modalities. Only in the latest time-window, 530 msec, did word and picture induced 

representations share a similar topographic distribution. fMRI studies have demonstrated 

that large sections of the ventral visual cortex are highly sensitive to object categories and 

the semantic distance between objects (Connolly et al., 2012; Fairhall & Caramazza, 2013). 

It is probable that the representations of the presented images in visual cortex dominate the 

information measured at the sensor level. This may eclipse those more subtle patterns of 

conceptual representation evident in the word condition underlying neural semantic 

representation in the 280 and 365 msec time-windows. fMRI studies have implicated the 

posterior inferior/middle temporal gyrus, precuneus and perirhinal cortex in non-perceptual 

conceptual representation (Bruffaerts et al., 2013; Fairhall & Caramazza, 2013; Liuzzi et al., 

2017; Simanova et al., 2014). The relationship between these earlier content representations 

and that occurring at 530 msec to components of the fMRI indexed semantic system remains 

an important goal for future research.

As in previous studies, we attempted to use visual models to account for the perceptual 

processing of pictures. The AlexNet model accounted for the image-based response during 

the earliest time window (~105 msec). Carefully selecting the best model is crucial to fully 

capture the processing of the human visual system. Although none of them is perfect, 

AlexNet fully captured early visual responses whereas earlier models such as HMax might 

not be able to disambiguate them from conceptual-like representations (Clarke et al., 2015). 

The most parsimonious explanations of the perseveration of representations after this 

timepoint in the presents study is that it arises from a shortfall in the visual model that result 

in conceptual-like neural representations due to the close relationship between semantics and 

perceptual features. However, it is also possible that conceptual representations are activated 
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differently when cued by a picture or a word. Viewing a hammer may cue conceptual 

associations relating to form, affordance or motion, to a greater extent than reading the word. 

Thus, while we cannot be certain that controlling for visual similarity in picture induced 

representations only reflect conceptual processing, we cannot be certain that word induced 

representations reflect all conceptual processing that may occur. In fact, the higher similarity 

induced by pictorial representations might suggest that some differences persist between 

modalities even at higher processing stages. In addition, in this study we found no evidence 

for shared crossmodal representations for word and picture induced conceptual access, in 

contradistinction to effects seen under comparable conditions in fMRI (Fairhall & 

Caramazza, 2013). This may be due to the poorer spatial resolution of MEG with strong 

effects associated with visual perception and localized in visual cortices overwhelming 

weaker influences of conceptual access at all recorded sensors (unlike fMRI which can 

spatially segregate ‘modal’ and ‘amodal’ cortical sources). This may be further exacerbated 

by different time-courses in conceptual access, with conceptual access being more rapid 

during picture presentation which does not necessitate the linguistic processes involved with 

word reading (Leonardelli et al, 2019). Future MEG studies should take into consideration 

the spatial overlap and the temporal discrepancy of the effects of interest.

Moreover, the particular influence of a typicality task on the nature of the activated 

conceptual representation remains uncertain. The task was selected as it encourages access 

to conceptual representations not constrained to a specific object features (e.g. size, 

function) in an intuitive and naturalistic manner. Having participants rate the similarity of 

the specific object to the category in general may have accentuated access to divergent, non-

stereotypical features (see also Fairhall, 2020) or, conversely, accentuated those features 

typical of the category. While it may strongly influence the importance of feature co-

occurrence and distinctiveness in the instantiated conceptual representation (Taylor et al, 

2011), the specific influence of this on the current task remains uncertain.

In this work, using the stringent criterion that neural and conceptual spaces must align, we 

observed robust representation of semantic content by 230-240 msec for words. Processing 

in this time period is usually attributed to orthographic features and the demonstration of the 

presence of semantic content at this time notably advances estimates of the time course of 

semantic processing and its orthographic and lexical antecedents. We observe different 

topographies for information extracted from words or pictures, with information content 

induced by images being represented most strongly at occipital sensors, both before and 

after controlling for visual similarity. The spatial location of word and picture induced 

conceptual representation align only at later time periods (~530 msec) when conceptual 

information is distributed broadly across recording sites. While words and pictures may 
cue different types of conceptual access, the differential pattern of information elicited 
by words and pictures after controlling for visual similarity, argues for caution in the 
interpretation of the latter.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Behavioural experiment with the multi-arrangement paradigm was conducted to obtain a 

measure of conceptual dissimilarity for 160 exemplars from 5 semantic categories. These 

were averaged across participants (N=10) to create a conceptual similarity RDM. B) For 

each image, we extracted activations at four selected layers of a pretrained AlexNet 

architecture and constructed visual similarity RDMs. C) In an MEG-experiment (N=21) the 

same exemplars were presented first as words (2 runs) and then as pictures (5 runs). Each 

run was composed of 20 category-specific blocks in which subjects had to rate typicality of 

8 exemplars as a member of the instructed category in a scale 1-4. Preprocessed MEG trials 

were vectorized to calculate pairwise distance resulting in a neural RDM at each time point, 

separately for pictures and words. Three separate RSAs were performed: one for pictures, 

one for pictures controlling for visual similarity and one for words.
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Figure 2. 
Time–course of group-level correlations between Conceptual Similarity Ratings and three 

RDMs derived from MEG-data: Pictorial presentation (red), pictorial presentation after 

partialling out perceptual features through AlexNet (contVis, black) and word presentation 

(blue). Asterisks indicate clusters that survived multiple comparison correction within the 

time-window of interest (100 msec to 600 msec). All timepoints are significant for the two 

image-based analyses and two temporal clusters for word stimuli, 230 to 335 ms (p=.0002) 
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and 345 to 665, (p<.00001). Darker shaded areas show the standard error of the mean, 

lighter shaded areas the 95% confidence interval.
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Figure 3. 
Topographies of similarities between conceptual and neural similarity spaces. To assess the 

localisation of information contributing to conceptual content, we performed a searchlight 

on the gradiometers (radius 12 planar pairs = 24 sensors) at the four peaks of information 

content identified in the time series analysis for the picture modality. Sensors comprising 

significant clusters corrected for comparisons across sensor and time-window are indicated 

in red.
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