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Abstract

Emerging data from studies of pediatric-onset pulmonary arterial hypertension (PAH) indicate that 

the genomics of pediatric PAH is different than that of adults. There is a greater genetic burden in 

children, with rare genetic factors contributing to at least 35% of pediatric-onset idiopathic 

pulmonary arterial hypertension (IPAH) compared to ~11% of adult-onset IPAH. De novo variants 

are the most frequent genetic cause of PAH in children, likely contributing to ~15% of all cases. 

Rare deleterious variants in bone morphogenetic protein receptor 2 (BMPR2) contribute to 

pediatric-onset familial PAH and IPAH with similar frequency as adult-onset. While likely gene 

disrupting (LGD) variants in BMPR2 contribute across the lifespan, damaging missense variants 

are more frequent in early-onset PAH. Rare deleterious variants in T-box 4 containing protein 

(TBX4) are more common in pediatric-compared to adult-onset PAH, explaining ~8% of pediatric 

IPAH. PAH associated with congenital heart disease (APAH-CHD) and other developmental 

disorders account for a large proportion of pediatric PAH. SRY-related HMG box transcription 

factor (SOX17) was recently identified as an APAH-CHD risk gene, contributing less frequently to 

IPAH, with greater prevalence of rare deleterious variants in children compared to adults. The 

differences in genetic burden and genes underlying pediatric- vs adult-onset PAH indicate that 

genetic information relevant to pediatric PAH cannot be extrapolated from adult studies. Large 

cohorts of pediatric-onset PAH are necessary to identify the unique etiological differences of PAH 

in children, as well as the natural history and response to therapy.
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Introduction

Pulmonary hypertension (PH) is a diverse group of pulmonary vascular diseases sharing a 

common pathophysiological endpoint. Endothelial dysfunction, aberrant cell proliferation 
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and vasoconstriction give rise to increased pulmonary vascular pressures, increased vascular 

resistance, heart failure and premature death. The disease is caused by genetic, epigenetic 

and environmental factors, as well as gene x environment interactions wherein genetic 

contributions to disease risk are modified by environmental exposures. Most of our 

understanding of PH etiology is based upon studies in adults. Here, we highlight current 

knowledge of the genetic causes for World Symposium on Pulmonary Hypertension 

(WSPH) Group I PH, or pulmonary arterial hypertension (PAH), for pediatric-onset disease 

and highlight the need for dedicated studies of children with PAH since etiologies differ by 

age.

PAH usually manifests in early to mid-life with an estimated prevalence of 4.8–8.1 cases/

million for pediatric-onset[1] and 15–50 cases/million for adult-onset disease[2]. Pediatric 

PAH differs from adult-onset disease in several important aspects including gender bias, 

disease etiology, clinical presentation, and response to therapy [3–5]. The 3–4-fold higher 

disease prevalence among females compared to males in adult-onset PAH is not observed in 

pediatric-onset disease, suggesting less dependence on sex-specific interacting factors in 

children[6–8]. Etiologically, pediatric-onset PAH has a higher proportion of idiopathic PAH 

(IPAH), PAH associated with congenital heart disease (APAH-CHD) and developmental 

lung diseases ((including persistent pulmonary hypertension of the newborn (PPHN)) 

compared to adult-onset disease[3, 4, 6, 8]. Data from the National Biological Sample and 

Data Repository for PAH (aka PAH Biobank, n=2572 cases) indicate that children present 

with slightly higher mean pulmonary arterial pressure, decreased cardiac output and 

increased pulmonary vascular resistance compared to adults at diagnosis[8] (Table 1). Due to 

the lack of pediatric clinical trial data, fewer therapeutic options are indicated for use in 

children with PAH. In practice, therapeutic regimens are based on experiences of individual 

centers [9] or recent statements of consensus guidelines [10, 11]. The management of 

pediatric PAH remains challenging due to the paucity of data regarding the natural history, 

mechanisms of disease and treatment response of PAH molecular subtypes in children.

Knowledge of genetic differences between pediatric- and adult-onset PAH are starting to 

emerge. Most of the data to date is from IPAH or APAH-CHD patients. As has been 

described for other pediatric developmental diseases including CHD [12–14] and congenital 

diaphragmatic hernia [15–17], de novo genetic variants contribute to a significant proportion 

of pediatric IPAH[7] (Figure 1). Furthermore, rare heritable variants in at least three 

developmental pathways and/or transcription factors have been implicated in pediatric PAH: 

BMPR2 (encoding bone morphogenetic protein receptor 2), TBX4 (T-box 4 containing 

protein) and SOX17 (SRY-related HMG box transcription factor) (Figures 1 and 2). Other 

known PAH risk genes such as ACVRL1, ENG, KCNK3 and SMAD9 rarely contribute to 

pediatric PAH [7] and in the aggregate account for ~3% of IPAH cases (Figure 1). No effect 

of sex on risk allele frequencies has been identified to date.

The PAH genetics community has introduced the term hereditary PAH (HPAH) to include 

familial PAH (PAH that occurs in two or more family members) as well as PAH without a 

family history of PAH when there is a clear genetic diagnosis. Thus, patients classified as 

IPAH at the time of diagnosis should be classified as HPAH when a causal genetic variant is 

identified.
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Role of de novo variants

De novo variants have emerged as an important class of genetic factors underlying rare 

diseases, especially early-onset severe or lethal conditions[13, 17–19], due to strong negative 

selection decreasing reproductive fitness[20]. Using a cohort of 34 pediatric-onset idiopathic 

PAH (IPAH) cases for which we had samples from unaffected parents, we demonstrated a 2-

fold enrichment of de novo variants in cases compared to an estimated background mutation 

rate [7]. The variants included both missense variants that change an amino acid with strong 

predictions of deleterious protein function (D-Mis) and likely gene damaging variants 

(LGD: frameshift, stop-gain, canonical splice site) often causing protein truncation and 

nonsense-mediated decay leading to a state of haploinsufficiency (loss of one functional 

copy of the gene). Among genes highly-expressed in developing heart and lung, the 

enrichment was increased 4-fold. All six of the LGD variants were identified in patients with 

an age-of-onset less than 5 years [7]. We now have additional data confirming the relative 

contribution of de novo variants in an expanded cohort of 124 trios with pediatric PAH 

probands, including both IPAH and APAH (primarily APAH-CHD) (manuscript in 

preparation). The majority of the cohort was recruited and consented at Columbia University 

Medical Center (CUMC) with whole exome sequencing and variant identification as 

described[7]. Whole genome sequencing data for ten trios was shared by the UK NIHR 

BioResource – Rare Diseases PAH Study[21] and analyzed together with the CUMC cohort 

data. The estimated fraction of pediatric PAH explained by de novo variants is ~15%. Some 

of the de novo variants occur in known risk genes (3 TBX4, 2 BMPR2, 1 ACVRL1, 1 

ABCC8). However, the others occur in genes not previously implicated in PAH. Notably, 

some of the novel de novo variants occur in candidate genes with known or plausible roles in 

lung/vascular development. For example, AMOT (angiomotin) encodes an angiostatin-

binding protein involved in embryonic endothelial cell migration and tube formation as well 

as endothelial cell tight junctions and angiogenesis [22–24]. KEAP1 (Kelch-like ECH 

associated protein 1) regulates oxidative stress and apoptosis through interactions with 

NRF2 in murine vascular cells[25], and endothelial-specific deletion of NRF2 reduces 

endothelial cell sprouting in vivo [26]. MAPK6 encodes ERK3 (extracellular signal-

regulated kinase 3), and mice carrying null alleles exhibit intrauterine pulmonary hypoplasia 

and early neonatal death [27]. Due to the rarity of de novo mutations in the general 

population[28], statistical evidence of a candidate risk gene is effectively equivalent to 

multiplicity (≥2 occurrences) of rare deleterious variants among cases. While our data 

implicate a role for de novo variants in ~15% of pediatric PAH cases, larger trio cohorts will 

be required to confirm the role of individual genes with replication and develop a 

comprehensive list of PAH genes.

BMPR2

BMPR2 is a member of the TGFβ superfamily including TGFβ /BMP ligands, receptors, 

accessory proteins, activins, and downstream signaling mediators (including SMADs and 

NOTCH3).

Rare deleterious variants in BMPR2 underlie ~70% of FPAH and 10–20% of IPAH cases, 

with similar frequencies of BMPR2 variants in pediatric- vs adult-onset disease for both 
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FPAH and IPAH [7, 8]. Overall, BMPR2 variant carriers have younger mean age-of-onset 

and more severe PAH compared to non-carrier patients, at least in part due to impaired 

response to oxidative stress [29]. However, BMPR2 variants are less frequent causes of 

APAH-CHD and have not been observed in PPHN. In a cohort of 258 APAH-CHD cases, 

only 7 (2.7%) cases carried rare deleterious BMPR2 variants [30]. In the PAH Biobank - 

comprised of 4% FPAH, 43% IPAH, 48% APAH and 5% other PAH - only 12/119 (10%) of 

all BMPR2 carriers had PAH diagnoses other than FPAH/IPAH [8]. Among 88 infants with 

PPHN, no rare deleterious variants in BMPR2 were identified [31]. The wide distribution of 

deleterious variant locations across the BMPR2 gene has limited genotype-phenotype 

analyses in the sample sizes studied to date due to small numbers of individuals carrying any 

one variant. However, an analysis of mutation type – truncating or missense – showed earlier 

age-of-onset and decreased survival among carriers of missense compared to truncating 

variants [32]. These data suggest that the presence of mutant/dysfunctional BMPR2 proteins 

arising from missense variants are more deleterious than haploinsufficiency of normal 

BMPR2 protein. Similarly, mice carrying a Bmpr2 extracellular domain missense mutation 

developed more severe PH in response to hypoxia or hypoxia with vascular endothelial 

growth factor inhibition than mice heterozygous for a Bmpr2 null allele [33]. In our cohort 

of 412 pediatric- and adult-onset PAH patients, there was a significant enrichment of 

deleterious missense variants in BMPR2 in patients with younger age-of-onset compared to 

LGD variant carriers[7] (Figure 3), providing independent confirmation of the importance of 

missense variants in early-onset disease. Thus, in pediatric PAH, rare deleterious BMPR2 
variants contribute primarily to FPAH/IPAH with deleterious missense variants associated 

with increased disease severity.

TBX4

TBX4 is not part of the TGFB pathway. TBX4 encodes a transcription factor in the T-box 

gene family expressed in the developing atrium of the heart, limb buds, and mesenchyme of 

lung and trachea, with important roles in limb development as well as lung growth and 

branching [34]. Rare deleterious TBX4 variants have been associated with small patella 

syndrome [35] and PAH [7, 36]. TBX4 was first suggested as a candidate PAH risk gene 

because of its location on chromosome 17q23.1–23.2, where microdeletions were associated 

with severe neurodevelopmental delays and pulmonary hypertension [37, 38]. Kerstjens-

Frederikse and colleagues [36] sequencedTBX2 and TBX4, both located within the 

17q23.1–23.2 deletion, and identified three rare TBX4 variants among 49 adults with PAH 

and no rare variants in TBX2. In a small European cohort of 66 pediatric PAH cases, 3/40 

FPAH/IPAH cases carried rare deleterious TBX4 variants[39] compared to 3/136 adult 

carriers in a Spanish PAH cohort [40]. In our larger cohort of 412 pediatric and adult onset 

FPAH/IPAH cases, we reported rare deleterious TBX4 variants in 13 cases with a significant 

enrichment of variants among pediatric (12/155) compared to adult onset (1/257) patients 

[7]. Furthermore, the mean age of onset was 20 years younger for TBX4 variant carriers 

compared to BMPR2 carriers. In the PAH Biobank, variants in TBX4 were the second most 

common genetic cause of PAH and accounted for ~1% of cases [8]. While 13/23 TBX4 
variant carriers had a diagnosis of IPAH, the other diagnoses included APAH-CHD, PAH 

associated with connective tissue disease, FPAH and PAH due to dietary toxin exposure. 

Age-of-onset for the TBX4 carriers exhibited a bi-modal distribution with significant 
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enrichment of variants among pediatric-onset cases (Figure 2). Interestingly, recent clinical 

and histological analysis of 19 children carrying rare deleterious TBX4 variants revealed a 

high frequency of severe developmental defects of the lung, skeleton and heart [41]. Ten of 

the infants presented with PPHN which resolved; however, the children were subsequently 

diagnosed with PAH later in infancy or childhood. This evidence indicates that TBX4 is 

especially important in pediatric-onset PAH, with rare deleterious variants causing a variety 

of disease subclasses and predicting disease recurrence in young patients initially diagnosed 

with PPHN.

SOX17

SOX17 also works outside of the TBFB pathway. SOX17 is a highly-constrained gene 

encoding a transcription factor involved in Wnt/β-catenin and Notch signaling during 

development [42]. Genetic studies in mice show that Sox17 is required for correct 

development and function of the pulmonary vascular tree. Endothelial-specific inactivation 

of Sox17 leads to impaired arterial specification and embryonic death or, with conditional 

postnatal inactivation, arterial-venous malformations [43]. Deletion in mesenchymal 

progenitor cells causes abnormal pulmonary vascular morphogenesis resulting in postnatal 

cardiopulmonary dysfunction and juvenile death [44]. Moreover, in an elegant endothelial 

lineage tracing study in mice, Liu and colleagues recently demonstrated that transcriptional 

activation of Sox17 via hypoxia-induced factor 1α, leads to upregulation of cyclin-E1 and 

endothelial regeneration in response to lung injury [45]. Thus, there are multiple 

mechanisms through which defective or deficient SOX17 could result in developmental 

cardiopulmonary defects or impaired response to hypoxic injury.

We identified SOX17 as a candidate risk gene for PAH using exome sequencing data in a 

cohort of 256 APAH-CHD patients [30]. Using a case-control gene-based association test, 

SOX17 was the only gene, out of ~18,000 genes, to reach genome-wide significance. Three 

of the top associated genes (BZW2, FTSJ3, BAZ1B) were putative SOX17 transcriptional 

targets[46], and enrichment analysis of a gene-set including 1947 putative SOX17 target 

genes revealed enrichment of rare missense variants in the patient cohort, suggesting that 

multiple genes in the SOX17 pathway way be important in APAH-CHD. The majority of 

these genes are expressed in pulmonary arterial endothelial cells or developing heart, and 

28% (42/149) are expressed in the top quartile in both tissues/cell types. Pathway 

enrichment analysis showed that the SOX17 target genes with deleterious variants are 

overrepresented in developmental processes, transmembrane transport of small molecules, 

ion homeostasis and extracellular matrix interactions. The association signal for SOX17 was 

due to LGD and deleterious missense variants carried by 10 APAH-CHD patients, and 7/10 

of these patients had pediatric-onset disease. Screening of our separate cohort of 412 FPAH/

IPAH patients identified an additional three carriers (2 pediatric, 1 adult)[30]. Rare 

deleterious variants have been identified in two additional IPAH cohorts, comprised mostly 

of adults. Genome sequencing data from the UK NIHR BioResource – Rare Diseases PAH 

Study identified 9/1038 IPAH SOX17 variant carriers[21] and candidate gene analysis of a 

Japanese cohort found 4 (3 unrelated)/140 FPAH/IPAH SOX17 variant carriers[47]. In the 

PAH Biobank, rare deleterious SOX17 variants were identified in 10/2572 patients (6 IPAH, 

2 APAH-CHD, 1 PAH associated with portopulmonary disease, and 1 PAH due to dietary 

Welch et al. Page 5

Pediatr Pulmonol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



toxin exposure)[8]. The mean age-of-onset for carriers in the PAH Biobank was 26 years, 

markedly younger than the overall cohort (48 years) or of BMPR2 variant carriers (38 years) 

(Figure 2). Notably, 15/18 rare missense variants carried by patients from all five cohorts are 

located in the high mobility group (HMG, DNA binding) domain of the SOX17 protein 

(Figure 4). The HMG domain is evolutionally conserved, down to unicellular yeast species, 

and is essential for target-specific transcriptional control[42, 48]. Based on these data, we 

estimate that rare deleterious variants in SOX17 contribute to ~7% (19/273) of pediatric-

onset PAH, especially APAH-CHD, compared to ~0.4% (13/3455) of adult-onset PAH. In 

addition, common SNPs in a putative endothelial-acting enhancer region of SOX17 have 

been associated with PAH [49], suggesting that variation in SOX17 gene expression may 

increase risk for developing PAH or other vascular endothelium-related diseases more 

commonly.

Genetic ancestry

The contribution of individual genes in PAH is likely heterogeneous across different genetic 

ancestries. The results of genetic studies predominantly in individuals of European ancestry 

may not be generalizable to all other populations. A pediatric study of an Asian cohort 

revealed a higher carrier frequency of ALK1/ACVRLI variants (7/54, 12.9%) [50] compared 

to studies of predominantly Europeans. A recent association analysis involving 331 IPAH 

cases and 10,508 controls of Asian ancestry identified BMP9/GDF2 as a significant risk 

gene in this population, second in frequency to BMPR2 [51]. Among 22 carriers of rare 

deleterious GDF2 variants, three had pediatric-onset disease accounting for 5.2% of the 57 

pediatric cases. In a case study of a five-year-old boy of Hispanic ancestry, a homozygous 

loss of function BMP9 variant, c.76C>T;p.Gln26Ter, was identified [52]. The gnomAD 

population database (gnomad.broadinstitute.org) contains only two heterozygous counts of 

this allele, both of Latino ancestry, suggesting that this might be an ancestry-specific allele. 

Clearly, larger studies of children with greater diversity are needed to define ancestral-

specific genetic factors and their overall role in pediatric-onset PAH.

Genetic testing for PAH

Clinical genetic testing panels for PAH-associated genes are widely available. Typical panels 

include BMPR2, ACVRL1, CAV1, EIF2AK4, ENG, KCNK3, and SMAD9 with varied 

inclusion of additional genes. For children, targeted sequencing of BMPR2, TBX4 and 

SOX17 should be prioritized for sequence variants, as well as ACVRL1 and GDF2 for Asian 

patients. In addition, deletion/duplication analysis for BMPR2 should be performed. If the 

results of these tests are not diagnostic, then reflexive exome sequencing of family trios 

(affected child and unaffected biological parents) should be performed to identify de novo or 

inherited rare variants. Genetic diagnoses can inform management of PAH as well as risk 

stratification for relatives of patients. However, the low penetrance associated with PAH 

genes complicates risk prediction, and genetic counseling should be offered to families 

before genetic testing. Although there is no current means to prevent PAH, screening by 

echocardiogram to enable early diagnosis and treatment may improve outcomes.
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Summary –

Genetic information relevant to pediatric PAH cannot be extrapolated from adults. Pediatric-

onset PAH differs from adult-onset in many important aspects including the genetic burden 

and specific genes involved. Rare genetic factors contribute to ~35% of pediatric-onset IPAH 

compared to ~11% of adult-onset IPAH. De novo variants and rare deleterious variants in 

BMPR2, TBX4, and SOX17 currently explain most of the known genetic burden in pediatric 

PAH. However, ancestry-specific factors likely play a role as well, with ACVRL1 and GDF2 
variants likely contributing in Asian patients. Large cohorts of pediatric-onset PAH are 

necessary to identify the unique etiological genes for PAH in children, as well as the natural 

history and response to therapy. Furthermore, genetic information is immediately clinically 

relevant and used by families with pediatric onset PAH to make reproductive decisions and 

screen family members. Identification of new causal genes will illuminate underlying 

disease pathophysiology and mechanisms that may identify therapeutic targets for adults and 

children. Given the increased burden of genetic etiologies in children, genomic studies in 

children with a trio design to identify inherited and de novo variants will yield more new 

targets than similarly powered studies in adults.
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Figure 1. 
Relative contributions of de novo mutations and 11 established PAH risk genes in idiopathic 

pediatric- and adult-onset PAH in a cohort of 412 cases (130 pediatric IPAH, 178 adult 

IPAH). Risk genes included BMPR2, ACVRL1, BMPR1A, BMPR1B, CAV1, EIF2AK4, 

ENG, KCNK3, SMAD4, SMAD9, and TBX4.
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Figure 2. 
Age distributions for PAH cases from the National Biological Sample and Data Repository 

for PAH (n=2572). BMPR2, TBX4 and SOX17 variant carriers have younger mean age-of-

onset compared to the whole cohort with significant enrichment of pediatric-onset cases 

among TBX4 variant carriers compared to the whole cohort (Zhu et al 2019 #8). Red 

vertical lines indicate the group means.
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Figure 3. 
Age distributions of BMPR2 likely gene damaging (LGD) or predicted damaging missense 

(D-mis) variant carriers from a cohort of 412 pediatric- and adult-onset PAH patients. There 

was significant enrichment of D-mis variants among patients with younger age-of-onset 

compared to LGD variant carriers (n=83 total variant carriers)
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Figure 4. 
Locations of SOX17 likely gene damaging (LGD) and rare predicted deleterious (D-Mis) 

variants carried by PAH patients from five cohorts from the US, UK and Japan. Variants 

carried by pediatric patients (n=19) are shown above the protein schematic and variants 

carried by adult patients (n=13) below the schematic. The combined datasets include 273 

pediatric and 3455 adult patients (Zhu et al 2018 #7; Zhu et al 2019 #8; Graf et al 2018 #21; 

Zhu et al 2018 #30; Hiraide et al 2018 #47).
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Table 1.
Clinical characteristics of child- vs adult-onset PAH cases at diagnosis.

Data from the National Biological Sample and Data Repository for PAH (n=2572 cases) (Zhu et al 2019 #8). 

Child-onset, <18 years of age at diagnosis. MPAP, mean pulmonary artery pressure; CO, cardiac output; PVR, 

pulmonary vascular resistance; dx, diagnosis.

Group Age at dx (y) MPAP (mmHg) CO, Fick (L/min) PVR (Woods units)

Child (n=226) 8 ± 6 (226) 55 ± 18 (225) 3.3 ± 1.6 (168) 17.7 ± 11.6 (164)

Adult (n=2345) 52 ± 19 (2345) 50 ± 14 (2293) 4.6 ± 1.7 (1630) 10.0 ± 5.9 (1579)

P-value <0.0001 <0.0001 <0.0001 <0.0001
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