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Abstract

Mendelian randomization (MR) is a valuable tool for detecting causal effects using genetic variant 

associations. Opportunities to apply MR are growing rapidly with the number of genome-wide 

association studies (GWAS). However, existing MR methods rely on strong assumptions that are 

often violated, leading to false positives. Correlated horizontal pleiotropy, which arises when 

variants affect both traits through a heritable shared factor, remains a particularly challenging 

problem. We propose a new MR method, Causal Analysis Using Summary Effect Estimates 

(CAUSE), that accounts for correlated and uncorrelated horizontal pleiotropic effects. We 

demonstrate in simulations that CAUSE avoids more false positives induced by correlated 

horizontal pleiotropy than other methods. Applied to traits studied in recent GWAS, we find that 

CAUSE detects causal relationships with strong literature support and avoids identifying most 

unlikely relationships. Our results suggest that shared heritable factors are common and may lead 

to many false positives using alternative methods.

Inferring causal relationships between traits is important for understanding the etiology of 

disease and designing new treatments. Randomized trials are considered the gold standard 

for inferring causality but are expensive and sometimes impossible. Observational studies 

are often more feasible, but observational associations may be biased by confounding and 

reverse causality.

Mendelian randomization (MR) is an approach to studying causal relationships using trait 

associations with genetic variants. MR can be performed using only GWAS summary 

statistics, making it potentially an extremely valuable technique with wide applicability. The 

key idea of MR is to treat genotypes as naturally occurring “randomizations”1,2,3,4. Suppose 
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we are interested in the causal effect, γ, of M (for “Mediator”) on Y. If a variant Gj affects 

M and does not affect Y through pathways not mediated by M (see Figure 1a), then Gj can 

be viewed as an unconfounded proxy for M. Under these assumptions,

βY , j = γβM, j #(1)

where βY,j is the association of Gj with Y, βM,j is the association of Gj with M. This 

relationship is the core of many MR methods, including the commonly used inverse variance 

weighted (IVW) regression, which regresses estimates of βY,j on βM,j for selected variants 

strongly associated with M5.

A variant that affects both M and Y through a pathway not mediated by a causal effect is 

termed horizontally pleiotropic. Horizontal pleiotropy leads to false positives in methods 

that assume the relationship in Equation (1) and is unfortunately common6,7. Accounting for 

horizontal pleiotropy has therefore been a major focus of ongoing MR research4. It is helpful 

to distinguish between two types of horizontal pleiotropy: uncorrelated pleiotropy, where 

horizontal effects on Y are uncorrelated with effects on M, and correlated pleiotropy, where 

horizontal effects on Y are correlated with effects on M. Uncorrelated pleiotropy occurs 

when a variant affects Y and M through separate mechanisms, whereas correlated pleiotropy 

occurs when a variant affects Y and M through a shared heritable factor, U, such as a shared 

process or pathway (Fig. 1a). Both types of pleiotropy may occur for any pair of traits.

Of the two types, uncorrelated pleiotropy is easier to account for. If it is mean zero, it only 

adds noise to the relationship in Equation (1). Multiple methods have been proposed to deal 

with this, including Egger regression8,9, which allows for directional (non-mean zero) 

uncorrelated pleiotropy, and methods that rely on outlier removal, including GSMR10 and 

MR-PRESSO7. Correlated pleiotropy results in correlation between βM,j and βY,j for a 

subset of variants. This leads to false positives if it is not accounted for. Genetic correlation 

has been found between many pairs of traits including some that are unlikely to be causally 

linked, suggesting that correlated pleiotropy is common and may be an important source of 

MR false positives11–14.

If a suspected shared factor is measured, false positives can be avoided by eliminating 

variants associated with the shared factor or adjusting for it using multivariable MR15. Two 

methods, the weighted median16 and the weighted mode17, allow for some correlated 

pleiotropy. In their unweighted versions, the median and mode estimators assume that fewer 

than half of variants display horizontal pleiotropy and that the modal horizontal pleiotropic 

effect is zero, respectively. Another method, LCV14, does not directly test for a causal effect, 

but estimates the “genetic causality proportion”, with higher magnitude estimates suggesting 

a causal effect and lower magnitude estimates suggesting correlated pleiotropy.

We present a new MR method that accounts for both uncorrelated and correlated pleiotropy, 

Causal Analysis Using Summary Effect Estimates (CAUSE), using genome-wide summary 

statistics. The intuition behind CAUSE is that a causal effect of M on Y leads to correlation 

between βM,j and βY,j for all variants with non-zero effect on M, while a shared factor 

induces correlation for only a subset of M effect variants (Fig. 1b). CAUSE uses this 
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distinction to differentiate causal effects from correlated pleiotropy. Unlike many existing 

methods, CAUSE incorporates information from all variants, rather than only those most 

strongly associated with M. This can improve power when the GWAS for trait M is 

underpowered. CAUSE provides a test-statistic, an estimate of the causal effect, and a 

variant-level summary indicating how each variant contributes to the overall test, and which 

variants are likely to be acting through a shared factor.

We demonstrate in simulations that CAUSE makes fewer false detections in the presence of 

correlated pleiotropy than existing methods. In applications to GWAS data, CAUSE 

identifies plausible causal relationships while avoiding many likely false positives. CAUSE 

fills a gap in existing methodology by accounting for correlated pleiotropy created by 

unknown or unmeasured shared factors.

Results

CAUSE models uncorrelated and correlated pleiotropy

CAUSE assesses whether genome-wide effect estimates for M and Y are consistent with a 

causal effect. In a simple MR analysis, variants with strong associations with M are selected 

and assumed to follow the causal diagram in Figure 1a. In our proposal, illustrated in Figure 

1c, we use all variants but assume that most have no effect on either trait. We assume that the 

majority of variants that do affect M follow the left-hand causal diagram in Figure 1c, which 

is the same as the diagram in Figure 1a with the addition of an uncorrelated pleiotropic 

effect. We allow a small proportion, q, of M effect variants to follow the right-hand causal 

diagram in Figure 1c, acting on M and Y through an unobserved heritable shared factor, U. 

Under this model, the relationship between βY,j andβM,j is:

βY , j = γβM, j
causal
effect

+ ZjηβM, j
correlated
pleiotropy

+ θj
uncorrelated
pleiotropy

,
#(2)

where Zj is an indicator that is 1 if Gj acts on M through U and 0 otherwise, and η is the 

effect of U on Y. This relationship is an extension of Equation (1) that includes terms 

allowing for both types of horizontal pleiotropic effects. We assume that q is small, so Zj is 

equal to 0 for most variants (see Methods).

Equation (2) captures the patterns in Figure 1b. If γ = 0 and q = 0 (no causal effect and no 

shared factor), then βY,j and βM,j are uncorrelated for all j. If there is a shared factor and no 

causal effect (γ = 0, q and η non-zero), then βY,j and βM,j are correlated for variants with Zj 

= 1 (Fig. 1b, left). If there is a causal effect (γ ≠ 0), βY,j and βM,j are correlated for all 

variants (Fig. 1b, right). Including all variants allows us to model uncertainty about variant 

effects on M and gain information from weakly associated variants (see Methods). For 

computational simplicity, we use a likelihood for independent variants and prune variants for 

LD before estimating posterior distributions and computing test statistics (see Methods and 

Supplementary Note, Section SN4).

We assess whether GWAS summary statistics for the two traits are consistent with a causal 

effect by comparing two nested models. The sharing model has γ fixed at 0, allowing for 
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horizontal pleiotropic effects but no causal effect, and the causal model in which γ is a free 

parameter. We compare the models using the expected log pointwise posterior density18 

(ELPD), a Bayesian model comparison approach that estimates how well the posterior 

distributions of a particular model are expected to predict a new set data (see Methods). We 

produce a one-sided p-value testing that the sharing model fits the data at least as well as the 

causal model. If this hypothesis is rejected, we conclude that the data are consistent with a 

causal effect.

The right-hand causal diagram in Figure 1c is related to the model used in the latent causal 

variable (LCV) method14 (see Supplementary Note, Section SN5). Unlike other MR 

methods, LCV does not provide a test for a causal effect. LCV considers the proportion of 

heritability of each trait that is mediated by a shared factor, summarized as the “genetic 

causality proportion” (GCP), which ranges from −1 to 1. A causal model has a GCP of 1 or 

−1, depending on the direction of effect. O’Connor and Price14 consider a large magnitude 

estimated GCP more likely to be causal and use a threshold of 0.6 to identify suggestive 

pairs.

CAUSE can distinguish causality from correlated pleiotropy in simulations

We simulate summary statistics with realistic LD patterns to assess CAUSE in a variety of 

scenarios and compare performance with other MR methods. Both traits are simulated with 

a polygenic trait architecture—an average of 1,000 variants with normally distributed effects 

contribute to a total heritability of 0.25. The power of trait M and Y GWAS can influence 

performance of all methods, so we consider low power and high power (median 8 and 107 

genome-wide significant loci) settings for both traits. Power is controlled by adjusting the 

simulated GWAS sample size and genome-wide significance is defined as p < 5 · 10−8. We 

generate effects on trait Y from the relationship in Equation (2) and then simulate effect 

estimates from true effects and LD structure using results of Zhu and Stephens19 (see 

Methods).

We compare CAUSE to six MR methods: IVW regression using multiplicative random 

effects20, Egger regression with random effects8, GSMR10, MR-PRESSO7, the weighted 

median16, and the weighted mode17. IVW regression, Egger regression, GSMR and MR-

PRESSO assume that no variants exhibit correlated pleiotropy. The weighted median and 

weighted mode methods each allow some horizontal pleiotropy of any kind. All six 

alternative methods require selection of variants with strong evidence of association with 

trait M. We follow common practice selecting variants with p < 5 · 10−8 for association with 

M and pruning for LD so that no pair of variants has pairwise r2 > 0.1.

We first evaluate the robustness of each method to correlated pleiotropy by simulating data 

with no causal effect and a proportion q = 0 to 0.5 of variants acting through a shared factor, 

considering weak and strong shared factor effects (Fig. 2a). CAUSE controls the false 

positive rate in the presence of correlated pleiotropy (q > 0) better than other methods except 

for Egger regression and the weighted mode. CAUSE makes more false detections when q is 

large, the confounder effect is large, and both GWAS have high power. This is expected 

because the data pattern resulting from a high proportion of shared variants is similar to the 

pattern that results from a causal effect. Although in these settings CAUSE has a higher false 
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positive rate when the trait M GWAS has higher power, as sample size and GWAS power 

continue to increase, CAUSE’s false positive rate eventually drops to zero, indicating that, 

asymptotically, CAUSE is able to determine the correct model (Supplementary Note, 

Section SN6.4).

We next compare the power of each method when there is a true causal effect of M on Y and 

no shared factor (Fig. 2b). CAUSE has substantially better power than Egger regression and 

the modal estimator, the two methods that control the false positive rate for high levels of 

correlated pleiotropy. CAUSE has somewhat lower power than other methods in most 

settings. However, when the trait M GWAS has low power and the trait Y GWAS has high 

power, CAUSE can achieve better power than other methods for larger causal effects. This is 

a result of using all variants, rather than only those reaching genome-wide significance. The 

posterior median of γ can be taken as a point estimate of the causal effect. This estimate 

tends to be shrunk slightly towards zero compared to alternative methods but has a 

substantially lower mean squared error than estimates obtained using the weighted mode or 

Egger regression (Supplementary Note, Section SN6.2). In simulations with both a causal 

effect and a shared factor, CAUSE maintains similar power when η has a smaller magnitude 

than γ but loses power when η is large and has opposite sign to γ (Supplementary Note, 

Section SN6.3).

Although in many settings CAUSE has both lower power and lower false positive rate than 

other methods, the difference between CAUSE and other methods is not simply calibration. 

In Figure 2c, we compare the trade-off between power and false positive rate for CAUSE 

and other methods, additionally including the LCV GCP estimate. CAUSE is better able to 

distinguish a causal scenario from a non-causal scenario with 30% correlated pleiotropy. 

This pattern is consistent for levels of correlated pleiotropy between 0% and 50% (Extended 

Data Fig. 1 and Supplementary Table 1). Additionally, CAUSE is better or equal to other 

methods at discriminating scenarios with a causal effect and a shared factor from those with 

only a shared factor (Supplementary Note, Section SN6.3).

CAUSE reduces false positives due to reverse causality

Many MR methods obtain false positives when there is a causal effect of Y on M, but a test 

is performed for an effect of M on Y (reverse causal effects). This occurs because if Y 
affects M, some variants will have correlated effects on both traits. However, for most 

polygenic traits, there will be some variants that affect M through pathways independent of 

Y and therefore do not exhibit this correlation. By modeling a subset of correlated 

pleiotropic variants, CAUSE can avoid false positives due to reverse causality as long as 

only a proportion of M effect variants act through Y.

To verify this expectation, we simulate data with a causal effect of Y on M and no shared 

factor and test for an effect of M on Y using CAUSE and other methods. In all scenarios, the 

expected heritability of both M and Y is 0.25. For trait Y, 1000 variants with normally 

distributed effects explain this heritability. The causal effect of Y on M explains 20% of the 

trait M heritability while the rest comes from a set of 250, 500, or 1,000 variants (see 

Methods). CAUSE and the modal estimator both avoid false positives in all settings while 

the other methods do not (Fig. 3). More false positives from other methods occur when a 
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higher proportion of M effect variants act through Y and therefore have correlated effects. 

Some false positives from alternative methods could be avoided by carefully filtering 

variants, for example using Steiger filtering21.

Although CAUSE is often able to avoid false positives from reverse causality, it may still 

find evidence of causality in both directions for some pairs of traits. This can occur for 

several reasons. First, there may be a causal effect in one direction that accounts for nearly 

all of the heritability of the downstream/child trait. Second, there may be causal effects in 

both directions. Third, the two traits may be very closely related and share nearly all genetic 

variants despite having no causal relationship.

Identifying causal risk factors of common diseases

We use CAUSE and other methods to test for causal effects of twelve possible risk factors 

for cardio-metabolic diseases on coronary artery disease (CAD), stroke, and type 2 diabetes 

(T2D) (Supplementary Table 2). In order to increase the number of tested relationships that 

are unlikely to be causal, we also test for effects of each risk factor on asthma, though not all 

of these relationships are negative controls. Focusing on well-studied risk factors and 

diseases allows us to compare results of each method with evidence from scientific 

literature.

Table 1 summarizes p-values and estimated effect direction for each method as well as GCP 

estimates from LCV and genetic correlation estimates from LD-score regression (complete 

results in Extended Data Fig. 2 and Supplementary Table 3). Full lists of variants used for 

each MR method are provided in Supplementary Table 4. We classified trait pairs in Table 1 

by evidence of causality from existing literature (see Supplementary Note, Section SN7) and 

ordered them by genetic correlation p-value. CAUSE obtains a p-value less than 0.05 for 8 

of 9 relationships in the considered causal category, and for 4 of 10 relationships with 

literature support. Of the remaining pairs in these two categories, 4 are not identified as 

causal by any method. The remaining negative results from CAUSE are discussed in 

Supplementary Note, Section SN8. Using LCV, very few pairs of traits have estimated GCP 

larger than 60%, the threshold used by O’Connor and Price14 as suggestive of a causal 

relationship. Variant estimates for smoking and CAD, a strong causal effect detected by all 

methods except LCV, are shown in Figure 4a colored by individual variant contribution to 

the CAUSE test statistic. Although there is some heterogeneity in effect size correlation, the 

large number of variants with correlated effects provide enough evidence for CAUSE to 

reject the sharing model in favor of the causal model.

To assess false positives, we consider traits in the non-causal and implausible categories, and 

those in the unknown category that have no significant genetic correlation. CAUSE identifies 

fewer of these pairs as causal than any other method. All methods except Egger regression 

detect an effect of HDL cholesterol on CAD risk, which is likely to be an error22. This 

example represents a limitation of CAUSE, as it is possible to obtain false positives when a 

high proportion of variants are shared. In this case, CAUSE estimates that 54% of variants 

act through a shared factor.
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LDL cholesterol and T2D is an example of a pair of traits identified by other methods but 

not by CAUSE (Fig. 4b). The true relationship between this pair is unknown. Levels of LDL 

cholesterol are often elevated in individuals with T2D, an effect that is typically considered a 

consequence of insulin insensitivity23 (see Supplementary Note, Section SN7). Clinical 

trials of statins, which reduce LDL cholesterol, show an increased risk of T2D with statin 

use24,25. However, statins and their target enzyme affect multiple systems, and it remains 

unknown whether statin effects on T2D are mediated by LDL cholesterol or other 

mechanisms26 (see Supplementary Note, Section SN7). The effects estimated by IVW 

regression and other methods are negative, opposite of observational associations, but 

consistent with previous findings of Fall et al.27. CAUSE does not reject the sharing model 

(p = 0.32) and estimates that 13% of LDL variants act through a shared factor.

We expect that most effects detected in the opposite direction, of diseases on potential 

mediators are false positives. Testing opposite direction effects therefore gives us another 

opportunity to evaluate the robustness of methods to false positives. Additionally, as 

discussed previously, a reciprocal result for CAUSE can arise from both causal and non-

causal scenarios, so it is important to consider tests in both directions. CAUSE identifies five 

reverse pairs at a p-value threshold of 0.05, fewer than any other method. IVW, Egger 

regression, the weighted median, the weighted mode, and MR-PRESSO identify 15, 6, 11, 7, 

and 17 reverse effects respectively (Supplementary Table 5 and Extended Data Fig. 3). The 

case of CAD and LDL cholesterol provides an example of how CAUSE is able to avoid false 

positives from reverse effects (Fig. 4c).

All of the mediators in this analysis have high-powered GWAS with many genome-wide 

significant variants. Such studies are not always available, and simulations suggest that 

CAUSE may have a power advantage over other methods if the trait M GWAS is 

underpowered. In order to explore the effect of GWAS power, we compared results using an 

earlier GWAS for blood pressure with a smaller sample size28. With these data, CAUSE is 

able to detect effects of blood pressure on CAD that are missed by IVW and Egger 

regression (Supplementary Note, Section SN9). This suggests that CAUSE may be able to 

boost power to detect causal effects of mediators with underpowered GWAS.

Links between immune-mediated disease and blood cell counts

There are a growing number of GWAS for intermediate or molecular traits. Relationships 

between these traits and clinical outcomes are appealing targets for MR studies because 

molecular traits may be accessible as drug targets or suggest physiological pathways 

contributing to disease. We use CAUSE and other MR methods to search for evidence of 

causal relationships between 13 measures of blood cell composition and five immune-

mediated diseases (Supplementary Table 6). Results are summarized in Figure 5 and 

Supplementary Table 7 (full results are shown in Supplementary Tables 8 and 9, and variants 

used are shown in in Supplementary Table 10).

Blood cell composition traits can be divided into red blood cell, white blood cell, and 

platelet traits. Although there is less literature information to guide us, we expect that effects 

of white blood cell traits on immune-mediated disorders are more plausible than effects of 

red blood cell or platelet traits.
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CAUSE identifies only 4 pairs of traits as consistent with a causal effect at p < 0.05. The two 

most significant effects are positive effects of eosinophil count on asthma and allergy risk (p 
= 1.9 · 10−5 and 4.0 · 10−11, respectively). Eosinophils have proven to be promising drug 

targets for treating asthma and allergic disease29. All other methods, including Egger 

regression and the weighted mode, obtain many more positive results than CAUSE, 

including likely false positive effects of red blood cell and platelet traits. Some of these 

results suggest that there are cases when methods that down-weight or remove outliers may 

be less robust than IVW regression. For example, an effect of immature reticulocyte fraction 

(IRF, a red blood cell trait) and inflammatory bowel disease (IBD) is found only by the 

weighted median (p = 1.2 · 10−5), the weighted mode (p = 2.6 · 10−5), and MR-PRESSO (p 
= 0.0015) (Fig. 4d). There is no visible correlation in variant effect sizes, and CAUSE as 

well as the simpler IVW regression obtain non-significant results (p =0.32 and 0.16, 

respectively). By removing or down-weighting the contribution of some variants, putatively 

robust methods can obtain false positives by discounting conflicting evidence.

Discussion

We have introduced CAUSE, a new approach to MR analysis that accounts for uncorrelated 

and correlated pleiotropy. Compared to existing methods, CAUSE is able to reduce false 

positives and, in some circumstances, increase power. Previous authors have identified 

uncorrelated horizontal pleiotropy as a pervasive phenomenon adversely impacting MR 

analyses7. Our results demonstrate that correlated horizontal pleiotropy is also common and 

may explain a substantial fraction of positive MR. Alternative MR methods perform best 

when information is available to guide removal of pleiotropic variants. For example, in 

analyzing HDL cholesterol and heart disease, Voight et al.22 avoid a false positive by 

discarding variants associated with other lipid and metabolic traits. CAUSE does not require 

such selection and performs well in an automated manner, making it well suited for 

applications where shared factors are unknown or unmeasured.

Caution must be used when interpreting results of CAUSE, as well as any other MR method. 

CAUSE tests that the GWAS summary statistics for M and Y are consistent with a model 

where every M effect variant has a correlated effect on Y. This pattern occurs when M has a 

causal effect on Y but can also occur in other circumstances. Notably, if most of the 

heritable variation of two traits is mediated by the same unobserved process, we expect to 

observe this pattern in both directions. It is therefore good practice to test trait pairs in both 

directions13. We also note that, while CAUSE is more robust than alternatives, it still has a 

high false positive rate when a shared factor accounts for a large proportion of the trait M 
variants. A low p-value from CAUSE (or any MR method) should not be regarded as proof 

of a causal effect. Instead, it is an indicator that the summary statistics for the two traits are 

consistent with a causal effect. The power and false positive rate of CAUSE can be affected 

by the prior on q (Supplementary Note, Section SN6.1). We have chosen a default prior that 

gives good performance over a range of settings. However, it may also be good practice to 

conduct sensitivity analyses using more and less stringent priors.

CAUSE has several limitations that provide interesting future directions. First, it is not 

possible to account for known shared factors when they are measured. Second, CAUSE 
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models only a single unobserved shared factor, so it may not fully account for shared genetic 

components between two traits of interest. This problem is partially alleviated by the 

flexibility of the empirical effect size prior distribution (see Methods). Finally, CAUSE 

prunes variants for LD rather than explicitly modeling variant correlation. This ensures that 

problem is computationally tractable, but may lead to loss of information.

Methods

CAUSE model for GWAS summary statistics

We use effect estimates and standard errors measured in GWAS of M and Y (summary 

statistics) to evaluate evidence of a causal effect of M on Y. Let βM, j, sM, j  and βY , j, sY , j
be effect estimates and standard errors at variant Gj (j = 1, …, p) for traits M and Y, 

respectively. Let βM,j and βY,j be the true marginal associations of Gj with M and Y. We 

model effect estimates as normally distributed given the true effects, allowing for global 

correlation that can result from overlapping GWAS samples. We model:

p βM, j, βY , j βM, j, βY , j, ρ, sM, j, sY , j = N2
βM, j

βY , j
;

βM, j
βY , j

; Sj ρ , #(3)

where Sj ρ =
sM, j

2 ρsM, jsY , j

ρsM, jsY , j sY , j
2  and N2(x; μ, Σ) is the bivariate normal density with 

mean μ and variance Σ evaluated at x. This model implicitly assumes that sM, j and sM, j are 

measured without error. The correlation term, ρ, which accounts for sample overlap, is 

estimated empirically (Supplementary Note, Section SN1).

In the CAUSE model, a proportion, q, of variants exhibit correlated pleiotropy, modeled as 

an effect on a shared factor, U (Fig. 1c, right). The remaining proportion, 1 − q, are 

independent of U (Fig. 1c, left). All variants may have pleiotropic effects, θj on Y that are 

uncorrelated with their effects on M. Let Zj be an indicator that variant j effects U. Then,

βY , j |Zj = γβM, j
causal
effect

+ ZjηβM, j
correlated
pleiotropy

+ θj
uncorrelated
pleiotropy

,
#(4)

Zj Bernoulli q ,

where η is the effect of U on Y and U is scaled so that the effect of U on M is 1. Note that if 

there are no uncorrelated or correlated pleiotropic effects, then Equation (4) reduces to βY,j = 

γβM,j, the relationship assumed by simple MR approaches such as IVW regression. We 

substitute the right side of Equation (4) into Equation (3) and integrate out Zj to obtain:
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p βM, j, βY , j βM, j, θj, ρ, sM, j, sY , j, γ, η, q

= qN2
βM, j

βY , j
;

βM, j
γ + η βM, j + θj

; Sj ρ

+ 1 − q N2
βM, j

βY , j
;

βM, j
γβM, j + θj

; Sj ρ .

#(5)

The parameters of interest in the CAUSE model are γ, η, and q. Rather than estimating 

individual variant effects βM,j and θj, we model their joint distribution empirically and 

integrate them out to obtain a marginal density for βM, j and βM, j. We model βM,j and θj as 

draws from a mixture of bivariate normal distributions. This strategy is based on Adaptive 

Shrinkage (ASH) approach of Stephens30 for modeling univariate distributions and provides 

a flexible unimodal distribution with mode at (0,0). We model:

p βM, j, θj π0, …, πK, Σ0, …, ΣK = ∑
k = 0

K
πkN2

βM, j
θj

; 0
0 ; Σk , #(6)

where Σ0, Σ1, …,ΣK are pre-specified covariance matrices of the form Σk =
σk, 1

2 0

0 σk, 2
2 , and 

π0, π1, …,πK are mixing proportions that sum to 1. The set of parameters Ω = {π0,…,πK, 

Σ0, …,ΣK} are estimated from the data along with ρ in a single pre-processing step 

(Supplementary Note, Section SN1). Integrating βM,j and θj out of Equation (5), we obtain:

p βM, j, βY , j γ, η, q, sM, j, sY , j, Ω, ρ = q ∑
k = 0

K
πkN2

βM, j

βY , j
; 0

0 ; A γ + η ΣKA γ + η ⊤ + Sj ρ

+ 1 − q ∑
k = 0

K
πkN2

βM, j

βY , j
; 0

0 ; A γ ΣKA γ ⊤ + Sj ρ ,

#(7)

where A x = 1 0
x 1 . Treating variants as independent, we obtain a joint density for the entire 

set of summary statistics as a product over variants. We place independent prior distributions 

on γ, η, and q, described below, and estimate posterior distributions via adaptive grid 

approximation (Supplementary Note, Section SN3). A flow-chart illustrating a CAUSE 

analysis including parameter estimation is shown in Extended Data Figure 4. CAUSE is 

implemented in an open source R package and we also provide pipelines for running 

CAUSE on large-scale applications.

Prior distributions for γ, η, and q

We place normal prior distributions with mean zero on γ and η. We find in simulations that 

results are robust to different choices of prior variance for γ and η, as long the same value is 
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used for both parameters (Supplementary Note, Section SN2). Since the magnitude of a 

possible causal effect is difficult to know a priori due to differences in trait scaling and 

covariate adjustment across GWAS, we use the data to suggest a prior variance 

(Supplementary Note, Section SN2).

By default, and in all analyses presented here, we use a Beta(1,10) prior distribution for q. 

This distribution gives a prior probability of 0.001 that q > 0.5 and 0.056 that q > 0.25. The 

parameters of the Beta distribution can be adjusted by the user to reflect different prior 

beliefs about the size of q. If the prior on q places more weight on values close to zero, 

CAUSE will behave more similarly to standard MR, obtaining high false positive rates when 

the true value of q is large. With a more permissive prior on q, CAUSE is more robust to 

larger amounts of correlated pleiotropy but has reduced power. We set Beta(1,10) as the 

default choice because it performed acceptably over a range of settings in simulations 

(Supplementary Note, Section SN6.1).

Accounting for linkage disequilibrium

We treat variants as independent when we compute the joint density of summary statistics. 

In reality, variants are correlated due to linkage disequilibrium (LD). We define the LD-

transformed effects βM* = SMRSM
−1βM and βY* = SY RSY

−1βY , where R is the variant 

correlation matrix and SM and SY are diagonal matrices with diagonal elements (sM,j) and 

(sY,j)19. We assume that R is the same in both GWAS. The pair of estimates βM, j, βY , j  can 

be approximated as normally distributed with mean βM, j* , βY , j*  and variance S(ρ). If the 

relationship in Equation (4) holds for true effects, βM,j and βY,j, and either M effects are 

sparse relative to LD structure (most M effect variants are independent) or q is small, then 

the relationship between the LD-transformed effects is:

βY , j* = γβM, j* + ZjηβM, j* + θj*, #(8)

where θ* = SY RSY
−1θ (Supplementary Note, Section SN4). In this case, the mean 

relationship for summary statistics at a single locus is the same with or without LD and 

Equation (5) and (7) remain valid for variants in LD if βM,j and θj are replaced with βM, j*

and θj*.

Correlations among variants can affect the joint density of all summary statistics, which we 

compute as a product of the densities at each variant. To account for this, we use a subset of 

variants with low mutual LD (r2 < 0.1 by default), prioritizing variants with low trait M p-

values to improve power.

If M effect variants are dense relative to LD structure and q is large, LD can induce a 

positive correlation between Y and M effect estimates for all variants, even when there is no 

causal effect (Supplementary Note, Section SN4). In this case, CAUSE may have an inflated 

false positive rate.
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Model comparison using ELPD

To determine whether GWAS summary statistics are consistent with a causal effect of M on 

Y we compare a model in which the causal effect is fixed at zero (the sharing model) to a 

model that allows a non-zero causal effect (the causal model). To compare the fit of these 

models, we estimate the difference in the expected log pointwise posterior density 
(ΔELPD)18. The ELPD measures how well the posterior distributions estimated under a 

given model are expected to predict a hypothetical new set of summary statistics obtained 

from GWAS of M and Y in different samples.

Let Θ be the set of parameters (γ, η, q). Let pC(Θ|Data) and pS(Θ|Data) be the posterior 

density of Θ given the observed summary statistics under the causal model and sharing 

model respectively. Let yj′ denote a new observation of βM, j, βY , j, sM, j, sY , j . The ELPD 

for model m ∈ {C, S} (for causal and sharing) is:

ELPDm = ∑
j = 1

p ∫ ∫ p yj′ Θ, Ω, ρ, sM, j, sY , j pm Θ Data dΘ ptrue yj′ dyj′ . #(9)

where p yj′ |Θ, Ω, ρ, sM, j, sY , j  is given in Equation (7) and ptrue is the probability density 

under the true data generating mechanism. If ΔELPD = ELPDC − ELPDS is positive, then 

the posteriors from the causal model predict the data better so the causal model is a better fit. 

If ΔELPD ≤ 0, then the sharing model fits at least as well, indicating that the data are not 

consistent with a causal effect.

We estimate ΔELPD and a standard error of the estimator using the Pareto-smoothed 

importance sampling method described by Vehtari, Gelman, and Gabry18 and implemented 

in the R package loo. We then compute a z-score, zelpd = ΔELPD
se ΔELPD

, that is larger when 

posteriors estimated under the causal model fit the data better than the posteriors estimated 

under the sharing model. We compute a one-sided p-value by comparing the z-score to a 

standard normal distribution. The p-value estimates the probability of obtaining a z-score 

larger than the one observed if the true value of ΔELPD were less than or equal to zero.

Generating simulated summary statistics

To create data with a realistic correlation structure, we estimate LD for 19,490 HapMap 

variants on chromosome 19 in the CEU 1,000 Genomes population using LDShrink31 

(https://github.com/stephenslab/ldshrink) and replicate this pattern 30 times to create a 

genome sized data set of p = 584,700 variants. We generate effect estimates from the 

CAUSE model in Equation (4), given setting specific values of γ, η, and q., and parameters 

defining the trait architecture and power of the GWAS (heritability, number of effect 

variants, and GWAS sample size).

We simulate an effect estimate and standard error for each variant using the following 

procedure. First, standardized effects βM, j = βM, j 2fj 1 − fj  and θj = θj 2fj 1 − fj  are 

drawn from a mixture distribution:
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βM, j 1 − πM δ0 + πMN 0, σM
2

θj 1 − πθ δ0 + πθN 0, σθ
2 , #(10)

where fj is the allele frequency of variant j in the 1000 Genomes CEU population. Variances 

σM
2  and σθ

2 are chosen to give the desired expected heritability as σM
2 =

ℎM
2

mM
 and 

σθ
2 =

ℎY
2 − γ2 + qη2 ℎM

2

mθ
. In these simulations, ℎM

2 = ℎY
2 = 0.25. Parameters πM = mM/p and πθ 

= mθ/p define the expected number of variants with non-zero values of βM,j and θj 

respectively. In simulations in Figure 2, mM = mθ = 1,000. Note that γ2ℎM
2 /ℎY

2  is the 

proportion of trait Y heritability mediated by the causal effect and qη2ℎM
2 /ℎY

2  is the 

proportion of trait Y heritability mediated by U.

Second, standardized effects are converted to non-standardized effects and standard errors 

are computed as s ⋅ j = 1
2N . fj 1 − fj

, where ∙ may be M or Yand NM and NY are GWAS 

sample sizes for traits M and Y, respectively. Given the other parameters, we selected 

sample sizes of 40,000 for high powered GWAS settings and 12,000 for low powered GWAS 

settings to provide desired numbers of genome-wide significant variants (about 107 and 8, 

respectively).

Third, Zj are drawn from a Bernoulli(q) distribution and true effects βY,j are computed using 

Equation (4). In Figure 2a, a weak shared factor effects correspond to η = 0.02, while large 

shared factor effects correspond to η = 0.05. Finally, effect estimates are simulated from 

true effects as:

β . Np S . RS . β . , S . RS .−1 , #(11)

where S. is the diagonal matrix of standard errors and R is the variant correlation matrix19. 

Simulations can be replicated using the online tutorial (https://jean997.github.io/cause/

simulations.html).

Existing MR methods

We compare the performance of CAUSE in simulated data with six other MR methods and 

LCV14. These are implemented as follows.

• Random effect IVW regression, random effect Egger regression, the weighted 

median, and weighted mode methods are implemented in the 

MendelianRandomization R package. IVW regression is run using model = 

“random” and weights = “delta” options. The weighted mode estimator is 

computed using the phi = 1 and stderror=“delta” options. All other methods are 

run with default options.

• MR-PRESSO is performed using the MRPRESSO R package (https://

github.com/rondolab/MR-PRESSO) with outlier and distortion tests.
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• GSMR is performed using the gsmr R package (http://cnsgenomics.com/

software/gsmr/) with the Heidi outlier test, default threshold 0.01, and minimum 

number of instruments lowered to 1.

• LCV is performed using R scripts available from the author (https://github.com/

lukejoconnor/LCV) using default parameters.

Reporting summary

Additional details on study design are provided in the Life Sciences Reporting Summary.

Code availability

All software and analysis code is publicly available. The CAUSE method is implemented in 

an R package available through GitHub.

• Website: https://jean997.github.io/cause/

Includes pipelines and instructions for replicating all results presented in this 

paper.

• CAUSE software (R package): https://github.com/jean997/cause

• Simulations software (R package): https://github.com/jean997/causeSims

Data availability

All of the data analyzed are publicly available with the exception of blood pressure summary 

statistics from Ehret et al.28. These are available through dbGaP Accession 

phs000585.v2.p1. Download links for all other data sets are available in Supplementary 

Table 11. Instructions and code for formatting and processing data and reproducing CAUSE 

analysis results can be found on the website https://jean997.github.io/cause/.

Extended Data
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Extended Data Fig. 1. False positive-power trade-offs for different proportions of correlated 
pleiotropic variants.
We compare the power when γ = 0.05 and q = 0 to the false positive rate when γ = 0, q 
varies from 0 to 0.5 and η = 0.05. There are 100 simulations each in the causal and non-

causal scenarios. Curves are created by varying the significance threshold. Points indicate 

the power and false positive rate achieved at a threshold of p = 0.05.
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Extended Data Fig. 2. Tests for casual effects of risk factors on diseases.
Each cell summarizes the results of six methods for a pair of traits. In the left column of the 

cell, methods from bottom to top are CAUSE, IVW regression, and Egger regression. In the 

right column, methods from bottom to top are weighted median, weighted mode, and MR-

PRESSO.

Filled symbols indicate a nominally significant p = 0.05.
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Extended Data Fig. 3. Tests for casual effects of disease outcomes on risk factors.
Tests for casual effects of disease outcomes on mediators. Each cell summarizes the results 

of six methods for a pair of traits. In the left column of the cell, methods from bottom to top 

are CAUSE, IVW regression, and Egger regression. In the right column, methods from 

bottom to top are weighted median, weighted mode, and MR-PRESSO.

Filled symbols indicate a nominally significant p = 0.05.
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Extended Data Fig. 4. Workflow of a CAUSE analysis.
Dashed boxes represent input data. Each solid box is an analysis step completed by the given 

function in the cause R package. LD pruning can be parallelized over chromosomes. Text at 

the bottom of boxes indicates user provided parameters and their default values. All analyses 

presented are run with default parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Assumptions of traditional MR and CAUSE model.
a, Causal diagram assumed by traditional MR approaches. The causal effect of trait M on 

trait Y, γ, is the target of inference. Crosses mark horizontal pleiotropic effects that are 

assumed absent by traditional MR. b, Simulated effect estimates illustrating the pattern 

induced by a shared factor (correlated pleiotropy) with no causal effect (left), and the pattern 

induced by a causal effect (right). In both plots, effect size estimates for M and Y are 

indicated by points. Error bars around points have length 1.96 times the simulated standard 

error of the estimate on each side. SE’s are simulated with a sample size of 5,000. Only 

variants that are strongly associated with M (p < 5 · 10−8) are shown. c, CAUSE assumes 

that variants affect trait M through one of two mechanisms. A proportion 1 − q of variants 

have the left causal diagram, while the remaining proportion, q, have the right causal 

diagram.
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Figure 2 |. Performance of CAUSE and other MR methods in simulated data.
a, False positive rate averaged over 100 simulated data sets in settings with no causal effect 

and a proportion of correlated pleiotropic variants ranging from 0 to 50%. b, Power averaged 

over 100 simulated data sets in settings with a causal effect and no shared factor. c, 

Comparison of false positive-power trade-off. We compare the power when γ = 0.05 and q 
= 0 to the false positive rate γ = 0, q = 0.3 and η = 0.05. There are 100 simulations each in 

the causal and non-causal scenarios. Curves are created by varying the significance 

threshold. Points indicate the power and false positive rate achieved at a threshold of p ≤ 

0.05 or GCP > 0.6 for LCV.

Morrison et al. Page 22

Nat Genet. Author manuscript; available in PMC 2020 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3 |. False positives resulting from reverse causal effects.
Data are simulated with a true effect of Y on M, but tests are performed for an effect of M 
on Y. Each point shows the average over 100 simulations. Only CAUSE and the weighted 

mode control the false positive rate.
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Figure 4 |. Effect size estimates and variant level contribution to CAUSE test statistics for four 
trait pairs.
Effect estimates for trait M (horizontal axis) are plotted against estimates for trait Y (vertical 

axis). Error bars have length 1.96 times the standard error of the estimate. Triangles indicate 

variants reaching genome-wide significance for trait M (p < 5 · 10−8). Variants with trait M 
p-value < 5 · 10−6 are shown. Dotted lines show the IVW estimate obtained using only 

genome-wide significant variants. a, Smoking (M) and CAD (Y). All methods detect 

evidence of a causal effect. b, LDL (M) and T2D (Y). Only CAUSE does not detect a causal 

effect. Under the CAUSE model, these data can be explained by a shared factor accounting 

for 13% of LDL cholesterol effect variants. c, CAD (M) and LDL cholesterol (Y). CAUSE 

avoids a likely false positive obtained by other methods as a result of a reverse direction 

effect. Egger regression, the weighted mode, and MR-PRESSO all find a significant effect 

(see Supplementary Table 5). d, IRF (M) and IBD (Y). MR-PRESSO, the weighted median, 

and modal estimators obtain a positive result by downweighting or removing variants 

supplying conflicting evidence.
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Figure 5 |. Tests for causal effects of blood cell composition on immune mediated traits.
Each cell summarizes the results of six methods for a pair of traits. Filled symbols indicate 

p-value < 0.05. Blood cell traits are grouped into platelet traits (PLT), red blood cell traits 

(RBC), and white blood cell traits (WBC).
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Table 1 |
Summary of results for pairs of GWAS traits categorized by prior information about 
causality.

Columns 2–7 give the p-value for each MR method. Values are bold if p < 0.05. Arrows indicate the sign of 

the corresponding effect estimate. LCV GCP and LCV pval give estimated GCP from LCV and p-value testing 

that GCP = 0. Values are bold if estimated GCP > 0.6. The Cause q column gives the posterior median of q in 

the CAUSE sharing model. GC and GC pval give the genetic correlation and p-value testing that genetic 

correlation is zero estimated by LD score regression. In each section, pairs are ordered by increasing genetic 

correlation p-value. BF, body fat; BMI, body mass index; BW, body weight; CAD, coronary artery disease; 

DBP, diastolic blood pressure; FG, fasting glucose; HDL, high-density lipoprotein; LDL, low-density 

lipoprotein; SBP, systolic blood pressure; TG, triglycerides; T2D, type 2 diabetes.

 Traits CAUSE IVW Egger Wtd 
Med

Wtd 
Mode

MR-
PRESSO

LCV 
GCP

LCV 
pval

CAUSE 
q

GC GC 
pval

Considered causal

 SBP → 
CAD

6.6 · 
10−31 ↑

1.8 · 
10−148 ↑

7 · 10−18 

↑
1.8 · 
10−157 ↑

3.8 · 10−8 

↑
1.3 · 
10−167↑

0.02 0.95 0.91 0.35 2.1 · 
10−49

 DBP → 
CAD

1.3 · 
10−26 ↑

8.1 · 
10−111 ↑

5.9 · 
10−21 ↑

6.4 · 
10−138 ↑

1.6 · 10−7 

↑
1.7 · 10−132 

↑
0.54 0.069 0.88 0.27 1.3 · 

10−27

Smoking 
→ CAD

9.2 · 10−8 

↑
5.4 · 
10−11 ↑

0.014 ↑ 1.7 · 
10−15 ↑

0.00034 
↑

1.6 · 10−11 

↑
0.44 0.21 0.65 0.22 2.3 · 

10−27

 SBP → 
Stroke

4.1 · 10−9 

↑
9.3 · 
10−93 ↑

9.2 · 
10−25 ↑

5.1 · 
10−56 ↑

2.2 · 10−7 

↑
3.4 · 10−82 

↑
0.14 0.16 0.77 0.33 1.8 · 

10−19

 DBP → 
Stroke

0.0011 ↑ 1.2 · 
10−77 ↑

1.1 · 
10−17 ↑

1.1 · 
10−54 ↑

2.6 · 10−7 

↑
1.2 · 10−73 

↑
0.17 0.054 0.64 0.28 1.9 · 

10−11

Smoking 
→ Stroke

0.023 ↑ 0.00068 
↑

0.0062 ↑ 0.026 ↑ 0.21 ↑ 0.00073 ↑ 0.47 0.28 0.27 0.22 5.8 · 
10−11

 LDL → 
CAD

6.3 · 
10−12 ↑

1.9 · 
10−79 ↑

5.6 · 
10−19 ↑

1.5 · 
10−50 ↑

4.2 · 
10−51 ↑

2.7 · 10−52 

↑
0.87 3.6 · 

10−57
0.79 0.19 2.9 · 

10−5

Smoking 
→ T2D

0.67 ↑ 0.11 ↑ 0.23 ↓ 1 ↓ 0.86 ↑ 0.077 ↑ 0.05 0.69 0.05 0.04 0.19

 LDL → 
Stroke

0.046 ↑ 1.2 · 10−5 

↑
0.00032 
↑

0.0097 ↑ 0.002 ↑ 5.2 · 10−6 ↑ 0.39 0.62 0.09 0.03 0.5

Supported by literature

 BMI → 
CAD

0.00012 
↑

6.9 · 
10−15 ↑

0.12 ↑ 3.5 · 
10−17 ↑

4.9 · 
10−12 ↑

8.7 · 10−18 

↑
0.49 1.2 · 

10−9
0.56 0.23 3.1 · 

10−24

 TG → 
CAD

0.085 ↑ 4.7 · 
10−15 ↑

0.0023 ↑ 2.4 · 
10−18 ↑

6.4 · 10−8 

↑
7.3 · 10−18 

↑
0.94 7.8 · 

10−70
0.59 0.28 2.6 · 

10−20

 BMI → 
T2D

0.0048 ↑ 9.1 · 
10−14 ↑

0.0089 ↑ 2.5 · 
10−12 ↑

3.9 · 10−9 

↑
3.9 · 10−14 

↑
0.49 0.002 0.54 0.34 4.3 · 

10−15

 BF → 
CAD

0.33 ↑ 0.52 ↑ 0.93 ↓ 9.8 · 10−5 

↑
8.6 · 10−5 

↑
0.78 ↑ 0.09 0.053 0.05 0.26 5.2 · 

10−12

 BF → 
T2D

1 ↑ 0.046 ↑ 0.026 ↑ 1.1 · 10−8 

↑
1.1 · 10−7 

↑
0.019 ↑ −0.46 0.0073 0.04 0.38 4.3 · 

10−9

 FG → 
T2D

0.013 ↑ 0.01 ↑ 0.29 ↓ 0.0011 ↑ 0.62 ↑ 1 · 10−4 ↑ 0.07 0.85 0.29 0.62 7.8 · 
10−9

 Height 
→ CAD

0.00018 
↓

2.4 · 
10−14 ↓

0.14 ↓ 2.8 · 
10−12 ↓

0.00052 
↓

2 · 10−17 ↓ 0.07 0.53 0.44 −0.1 1.1 · 
10−7
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 Traits CAUSE IVW Egger Wtd 
Med

Wtd 
Mode

MR-
PRESSO

LCV 
GCP

LCV 
pval

CAUSE 
q

GC GC 
pval

 BMI → 
Stroke

0.23 ↑ 0.12 ↑ 0.73 ↓ 0.59 ↑ 0.81 ↑ 0.1 ↑ 0.48 0.19 0.07 0.13 1 · 10−4

 BF → 
Stroke

1 ↑ 0.88 ↓ 0.7 ↓ 0.93 ↓ 0.94 ↑ 0.83 ↓ −0.18 0.8 0.04 0.2 7 · 10−4

Smoking 
→ 
Asthma

0.5 ↑ 0.089 ↑ 0.49 ↑ 0.12 ↑ 0.94 ↑ 0.053 ↑ 0.06 0.5 0.04 0.1 0.0036

Unknown or conflicting evidence

 SBP → 
T2D

0.01 ↑ 1.2 · 
10−12 ↑

0.13 ↑ 2.5 · 10−7 

↑
0.044 ↑ 4.5 · 10−12 

↑
−0.55 0.038 0.34 0.25 2.8 · 

10−15

 HDL → 
T2D

0.056 ↓ 0.0071 ↓ 0.6 ↑ 1 ↓ 0.84 ↑ 0.025 ↓ 0.69 4 · 10−5 0.1 −0.31 2.1 · 
10−12

 DBP → 
T2D

0.02 ↑ 5.4 · 10−6 

↑
0.25 ↑ 0.00011 

↑
0.0041 ↑ 1.2 · 10−5 ↑ −0.13 0.48 0.27 0.19 2.7 · 

10−10

 TG → 
T2D

0.15 ↑ 0.38 ↑ 0.52 ↑ 0.23 ↑ 0.22 ↑ 0.32 ↑ 0.44 0.34 0.13 0.28 5.2 · 
10−10

 BW → 
CAD

0.0014 ↓ 0.0021 ↓ 0.94 ↑ 0.0099 ↓ 0.29 ↓ 0.00013 ↓ 0.5 0.23 0.31 −0.16 2.2 · 
10−8

 BW → 
T2D

0.064 ↓ 0.00019 
↓

0.16 ↓ 0.00043 
↓

0.25 ↓ 6.8 · 10−5 ↓ 0.44 0.44 0.12 −0.26 2.1 · 
10−7

 TG → 
Stroke

0.99 ↑ 0.84 ↓ 0.1 ↓ 0.8 ↑ 0.95 ↑ 0.9 ↓ −0.31 0.36 0.03 0.15 3 · 10−4

 BMI → 
Asthma

0.16 ↑ 0.018 ↑ 0.064 ↑ 0.0091 ↑ 0.065 ↑ 0.017 ↑ 0.28 0.21 0.1 0.09 0.0031

 FG → 
CAD

0.25 ↑ 0.0011 ↑ 0.24 ↑ 2.2 · 10−6 

↑
9.9 · 10−7 

↑
0.00025 ↑ 0.48 0.18 0.04 0.12 0.0049

 FG → 
Stroke

0.99 ↑ 0.42 ↑ 0.031 ↓ 0.37 ↓ 0.41 ↓ 0.37 ↑ −0.67 0.0093 0.04 0.22 0.0082

 BF → 
Asthma

0.57 ↑ 0.4 ↑ 0.93 ↑ 0.85 ↑ 0.53 ↓ 0.36 ↑ 0.08 0.63 0.04 0.12 0.048

 BW → 
Stroke

0.088 ↓ 0.12 ↓ 0.039 ↑ 0.11 ↓ 0.21 ↓ 0.052 ↓ −0.02 0.97 0.15 −0.08 0.11

 Alcohol 
→ Stroke

0.25 ↑ 0.41 ↑ 0.39 ↓ 0.87 ↑ 0.77 ↓ 0.37 ↑ 0.1 0.71 0.07 0.06 0.13

 Height 
→ Stroke

0.55 ↓ 0.034 ↓ 0.53 ↓ 0.24 ↓ 0.91 ↓ 0.077 ↓ −0.18 0.58 0.03 −0.05 0.15

 LDL → 
T2D

0.32 ↓ 0.00017 
↓

0.00068 
↓

0.022 ↓ 0.0064 ↓ 5.5 · 10−5 ↓ 0.57 4 · 10–
13

0.13 0.05 0.24

 Alcohol 
→ T2D

0.99 ↑ 0.27 ↑ 0.15 ↑ 0.26 ↑ 0.29 ↑ 0.29 ↑ −0.24 0.51 0.03 −0.03 0.41

 Alcohol 
→ CAD

0.82 ↑ 0.47 ↑ 0.54 ↑ 0.06 ↑ 0.036 ↑ 0.12 ↑ −0.08 0.85 0.03 0 0.99

Implausible or unsupported

 Alcohol 
→ 
Asthma

0.81 ↓ 0.57 ↓ 0.14 ↓ 0.57 ↓ 0.43 ↓ 0.56 ↓ −0.08 0.43 0.03 −0.08 0.031

 Height 
→ 
Asthma

1 ↓ 0.27 ↓ 0.56 ↓ 0.42 ↓ 0.11 ↓ 0.69 ↓ −0.07 0.62 0.03 −0.04 0.29

 SBP → 
Asthma

0.76 ↑ 0.026 ↑ 0.85 ↑ 0.73 ↑ 0.35 ↓ 0.035 ↑ −0.02 0.93 0.04 0.03 0.4

Nat Genet. Author manuscript; available in PMC 2020 November 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morrison et al. Page 28

 Traits CAUSE IVW Egger Wtd 
Med

Wtd 
Mode

MR-
PRESSO

LCV 
GCP

LCV 
pval

CAUSE 
q

GC GC 
pval

 DBP → 
Asthma

0.59 ↑ 0.79 ↑ 0.086 ↓ 0.2 ↓ 0.15 ↓ 0.88 ↓ −0.17 0.5 0.04 0.03 0.43

 FG → 
Asthma

0.35 ↓ 0.24 ↓ 0.39 ↓ 0.025 ↓ 0.082 ↓ 0.091 ↓ 0.2 0.099 0.06 −0.05 0.56

 TG → 
Asthma

0.17 ↓ 0.03 ↓ 0.51 ↓ 0.93 ↓ 0.34 ↓ 0.065 ↓ 0.02 0.88 0.06 0.03 0.58

 Height 
→ T2D

0.96 ↑ 0.68 ↓ 0.3 ↑ 1 ↓ 0.9 ↑ 0.62 ↓ 0 0.75 0.03 −0.01 0.7

 LDL → 
Asthma

0.87 ↓ 0.65 ↑ 0.82 ↓ 0.25 ↑ 0.61 ↑ 0.87 ↑ 0.15 0.87 0.03 −0.01 0.75

 BW → 
Asthma

0.73 ↑ 0.18 ↑ 0.85 ↑ 0.14 ↑ 0.42 ↑ 0.082 ↑ −0.02 0.5 0.04 −0.01 0.83

 HDL → 
Asthma

1 ↑ 0.91 ↑ 0.99 ↑ 0.52 ↑ 0.93 ↑ 0.74 ↑ −0.02 0.76 0.03 −0.01 0.84

Considered non-causal

 HDL → 
CAD

0.00044 
↓

4.9 · 10−9 

↓
0.55 ↓ 5.0 · 

10−11 ↓
5.6 · 10−6 

↓
1.3 · 10−13 

↓
0.67 0.0012 0.54 −0.26 4.8 · 

10−18

 HDL → 
Stroke

0.27 ↓ 0.076 ↓ 0.48 ↑ 0.07 ↓ 0.13 ↓ 0.096 ↓ 0.67 3.5 · 
10−8

0.04 −0.15 2.3 · 
10−5
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