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Abstract

Purpose: Our aim was to develop a high-quality, mobile cone-beam computed tomography 

(CBCT) scanner for point-of-care detection and monitoring of low-contrast, soft-tissue 

abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents 

an integrated framework of hardware and algorithmic advances for improving soft-tissue contrast 

resolution and evaluation of its technical performance with human subjects.

Methods: Four configurations of a CBCT scanner prototype were designed and implemented to 

investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and 

technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was 

developed for artifact correction (image lag, glare, beam hardening and x-ray scatter), motion 

compensation, and three-dimensional image (3D) reconstruction [penalized weighted least squares 

(PWLS), with a hardware-specific statistical noise model]. The PWLS method was extended in 

this work to accommodate multiple, independently moving regions with different resolution (to 

address both motion compensation and image truncation). Imaging performance was evaluated 
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quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit 

(NCCU) at our institution.

Results: The progression of four scanner configurations exhibited systematic improvement in the 

quality of raw data by variations in system geometry (source-detector distance), antiscatter grid, 

and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% 

reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, 

and scatter); ~40% reduction in motion-induced streak artifacts via the multi-motion compensation 

method; and ~15% improvement in soft-tissue contrast-to-noise ratio (CNR) for PWLS compared 

to filtered back-projection (FBP) at matched resolution. Each of these components was important 

to improve contrast resolution for point-of-care cranial imaging.

Conclusions: This work presents the first application of a high-quality, point-of-care CBCT 

system for imaging of the head/brain in a neurological critical care setting. Hardware 

configuration iterations and an integrated software pipeline for artifacts correction and PWLS 

reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for 

point-of-care detection and monitoring of a variety of intracranial abnormalities, including ICH 

and hydrocephalus.
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1. INTRODUCTION

The imaging performance of cone-beam computed tomography (CBCT) systems with a flat-

panel detector (FPD) has advanced markedly in the last 20 yr. However, in many 

implementations and applications (e.g., dental,1 ENT,2,3 and orthopaedic imaging4,5), CBCT 

is still considered suitable only for visualization of high-contrast features, such as bone or 

surgical instrumentation. Even in CBCT-guided procedures (e.g., image-guided surgery,6–8 

interventional radiology,9–11 and image-guided radiation therapy12,13), the low contrast 

resolution of CBCT often limits reliable visualization of soft-tissue anatomy. Recent 

advances in system design, artifacts correction, and three-dimensional (3D) image 

reconstruction methods open the possibility for improved low-contrast resolution suitable for 

novel diagnostic imaging tasks. Cone-beam computed tomography systems developed 

specifically for breast imaging are an example of such capability, offering clear visualization 

of fibroglandular tissue and masses.14,15 Cone-beam computed tomography systems for 

orthopedic imaging have similarly demonstrated visualization of muscle, fat, tendons, 

ligaments, and cartilage.4,16 In contrast to conventional multi-detector CT (MDCT), CBCT 

systems may be implemented in a variety of adaptable, highly portable configurations, 

making them potentially well suited to point-of-care applications, including bedside imaging 

in the intensive care unit (ICU) and/or neurological critical unit (NCCU). However, such 

applications carry a strong requirement for reliable, diagnostic-quality imaging of low-

contrast, soft-tissue anatomy (e.g., ~20–80 HU contrast of acute intracranial hemorrhage, 

ICH). Despite recent hardware and software improvements, this level of imaging 
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performance poses a major challenge to the current state of the art in CBCTcontrast 

resolution.

Accurate and reliable detection of ICH is essential to the diagnosis of a number of 

neurological pathologies, including traumatic brain injury (TBI), hemorrhagic stroke, 

aneurysm, and postsurgical hemorrhage.17,18 Noncontrast-enhanced MDCT is commonly 

the frontline modality for detection, diagnosis, and monitoring of acute ICH, which presents 

as hyperdense lesions with ~20–80 HU contrast to surrounding parenchyma or cerebrospinal 

fluid (CSF).18,19 For ICU or NCCU patients, however, transport to the MDCT scanner is a 

cumbersome process that requires time, a dedicated transport team, and represents a 

significant safety and workflow burden.20–22 For example, Wayhas et al.21 reported 15%–

71% incidence of adverse events when transporting critical care patients to the CT suite, 

including arterial hypotension and hypertension, increased intracranial pressure, cardiac 

arrest, change in respiratory rate, and hypoxemia. Despite these risks, transporting a patient 

to the CT suite is often clinically necessary, resulting in a change of therapeutic management 

in 25% of imaged patients.21,22 The high demand for imaging coupled with the burden and 

safety risk of patient transport underscores the need to develop high-quality, point-of-care 

imaging for monitoring and management of NCCU patients.

Mobile MDCT systems such as the CereTom (Neurologica, Danvers MA, USA) have the 

potential to address this need,22 but early implementations exhibited a variety of sub-optimal 

image quality characteristics, including nonisotropic spatial resolution and reduced soft-

tissue contrast compared to conventional MDCT.22,23 In this work, we sought to address this 

need with a portable CBCT system, which carries a number of characteristics that are well 

suited for point-of-care imaging, including an open gantry, small footprint, portability, 

relatively low cost, and a single rotation without the need to move the patient for volumetric 

acquisition. However, while CBCT excels with respect to high spatial resolution, high-

contrast tasks as mentioned above, its performance for low-contrast imaging tasks (like ICH 

detection) is challenged by two major limitations: (a) multiple sources of image artifacts, 

including x-ray scatter, beam-hardening, lag, glare, truncation, and patient motion; and (b) a 

high level of image noise and reduced detective quantum efficiency (DQE) compared to 

MDCT detectors, owing to reduced absorption efficiency and increased electronic noise. In 

this work, we address these challenges by implementation of scanner hardware design 

optimization and a comprehensive algorithmic pipeline for artifact correction integrated with 

iterative model-based image reconstruction (MBIR).

Previous work24–31 established a number of hardware and algorithmic advances focusing on 

certain aspects of the limitations mentioned above, leading to the system reported below and 

evaluated for the first time with human subjects. Hardware aspects include the development 

of a CBCT scanner prototype platform designed specifically to provide soft-tissue contrast 

resolution suitable for imaging of brain tissue.24,25 Algorithmic aspects include artifact 

correction methods to mitigate the effects of image lag, glare, beam hardening, and x-ray 

scatter,26 as well as patient motion compensation29 and iterative MBIR based on penalized 

weighted least squares (PWLS) estimation. This PWLS reconstruction method was modified 

to include a multiresolution approach as a means of reducing the influence of image 

truncation32 (e.g., from the head holder) and a statistical noise model that accounts for 
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quantum noise, electronic noise, and fluence modulation to achieve noise-resolution 

characteristics beyond that of conventional filtered backprojection reconstruction (FBP).30,31

In this work, we: (a) detail four carefully designed iterations in hardware configuration of 

the scanner prototype; (b) extend the PWLS method to accommodate multiple, 

independently moving regions with different resolution (“multi-motion, multi-resolution”); 

(c) propose a fully integrated pipeline of the algorithmic components mentioned above for 

the CBCT prototype scanner (instead of simply cascading each processing step). The 

technical performance of the hardware configuration iterations and integrated software 

pipeline was quantitatively evaluated under realistic conditions in human subjects (NCCU 

patients with known or suspected intracranial pathologies). Several quantitative 

measurement metrics were proposed to measure the performance in terms of artifacts and 

contrast resolution. The potential diagnostic utility in detection, characterization, and 

assessment of ICH, intraventricular hemorrhage (IVH), hydrocephalus, ventricular shunt, 

and ischemic lesions is illustrated using example patient images, with clinical diagnostic 

reader studies forming the subject of future work.

2. MATERIALS AND METHODS

2.A. Point-of-care CBCT head scanner

Previous work detailed the initial design of a prototype CBCT head scanner developed with 

a combination of task-based imaging performance model optimization24 and 

experimentation.25 In the study detailed below, we implemented four carefully designed 

variations of the original scanner configuration (denoted C1–C4) to investigate key aspects 

of hardware and technique protocols. The initial (C1) configuration established the basic 

setup of the scan procedure. The C2 configuration investigated a longer scan with increased 

number of projection views, and the C3 configuration added an antiscatter grid. The C4 

configuration adapted the system to a more compact geometry, added a bowtie filter for 

fluence modulation, used a higher tube potential, and allowed faster scan speed. Parameters 

of the system are summarized in Table I and detailed in sections below. Photographs of the 

system in C1 and C4 configurations are shown in Fig. 1.

2.A.1. Prototype scanner configurations—The scanner platform included a mobile 

U-arm gantry with computer-controlled motors for vertical positioning and rotation of the U-

arm with a maximum rotation speed of 24°/s and a maximum scan arc of 360°. Four scanner 

configurations were investigated as detailed below. All configurations included an x-ray tube 

with a rotating tungsten anode (Mono-bloc, IMD, Grassobbio, Italy) with 150 kJ heat 

capacity, 17° anode angle, 0.6 FS focal spot size, and tube potential ranging 70–120 kV. 

Specified inherent filtration for the x-ray tube was 1.4 mm Al equivalent at 75 kV. 

Additional 0.27 mm Cu filter was included (relatively thick to reduce beam hardening 

artifacts27), and a manual collimator for adjustment of longitudinal FOV (FOVz) was 

installed.

All configurations featured a flat-panel detector (FPD) (PaxScan 4343CB, Varian, Palo Alto 

CA) with 43 × 43 cm2 detection area and 0.139 × 0.139 mm2 pixel size. The FPD readout 

gain allowed three options: low gain (LG, 4 pF integrating capacitance), high gain (HG, 0.5 
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pF integrating capacitance), and dual gain (DG, combining 0.5 pF HG and 4 pF LG in 

alternate detector rows). Hardware binning was set to 3 × 3 (0.417 × 0.417 mm2 pixel size) 

in single gain (HG/LG) mode, and to 4 × 2 (0.556 × 0.278 mm2 pixel size) in DG mode.

2.A.2. The C1 configuration—The C1 configuration was based on previously reported 

task-based imaging performance optimization24 and provided the basic platform for 

development of subsequent modifications C2–C4. The system geometry had source-to-axis 

distance (SAD) = 550 mm and source-to-detector distance (SDD) = 1000 mm. The system 

was set to acquire 450 projections over a 360° scan arc. The FPD was read in dual gain (DG) 

mode, which improved dynamic range compared to HG mode, without increasing the 

electronic noise level in highly attenuating regions of the head. Readout speed for this mode 

was 15 proj/s, resulting in a total acquisition time of 30 s for the 450 projections. A 

photograph of the scanner in this configuration is shown in Fig. 1(a).

2.A.3. The C2 Configuration—In this configuration, the number of projections was 

increased to 900 (without change in mAs/ pulse) to investigate the benefits of reduced 

quantum noise. The scan time increased proportionately to 60 s. To maintain the same dose–

length product (DLP, and therefore effective) as in C1, the FOVz was reduced accordingly, 

from 24 to 12 cm. All other system parameters were identical to those in the C1 

configuration.

2.A.4. The C3 configuration—For the C3 configuration, an antiscatter grid was 

installed to assess the benefits of increased scatter rejection. We used an 8:1 one-

dimensional linear focused grid with lead lamellae, aluminum interspacers, and focal 

distance compatible with the scanner SDD. The grid was placed in a “horizontal” orientation 

— that is, gridlines perpendicular to the axis of rotation of the U-arm. Compared to a 

“vertical” arrangement, this orientation is more robust to gridline artifacts and offers slightly 

better scatter rejection in head imaging.33,34 A small number of scans (N = 3) in the C3 

configuration were acquired at 120 kV to establish whether the more homogeneous photon 

fluence, reduced beam hardening, and increased transmission to the detector were 

advantageous for image quality.

2.A.5. The C4 Configuration—The C4 configuration [shown in Fig. 1(b)] provided the 

majority of human subjects’ data. It included several modifications to the system hardware 

and acquisition protocol. First, the possibility of a more compact geometry setting was 

tested, by reducing SDD from 1000 to 832 mm. An initial configuration with SDD = 732 

mm was also investigated (N = 3) and soon judged to be too compact to operate in a manner 

that was comfortably free from collision in an open gantry. Second, a higher tube potential 

(120 kV, also tested for a small subset of subjects in C3) was adopted. Thirdly, an Al bowtie 

filter was incorporated to improve dose distribution, further reducing x-ray scatter (in 

combination with the antiscatter grid) and increasing dynamic range.27 The bowtie filter was 

designed to give a spatially uniform fluence behind a water cylinder of 120 mm (determined 

in Ref. [27]) diameter at SAD = 550 mm. A cylindrically symmetric (“1D”) bowtie filter 

was found to be sufficient — without saturation in the superior aspect of the skull — due to 

self-attenuation in the crown of the skull.27
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Patient motion, ranging from a few mm to a few cm, was evident early in the study, despite 

the use of light motion restraints (head holder and a Velcro strap over the forehead) and 

coaching subjects to remain still. To address this issue, the C4 system implemented several 

strategies to reduce the scan time to 17 s, compared to 60 s in C2–C3: (a) the scan arc was 

reduced from 360° to 220°; (b) the angular sampling density was reduced from 2.5 to 1.8 

proj/°; and (c) the detector readout mode was changed to HG, increasing the frame rate to 24 

proj/s from 15 proj/s for DG, made possible because the bowtie filter compressed the 

dynamic range of the data, obviating the need for DG readout. As a result of strategy (a) and 

(b), the number of projections was reduced to 400 in this configuration, compared to 900 in 

C2–C3; since the mAs per projection was unchanged, the FOVz was increased back to 24 

cm (as in C1) with no increase in DLP or effective dose.

2.B. Artifact correction and image reconstruction algorithms

Cone-beam computed tomography images were reconstructed following the workflow in 

Fig. 2, consisting of the following major components: (a) artifact correction methods for lag, 

glare, beam hardening (BH) and scatter;26 (b) a motion estimation algorithm incorporating 

multiple independently moving ROIs within the FOV;29 (c) image reconstruction using a 

MBIR (PWLS) method, which was extended in this work to accommodate multiple, 

independently moving regions with different resolution (“multi-motion, multi-resolution32”). 

The proposed MBIR method also implemented modified statistical weights to account for 

electronic and quantum noise (including fluence modulation from bowtie filter).30 These 

components and their integration methods are detailed below:

2.B.1. Artifact correction: lag, glare, beam hardening, and scatter—The raw 

projections were first preprocessed with detector defects and offset corrections, and gain 

normalization. In C1–C3 configurations, the preprocessing also included merging the data 

read in the DG readout modes.27 This was not required in the C4 configuration, which was 

operated only in the HG readout mode. However, because the C4 configuration included a 

bowtie filter, the gain normalization included an additional polyenergetic correction step to 

account for the spatially varying x-ray spectrum.27,31

The preprocessed projections were then corrected for detector lag through temporal 

deconvolution using a measured lag response function,35 followed by veiling glare 

correction through spatial deconvolution using the long-range tails of the detector point-

spread function (PSF).36 Note that this response function accounted not only for detector 

veiling glare, but also includes other low-frequency components of the PSF, such as off-focal 

radiation.

Scatter and BH were corrected iteratively. In each iteration, the Joseph-Spital (JS)37 

approach incorporating water and bone-induced BH was used to generate a BH-corrected 

FBP reconstruction. This reconstruction was then segmented to generate a variable density, 

air-water-bone object model for a fast Monte Carlo (MC) scatter simulator. The MC 

implementation achieved scatter estimation with a runtime of ~15 s/projection, owing to 

acceleration by variance reduction, GPU acceleration, and “sparse” tracking (low number of 

photons and projection angles) followed by kernel denoising.26 The MC scatter estimate was 
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subtracted from the preprocessed projections to provide input to the next iteration of BH and 

scatter correction. Three iterations were performed for the results shown below. The 

projections generated after three passes of the JS correction and scatter estimation/

subtraction were used as input for motion estimation (detailed in Section 2.B.2). After the 

motion estimation, another pass of JS correction (but not scatter estimation) was performed, 

as explained below. A modification to the scatter estimation method used in this work was to 

optionally use a PWLS reconstruction in the final iteration of MC estimation (especially for 

datasets with large truncation). Doing so improved scatter estimation of the truncated region 

via the penalty term in PWLS, as indicated by the dashed line feedback loop in Fig. 2.

Due to polyenergetic correction applied as a preprocessing step, JS correction does not need 

to be modified to account for the introduction of bowtie filter in C4 configuration. However, 

MC scatter estimation required modification by implementing a weight factor applied to 

each tracked photon to account for the angle- and energy-dependent attenuation in the 

bowtie.37 Similarly, we implemented another weight factor based on grid transmission 

computed from the analytical model of Day and Dance38 to account for the introduction of 

the antiscatter grid in C3 and C4.

2.B.2. Multi-motion estimation—A motion estimation algorithm was implemented 

based on an image-based autofocus approach to estimate the rigid displacements of the head 

in each projection view by maximizing an image sharpness criterion. Similar algorithms 

have been previously applied to CBCT extremities imaging,39 although previous 

implementations typically assumed a single motion pattern for the entire reconstructed 

volume. In this work, we extended the autofocus algorithm to accommodate multiple 

independently moving ROIs.29 In particular, two ROIs were defined as depicted in Fig. 3: (a) 

ROI for the head where we anticipated the most substantial motion (denoted “moving” and 

associated with motion trajectory TM); and (b) ROI for the remainder of the FOV (typically 

the head support), which remained mostly stationary (denoted by motion trajectory TS). The 

autofocus cost-function was computed as the sum of the sharpness metrics of the two ROIs. 

Motion trajectories in these two ROIs were jointly estimated by maximizing the autofocus 

objective using a derivative-free covariance matrix adaptation evolution strategy (CMA-ES) 

optimizer.40

Among the artifact corrections described in Section 2.B.1, the BH and scatter corrections 

depend on patient motion through their dependency on system geometry. Initial empirical 

studies indicated that patient motion had negligible impact on the low-frequency scatter 

distributions and thus, to reduce computational load, we did not incorporate the estimated 

motion profiles in MC scatter estimation. However, the BH correction step needed to be 

reapplied after motion estimation (as indicated by the double-arrows in Fig. 2) to avoid 

streak artifacts. Empirical studies also indicated that another round of motion estimation 

after reapplying BH correction was not necessary (i.e., motion estimation and BH correction 

were not performed iteratively for the sake of computation efficiency). After reapplying the 

BH correction step, the corrected projections and the estimated motion trajectories for each 

ROI were used as the input to the final PWLS reconstruction step as detailed in Section 

2.B.3.
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2.B.3. Model based image reconstruction—The conventional PWLS method 

performs image reconstruction by minimizing an objective function typically formulated as:

μ = argmin
μ

= 1
2‖Aμ − l‖w

2 + βR(μ) (1)

where μ is a vector representing the reconstructed image, A denotes the linear forward 

projection operator, l is the x-ray attenuation measurement in the line integral domain, and 

W is a diagonal matrix containing a statistical weight for each measurement, which is 

conventionally assumed to be an estimate of the inverse of the variance of that measurement, 

R(μ)is an image roughness penalty term (Huber loss function,41 which penalizes pairwise 

differences between voxels in a first-order neighborhood around each voxel), and β is a 

scalar controlling the relative strength of the penalty.

Multi-motion and multiresolution in PWLS:  The imaging FOV of this system is often 

not large enough to completely accommodate the head holder, other positioning devices, and 

additional hardware (e.g., ventilation tubes), resulting in data truncation. In MBIR methods 

such as PWLS, the complete support of the acquired projections needs to be included in the 

reconstruction field-of-view (RFOV). However, extension of the RFOV to the required size 

results in very large reconstruction volumes, leading to a prohibitive computational burden. 

To address this issue, we adapted a multiresolution reconstruction approach32 in which the 

total volume was split into two regions: a main (inner) region covering the head with finer 

voxel size; and an extended (outer) region with coarser voxel size to mitigate truncation 

artifacts from the head holder while introducing minimal increase in computational 

complexity.

We extended the multiresolution PWLS method to accommodate multiple, independent 

regions of motion (Section 2.B.2) by further dividing the inner region into a moving and a 

static region, which are referred to as μFM (fine, moving), and μFS (fine, static), respectively 

(shown in Fig. 3). Since the head was not within the outer region, the outer region was 

reconstructed using a static motion trajectory (μCS, coarse, static).42

Following the derivation in Ref. [32], forward projection (Aμ) was decomposed:

Aμ = AFM AFS ACS

μFM
μFS
μCS

(2)

where μFM, μFS, and μCS are the reconstructed volumes in the three regions defined above, 

AFM, AFS and ACS are the corresponding forward projection operators, which incorporated 

precomputed motion trajectories described in Section 2.B.2, with different voxel grid 

definitions. The transition between regions with different motion trajectories (μFM and μFS) 

was set discontinuous, which was not anticipated to have notable effect, since the 

intermediate region is mostly air (or a pillow placed between the head and the head holder). 

The transition between regions of different resolution (μFM and μFS, to μC) was assumed 

discontinuous as well, which was again a reasonable choice since the transition region did 
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not contain clinically relevant anatomical structures. Regularization strength [β in Eq. (1)] 

was set to the same value for μFM and μFS, and was empirically set to be 100 × higher in μC 

(since only used for truncation handling).

Modified statistical weights in PWLS:  Under the assumption of Poisson distributed 

quantum noise, the variance in the measurement is typically approximated by the 

measurement itself. However, to incorporate contributions from electronic noise and fluence 

modulation, the statistical weights [W in Eq. (1)] were modified (and denoted W*) to the 

following form30:

Wi* ≈

Δi2 ⋅ mi2

I0
Δi ⋅ mi

I0
+

σe, i2

γI0

(3)

where mi is the measurement, i is the measurement index, I0 is the mean flood-field data, γ 
is a gain term that reflects factors of system gain, system blur, and detector lag on the 

quantum noise,30 σe, i2  is the electronic noise (spatially varying for dual-gain readout modes), 

and Δi is the fluence modulation map, which was computed as the ratio between flood-field 

data with and without the fluence modulator (bowtie filter).30,31

With these modifications, the PWLS objective function was minimized using the separable 

quadratic surrogates (SQS) method with ordered subsets (OS-SQS),43 with 80 iterations and 

10 subsets. Optimization updates became negligible after 80 iterations (L2-norm of the 

update below 0.05% of the L2-norm of the reconstructed image). Forward and 

backprojection operations were performed with matched separable footprint forward and 

backward projectors,44 and a Huber penalty of pairwise voxel differences over six first-order 

neighborhood voxels was used for the regularization term.45

All images (fine resolution region) were reconstructed with a 0.44 × 0.44 × 0.44 mm3 voxel 

size (26.4 ×26.4 × 22 cm3 RFOV). The multiresolution approach extends the RFOV to 35.2 

× 35.2 × 30 cm3 (1.76 × 1.76 × 1.76 mm3 voxel size in the extended region). The display 

setting for slice visualization (axial, sagittal, or coronal planes) was set to 3 mm slice 

thickness by slice averaging, which is the usual setting for diagnostic evaluation in MDCT 

of the brain.

2.B.4. FBP reconstruction—Filtered backprojection reconstruction based on the Feld-

kamp-Davis-Kress (FDK) algorithm was also performed as a comparison to PWLS 

reconstruction. Both FBP and PWLS used artifact corrections as detailed in Section 2.B.1. A 

two-dimensional (2D) Hann filter in both u and v direction was implemented to get a fairer 

comparison with PWLS method which used between-plane regularization. The forward 

projection operator in FBP was modified to use the pre-estimated head motion trajectory 

(region μFM, detailed in Section 2.B.2) for the entire RFOV, which was extended to 35.2 × 

35.2 × 30 cm3 (0.44 mm isotropic voxel size) to reduce truncation artifacts (same size as the 

extended RFOV in PWLS). As with the PWLS method, the displayed slice thickness for 

axial, sagittal, or coronal planes was set to 3 mm by slice averaging.
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2.C. Evaluation in human subjects

A study was conducted under Institutional Review Board (IRB) approval to evaluate the 

performance of the proposed hardware configuration iterations and integrated software 

pipeline in human subjects. The study cohort included patients in the NCCU with known or 

suspected ICH and/or hydrocephalus. The protocol involved acquisition of a single CBCT 

scan immediately following the patient’s routine MDCT scan [shown in Fig. 1(a)].

A total of 54 subjects were imaged, with 13 excluded for the following reasons: 10 were 

agitated and not responsive to verbal instructions, resulting in severe motion and highly 

inconsistent projection data that was not suitable for motion compensation; and three 

subjects had extensive external hardware (ventilators etc.) that prevented proper positioning 

of the head inside the gantry. Nine out of the ten motion-related exclusions were with C2 or 

C3 configurations, demonstrating the benefits of reduced scan time in C1 and C4. After 

exclusions, 41 subjects were used in the study as shown in Table I: five subjects were 

imaged on C1, six on C2, nine on C3, and 21 on C4.

2.D. Quantitative performance evaluation in human subject images

Challenges to objective, quantitative metrology in human subject data are numerous, 

particularly for a complex range of imaging conditions (C1–C4 configurations), artifacts, 

and underlying anatomy/pathology. Without ground truth, quantitation of image artifacts 

(e.g., shading and streaks) lacks standard metrology and can be strongly dependent on ROI 

placement. Moreover, the metrics should be pertinent/ translatable between all evaluated 

subjects even under disparate scan or reconstruction conditions. Moreover, imaging 

performance metrology for nonlinear reconstruction methods (such as PWLS) should 

recognize assumptions and limitations in quantifying noise-resolution tradeoffs (e.g., 

nonlinearity and nonstationarity).

In this work, we assessed the technical performance of the scanner and algorithms in terms 

of objective, quantitative metrics computed from images of the 41 human subjects, including 

contrast (with respect to soft-tissue structures), contrast-to-noise ratio (CNR), spatial 

resolution (with respect to soft-tissue edges), image uniformity, and magnitude of streak 

artifacts. Since the noise properties of both FBP and PWLS can be controlled via parameter 

settings (cutoff frequency in FBP, and β in PWLS, which can reduce noise at the expense of 

spatial resolution), the spatial resolution was matched subject-by-subject to provide a fair 

comparison of noise performance. The improvements gained by each of the C1–C4 scanner 

configurations are also quantified. The results are complemented by qualitative evaluation of 

representative images from the study. A reader study in which expert observers evaluate 

images with respect to particular imaging tasks is the subject of ongoing work.

The following subsections summarize the methods and proposed metrics for objective 

assessment of basic imaging performance from the study.

2.D.1. Non-uniformity (NU)—Image nonuniformity (NU) quantified biases and artifacts 

related to low-frequency fluctuations in the reconstructed image. Twelve ROIs of size 16 × 

16 × 8 voxels were used for NU evaluation in each subject. The ROIs were placed in 
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relatively homogeneous regions of brain parenchyma throughout the interior of the skull as 

illustrated in Fig. 4(a). Regions of pathology (as evident in MDCT) — for example, edema 

or ischemia — were avoided. The NU was computed as the standard deviation of the mean 

attenuation values from each ROI:

NU = σ(μROI) . (4)

2.D.2. Motion artifacts (σstreaks)—Effects of motion usually manifest as high-

frequency streak artifacts that are more prominent on high-contrast features. Streak artifacts 

were characterized by:

σstreaks 
2 = σtotal 

2 − σquantum 2 (5)

where σtotal was the STD measured within four streak contaminated ROIs (16 × 16 × 8 

voxels), and σquantum was measured on a nearby ROI (16 × 16 × 8 voxels), free of streak 

artifacts. Since the variance within an ROI involves contributions from both motion-related 

streak artifacts and quantum noise, a squared subtraction with the quantum variance removes 

effects of the latter.

Like the computation of NU, ROIs were placed on a persubject basis in regions with visible 

streak artifacts in otherwise homogeneous anatomy. Example ROI placement for σtotal and 

σquantum is shown in Fig. 4(c). While motion estimation/ compensation was consistently 

performed for all 41 subjects, σstreaks was only analyzed for 25 subjects that exhibited 

visible streak artifacts prior to motion compensation.

2.D.3. Spatial resolution—Spatial resolution was evaluated in soft-tissue structures 

using the boundary between the lateral ventricle and the surrounding brain parenchyma [see 

Figs. 4(b) and 4(d)]. The boundary position was estimated using a Canny edge detection 

method46 and a set of 60 edge profiles were measured following lines perpendicular to the 

edge. The spatial resolution was then estimated as the width of the edge spread function 

(ESF) obtained by numerical fit of an error function to the edge profile measurements:

f(x) = a − c
2erf x − r

2σESF
(6)

where erf is the error function, σESF denotes the ESF width, r represents the distance to the 

edge in mm, c is the contrast between the ventricle and the brain parenchyma, and a 
approximates the attenuation value of the brain parenchyma. The spatial resolution was 

matched between FBP and PWLS reconstructions by tuning the cutoff frequency for FBP 

(cutoff frequency ~5%–100% of the Nyquist frequency) and the penalty strength for PWLS 

(β ~ 1e2–1e6). While the ESF width is not completely representative of the spatial resolution 

of the entire volume, it provides a reasonable starting point for fair comparison of noise 

characteristics between FBP and PWLS, as described in the following section.

2.D.4. Soft tissue contrast-to-noise ratio—Soft tissue contrast was defined as the 

difference in attenuation value between two ROIs, one placed at the brain parenchyma and a 
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second one placed at the (lateral) ventricle [see Fig. 4(b)]. The soft tissue contrast-to-noise 

ratio (CNR) was calculated as:

CNR = ROIparenchyma − ROIventricle
σventricle

(7)

where σventricle is the standard deviation within the ventricle ROI. Since the spatial 

resolution and noise properties are spatially varying in PWLS reconstructions,47 the 

measurement ROIs (for the parenchyma and ventricle) were placed in the same general area 

of the volume and as close as possible to the ROIs for spatial resolution assessment. This 

allowed comparison between CNR measurements obtained with PWLS and FBP, at matched 

spatial resolution.

3. RESULTS

3.A. Artifacts correction

Figure 5 shows the effects of the artifacts correction pipeline (including lag, glare, beam 

hardening, and scatter) in two subjects imaged with the C1 and C4 configurations, 

respectively. All other aspects of the artifacts correction pipeline were kept fixed to isolate 

the effects of artifacts correction and system configuration in this figure. All images in this 

section were reconstructed with FBP.

The first row of Figs. 5(a)–5(c) shows a representative dataset acquired in a subject with a 

left ventricular catheter using the C1 configuration at different stages of the artifacts 

correction pipeline. Comparison of Figs. 5(a) and 5(b) (scatter corrected) demonstrates 

major reduction of shading artifacts (especially in the central region) and nonuniformity 

(overall NU reduced from 61.2 to 32.5 HU; ROIs placed in relatively uniform region with 

reference to MDCT). However, strong nonuniformity is still evident, including residual 

shading artifacts in the central region of the brain and blooming artifacts around the skull. 

Comparison of Figs. 5(b) and 5(c) shows further improvement by applying the remaining 

steps of the artifacts correction pipeline: lag, glare, and beam hardening correction. The 

overall NU was further reduced from 32.5 to 13.5 HU.

The second row of Fig. 5 depicts a representative dataset acquired in a subject with a 

hypodense lesion in bilateral frontal lobes and in the right temporal lobe, using the C4 

configuration at different stages of the artifacts correction pipeline. As mentioned in Section 

2.D.1, the hypodense lesion region (as evident in MDCT) was avoided in ROI placement 

(column (c)). Comparison of the images in column (a) and (d) for the C1 (first row) and C4 

(second row) configurations showed noticeably improved quality of the raw image data in 

C4. For example, anatomical structures such as the lateral ventricles are visible in C4 even 

prior to application of the artifacts correction pipeline, and NU for the uncorrected images 

was reduced from 61.2 for C1 to 39.5 HU for the C4 configuration. This is primarily due to 

the use of the antiscatter grid and bowtie filter. In addition to the reduction in the magnitude 

of artifacts, their nature and distribution are different as well. For example: (a) scatter 

artifacts presented as cupping artifacts centered around the center of the brain in C1, but they 

showed as capping artifacts centered around the bowtie center in C4, since scatter was 
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modulated by the shape of the bowtie filter; and (b) blooming artifacts around the skull were 

largely reduced in C4 compared to C1, most likely due to the prehardening effect caused by 

the bowtie filter in C4 configuration.

Quantitative analysis of the trends underlying the images in Fig. 5 are summarized in Fig. 6 

for the 41 subjects evaluated in the study. With the full artifacts correction pipeline, NU was 

reduced from a median value of ~38 HU for the uncorrected image to ~10 HU for the fully 

corrected image, with a fractional improvement of ~70% [as shown in Fig. 6(b)]. X-ray 

scatter correction accounted for ~60% of the total NU reduction, as shown in Figs. 6(a)–

6(b).

Figure 6(c) shows the distribution in root-mean-square-difference (RMSD) across all 

subjects between the uncorrected images and the fully corrected images as a function of the 

scanner configuration (C1–C4). The distribution in RMSD between scatter-corrected images 

and the fully corrected images is shown in (d). Since the FOVz was varied from C1 to C4, 

RMSD was only calculated for the central 50 slices (2 cm FOVz). The decreasing RMSD 

from the original C1 configuration to the final C4 configuration illustrates the progressive 

improvement in the quality of raw data. The enhancement in the raw data quality for the C2 

configuration can be mostly attributed to the smaller FOVz, which mostly acted on scatter 

artifacts. The C3 configuration further improved raw data quality via the antiscatter grid, 

which mostly acted on scatter artifacts as well. Therefore the RMSD for C2 and C3 are 

lower than C1 in Fig. 6(c) and are comparable to C1 in Fig. 6(d). In addition to increased 

scatter rejection, the C4 configuration resulted in lower beam hardening artifacts from the 

prehardening effect provided by the bowtie filter coupled with a higher tube potential (120 

kV in C4 compared to 100 kV in C1–C3). This results in RMSD reduction both in (c) and 

(d).

3.B. Multi-motion compensation

Figures 7(a)–7(c) show an example subject with moderate (a few mm) head motion during 

the CBCT scan. All other aspects of the artifacts correction/reconstruction pipeline were 

kept fixed to isolate the effects of motion compensation. Compared to the image without 

motion compensation, the single motion compensation reconstruction (using single motion 

trajectory for the entire FOV) showed noticeable improvement in motion artifacts, with 

better visualization of the ventricular shunt and a reduction in streak artifacts (σstreaks 

reduced from 23.4 to 14.6 HU after single motion compensation). (Note that all images in 

this section were reconstructed with PWLS.) However, the single motion reconstruction 

exhibited residual streak artifacts from the head holder — that is, the head moved within the 

head holder (different motion trajectories for head and head holder). Comparison of Figs 

7(b) and 7(c) shows further improvement when using the multi-motion compensation 

reconstruction — for example, streak artifacts associated with the head holder [pink arrow in 

Fig. 7(b)] was reduced with multi-motion compensation, and overall magnitude of streak 

artifacts was further reduced to σstreaks = 13.2 HU.

Imaging performance without and with multi-motion compensation is further quantified in 

Figs. 8(a)–8(b). Motion-related streak artifacts were reduced by ~40% with multi-motion 

compensation. Motion compensation also showed benefit beyond reduction of streak 
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artifacts. For example, the method improved visualization of soft-tissue boundaries as 

illustrated in Fig. 8(c), where sulci and soft-tissue edges throughout the brain are more 

distinct after motion compensation.

3.C. Model-based image reconstruction (PWLS)

Figure 9 shows example images reconstructed with FBP and the proposed PWLS method, 

with other aspects of the pipeline (artifacts correction, motion compensation, etc.) held 

fixed. Spatial resolution for FBP and PWLS reconstructions was matched to give equivalent 

σESF for soft-tissue boundaries near the center of the image (lateral ventricles and brain 

parenchyma). Visual comparison suggests subtle improvement in noise characteristics for 

PWLS, showing a slight reduction in noise magnitude [e.g., σventricle reduced from 6.1 to 4.7 

HU in Fig. 9(a)] and a more uniform noise texture (i.e., reduced directional noise 

correlation). The qualitative difference is fairly subtle, and green arrows mark example low-

contrast structures for which delineation is qualitatively improved in PWLS compared to 

FBP [see, for example., the posterior aspect of the lateral ventricle in Fig. 9(a) and the 

sagittal sulcus in Fig. 9(b)].

Figure 10 quantifies the noise-resolution tradeoffs for FBP and PWLS, demonstrating a 

~15%–20% improvement in CNR for PWLS over a wide range of spatial resolution. 

Comparison of the CNR (measured between CSF in the lateral ventricle and the surrounding 

brain parenchyma) between FBP and PWLS across all subjects in the study is shown in Fig. 

10(b), each with matched spatial resolution. The ratio (QCNR) shows a median improvement 

in CNR of ~15%, with a lower bound of ~1% (i.e., PWLS never underperformed compared 

to FBP in the current study), and the improvements in some subjects were as large as ~32%.

4. DISCUSSION AND CONCLUSIONS

This work presented a series of high-level engineering design iterations in scanner hardware, 

a PWLS method extended to multi-motion/ multiresolution reconstruction, and a fully 

integrated artifacts correction and reconstruction pipeline for CBCT in point-of-care imaging 

in the NCCU. The technical performance of the hardware/ software developments was 

evaluated quantitatively in images of 41 human subjects. Such a system could significantly 

ameliorate workflow and safety considerations related to patient transport from the NCCU to 

the CT suite.

A number of artifacts correction and reconstruction algorithms were integrated in this work, 

including correction of lag, glare, beam hardening, scatter, motion, and truncation artifacts, 

and model-based reconstruction (PWLS) with a statistical noise model considering quantum 

noise, electronic noise, and fluence modulation. Instead of simply cascading those 

algorithms, the integrated pipeline incorporates the interaction between them, for example, 

(a) interaction of BH/scatter correction with motion estimation (detailed in Section 2.B.2); 

and (b) modification of the forward projection operator in PWLS to account for multiple 

independently moving regions with different resolution (detailed in Section Multi-motion 

and multiresolution in PWLS).
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The quantitative imaging performance characteristics measured across 41 subjects 

demonstrated steady improvement from each component of the integrated artifacts 

correction and reconstruction pipeline. Image NU was reduced by ~70% with artifact 

correction methods (lag, glare, beam hardening, and scatter). Multi-motion compensation 

reduced motion-induced streak artifacts (σstreaks) overall by ~40%. The PWLS algorithm 

yielded a ~15% improvement in CNR compared to FBP at matched resolution, with 

improvement up to ~30% in some subjects. The gains in imaging performance were visually 

evident as well [e.g., comparing the conventional “raw” FBP reconstructed CBCT images as 

in Fig. 5(a) with images after applying artifacts correction and PWLS reconstruction as in 

Fig. 7(c), second column of Fig. 8(c), and second columns in Fig. 9].

Quantitative metrics measured across 41 subjects also demonstrated steady improvement in 

the quality of raw data across the four configurations of the scanner, showing overall 

reduction in RMSD (between the raw and the fully corrected image) of ~65%. The C2 

configuration resulted in ~28% improvement in RMSD over C1, due primarily to reduced 

scatter for the smaller FOVz. The C3 configuration improved RMSD by ~30% compared to 

C2 by virtue of an antiscatter grid. The C4 configuration improved RMSD by ~45% 

compared to C3 by incorporation of a bowtie filter and higher tube potential. Finally, the C4 

configuration decreased the image acquisition time from 60 s (in C2 and C3) to ~17 s, 

thereby reducing the likelihood and severity of patient motion effects. For example, 9/10 of 

the subjects exhibiting severe motion artifact (thus excluded from evaluation) were from C2 

and C3 configurations.

Overall, the resulting images demonstrate clear visualization of ICH and IVH, reliable 

assessment of ventricular shunt placement, and the potential to assess or monitor known 

ischemic lesions (which are challenging even in MDCT). Bone visualization — not included 

in the results shown above for reasons of brevity — was excellent, and FBP with a high-

resolution filter is likely sufficient for assessment of cranial features — for example, 

differentiation of fracture from suture lines.

The results are promising with respect to this challenging application of CBCT and suggest 

a number of points warranting future investigation. First is the assessment of image quality 

with respect to specific clinical tasks — for example, expert assessment of the sufficiency of 

image quality for monitoring known lesions or detecting emergent abnormalities. While the 

study involved both CBCT and MDCT images, a meaningful head-to-head comparison of 

diagnostic performance requires careful consideration of numerous technical and logistical 

factors. In the current study, there is no reason to think that CBCT would match or exceed 

the performance of MDCT; it almost certainly will not, and direct comparison of CBCT and 

MDCT images was not included in the current study. (Note also that the dose for CBCT 

scans in this study was ~40%–46% less than the dose for MDCT.) Given the quantifiable 

improvements in CBCT image quality achieved by the methods reported in this work, the 

pertinent question to a future expert reader study is whether portable CBCT acquired at the 

point of care is sufficient in monitoring known pathologies (thereby saving patient transport 

to the CT scanner) and/or reliably detecting emergent pathologies as they arise.
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Images of the human subjects used in this work provide evidence in support of the feasibility 

of mobile CBCT for evaluation of acute brain lesions, as illustrated in Fig. 11. Figure 11(a) 

shows axial and sagittal images of a subject with a small subdural hematoma. Two foci of 

hemorrhage are visible overlying the right frontal lobe, and despite their small size, low 

contrast, and proximity to the skull (a region challenged by beam-hardening effects), initial 

assessment suggests that delineation of the boundary and measurement of the size of each 

can be reliably performed. Figure 11(b) shows images of a subject with hydrocephalus 

treated with a ventricular shunt. The location of the shunt with respect to the ventricle is 

clear in both axial and sagittal views — in this case, the tip of the shunt free-floating in the 

atrium of the right lateral ventricle. Figure 11(c) shows images of a subject with pituitary 

tumor with hemorrhagic transformation, and while the visibility of the tumor is challenged 

by residual artifacts from the skull base (also a common problem in MDCT of pituitary 

tumors), the presence and size of the tumor can still be reasonably assessed. Figure 11(d) 

shows axial images of a subject with bilateral ischemic lesions (hypo-dense regions) that are 

distinguishable from shading artifacts. Such lesions are challenging to discriminate from 

residual shading artifacts even in MDCT, but the images may be sufficient for monitoring 

the status of such lesions previously identified in MDCT or MRI. Figure 11(e) shows axial 

images from a subject with intraventricular hemorrhage (IVH). Large hemorrhages are 

clearly visible from the image, and their sizes and boundaries can be evaluated with 

confidence.

Another important point is the extent to which the proposed artifact correction and 

reconstruction algorithms can be implemented with clinically acceptable runtime — an 

important consideration for incorporation in realistic clinical workflow. The total runtime for 

image processing and reconstruction in this work was ~8 h, which breaks down to: ~1.5 h 

for artifacts correction; ~1.5 h for motion estimation; and ~5 h for PWLS reconstruction. 

Relatively little effort was paid to code optimization or runtime acceleration in the current 

work, which focused mainly on feasibility and evaluation of image quality. A number of 

strategies for reducing the runtime include: (a) implementation on multi-GPU architectures 

for MC scatter estimation, motion estimation, and MBIR; (b) replacing the time-consuming 

MC scatter estimation with kernel based or machine learning based scatter estimation 

method;48,49 (c) use of 3D-2D registration or machine learning approaches to precondition 

the estimation of the motion trajectory;29 (d) replacing the time-consuming separable 

footprint forward and back projector with simpler, more efficient, yet less accurate projector 

models (e.g., Siddon forward projector50 and Peter’s backprojector51); and (e) using 

momentum-based acceleration approaches previously applied to MBIR, like the Nesterov 

method.52 Such methods are the subjects of ongoing work, as described in Ref [53,54] for 

example, where runtimes <30 s were reported for datasets of comparable size.

Additional and potentially more advanced artifact correction and image reconstruction 

techniques can also be envisioned. These include metal artifact reduction (MAR) methods, 

such as KC-MAR or KC-Recon to account for the presence of metal instrumentation.55,56 

More advanced regularization schemes could be incorporated, including selection of 

regularization weights in a manner to optimize local task-based signal-to-noise 

characteristics.57 The system model intrinsic to the MBIR method could be advanced to 

include effects of detector blur and correlated noise.58 Among the most important areas for 
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future improvement, however, is compensation/ correction of patient motion effects. Even 

for the relatively stable anatomy associated with the head, motion compensation was an 

important part of the image processing chain described above and was challenged by 

nonrigid components (neck and jaw) and motion of the patient separate from that of the head 

holder, motivating more advanced multi-motion compensation method.59 Hardware 

modifications that resulted in faster scan speed was shown to reduce susceptibility to motion 

artifacts, but motion management is likely to persist as an important aspect of achieving 

diagnostic quality in CBCT. Additional future hardware modifications may include 

incorporation of 2D antiscatter grid.
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Fig. 1. 
Prototype scanner for high-quality cone-beam computed tomography (CBCT) of the head. 

(a) Arrangement of the CBCT prototype (C1 configuration) for scanning human subjects. (b) 

Head scanner prototype (C4 configuration) featuring a more compact system geometry, an 

8:1 antiscatter grid on the detector, and a bowtie filter.
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Fig. 2. 
Flowchart for the artifacts correction and image reconstruction workflow. Note the 

interconnection of artifact corrections with multi-motion estimation (double arrows) and 

feedback loop of the penalized weighted least squares image (dashed arrow) to artifact 

correction (x-ray scatter) in the final iteration.
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Fig. 3. 
Illustration of three regions in dual-motion, dual-resolution image reconstruction: μFM, μFS, 

and μCS, where the “M” and “S” notation denotes the “moving” and “static” regions for the 

multi-motion estimation, and the “F” and “C” notation denotes the “fine” and “coarse” 

regions for multiresolution reconstruction.
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Fig. 4. 
Analysis of noise, spatial resolution, and artifacts in human subject images. (a) Example 

reconstruction showing ROI placement for analysis of NU (pink ROIs) and spatial resolution 

(yellow ROI). (b) Zoomed-in region showing the soft-tissue boundary (between the lateral 

ventricle and brain parenchyma) and edge profiles (yellow lines) for measurement of the 

ESF at soft-tissue boundaries. ROIs for contrast measurement are marked by white 

rectangles. (c) Zoomed-in image showing ROI placement for calculation of streak artifacts, 

σstreaks, in motion-contaminated regions (dashed yellow ROIs) and uniform regions (solid 

pink ROI). (d) Example ESF analysis from profiles perpendicular to the soft-tissue boundary 

in (b). The width (σESF) of the fitted error function (solid red line) provided a basic metric of 

spatial resolution with respect to the soft-tissue edge.
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Fig. 5. 
Artifact corrections. Images reconstructed with filtered backprojection (FBP) are shown at 

different stages of the artifacts correction pipeline: (Top) C1 configuration; (Bottom) C4 

configuration, incorporating a bowtie filter and an antiscatter grid. (a) Uncorrected image. 

(b) Scatter-corrected image. (c) Fully corrected image. Dashed squares show ROIs for NU 

measurement. (d) Difference image (c–a) showing the magnitude and distribution of 

artifacts. Corresponding NU measurement are listed in the bottom left corner for each 

subfigure in column (a–c).
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Fig. 6. 
Quantitative analysis of the artifacts correction pipeline aggregated over 41 subjects in the 

study. Each violin plot shows the underlying sample points, a Gaussian envelope, the median 

of the distribution (white circle), and the interquartile range (IQR, black vertical range bar). 

(a) Nonuniformity measured at three stages of the artifacts correction pipeline. (b) Relative 

improvement in NU, comparing images corrected for scatter only and fully corrected images 

(corrected for lag, glare, beam-hardening, and scatter). (c) Difference (RMSD) between 

uncorrected and fully corrected data for the four configurations of the scanner prototype 

(C1–C4), showing increasing improvement in the quality of raw data for later 

configurations. (d) Difference (RMSD) between scatter-corrected and fully corrected images 

as a function of the system configuration.
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Fig. 7. 
Motion compensation. (a) Example image reconstructed without motion compensation. (b) 

PWLS reconstruction with single-motion compensation (i.e., motion trajectory computed for 

the head applied to the entire volume). (c) Multi-motion compensation PWLS reconstruction 

allowing separate motion trajectories for the head and the holder. The lower row shows a 

zoomed-in region (dashed yellow rectangle in (a)) containing a hypodensity (edema) and a 

ventricular shunt along with corresponding quantitation of the streak artifacts (σstreaks).
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Fig. 8. 
Quantitative analysis and illustration of motion compensation. (a) Magnitude of streak 

artifacts (σstreaks) for uncorrected and motion compensated images. (b) The ratio of 

improvement in the magnitude of streak artifacts (M[σstreaks]) evaluated for 25 subjects 

exhibiting visible streak artifacts prior to motion compensation. (c) A representative dataset 

from a subject with intraventricular hemorrhage showing improved soft-tissue visibility from 

motion compensation — for example, improved visualization of sulci in the region marked 

by the green arrow.
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Fig. 9. 
Comparison of filtered backprojection (FBP) and penalized weighted least squares (PWLS) 

reconstruction for two example subjects, each with zoomed-in regions showing features of 

interest in the bottom row. Subtle improvement in low-contrast structures can be appreciated 

for PWLS. For example, visually improved delineation of the sagittal sulcus and lateral 

aspect of the ventricle can be observed, as marked by green arrows.
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Fig. 10. 
Analysis of soft-tissue contrast-to-noise ratio (CNR) (ventricle-to-parenchyma) for filtered 

backprojection (FBP) and penalized weighted least squares (PWLS) reconstructions 

measured over the 41 subjects. (a) contrast-to-noise ratio evaluated as a function of edge-

spread width (σESF) for an example subject [same as in Fig. 9(a)] obtained by changing the 

cutoff frequency and β parameters for FBP and PWLS, respectively. The gray range about 

each curve denotes the standard deviation in CNR estimated from fits to various edge 

profiles, as shown in Fig. 4(b). (b) Relative improvement in CNR. The violin plot shows 

sample points, Gaussian fit envelope, median (1.15), and IQR (1.02–1.32).
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Fig. 11. 
Example cone-beam computed tomography images illustrating a variety of clinically 

relevant tasks. (a) Subject with subdural hematoma evident as a hyperdense focus between 

the brain parenchyma and skull. (b) Subject with hydrocephalus treated with a ventricular 

shunt. (c) Subject with hemorrhagic pituitary tumor, evident as a hyperdense mass adjacent 

to the skull base. (d) Subject with bilateral ischemic lesions evident as hypodensities. (e) 

Subject with intraventricular hemorrhage (hyperdensity in both lateral ventricles).
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