Table 2.
Accuracy indices of binary classification (HS vs FTD) in Test cohort.
| Classifiers | Variables | N° of features | ACC % | SENS | SPEC | PPV | NPV |
|---|---|---|---|---|---|---|---|
| KNN | All features | 6 | 88 | 0.85 | 0.90 | 0.89 | 0.86 |
| AngleR | 1 | 85 | 0.95 | 0.67 | 0.83 | 0.89 | |
| PerpPD | 1 | 79 | 0.90 | 0.60 | 0.79 | 0.79 | |
| PerpPD | 1 | 77 | 0.80 | 0.75 | 0.76 | 0.79 | |
| MD | 1 | 72 | 0.70 | 0.75 | 0.74 | 0.71 | |
| GM_fr | 1 | 79 | 0.90 | 0.60 | 0.79 | 0.79 | |
| MMSE | 1 | 69 | 0.57 | 0.88 | 0.89 | 0.55 |
Accuracies for binary classification using whole brain measures (AngleR, PerpPD and Gm_fr) and MMSE. Abbreviations: ACC accuracy, SENS sensitivity, SPEC specificity, PPV Positive predictive values, NPV negative predictive value.