Table 2.
Model | λ | Dropout | Learning rate | Layers | Hidden units | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|---|---|---|---|---|
GCN (Baseline) | None | 0.5 (2,4,5 layer) | 0.005 | 5 | 32/32/64/64/128 | 83.98 ± 3.2 | 84.59 ± 3.1 | 87.78 ± 6.4 |
GIN+Infomax | 0.05 | 0.5 | 0.005 | 5 | 64 | 84.61 ± 2.9 | 86.19 ± 3.3 | 86.81 ± 4.9 |
GIN | 0.0 | - | - | - | - | 84.41 ± 2.8 | 85.39 ± 2.6 | 87.60 ± 7.5 |
- | 0.01 | - | - | - | - | 84.08 ± 2.2 | 86.72 ± 4.4 | 85.31 ± 5.5 |
- | 0.1 | - | - | - | - | 84.51 ± 2.1 | 86.85 ± 4.5 | 86.06 ± 5.5 |
- | - | 0.0 | - | - | - | 83.99 ± 3.4 | 85.78 ± 4.4 | 86.26 ± 6.1 |
- | - | - | 0.01 | - | - | 83.13 ± 3.4 | 85.89 ± 3.4 | 84.01 ± 5.2 |
- | - | - | 0.001 | - | - | 81.54 ± 3.3 | 85.45 ± 3.4 | 81.37 ± 7.3 |
- | - | - | - | 4 | - | 83.11 ± 3.2 | 84.62 ± 2.8 | 85.70 ± 4.2 |
- | - | - | - | - | 32 | 83.13 ± 3.4 | 85.20 ± 4.3 | 85.14 ± 5.5 |
Bold value indicates the saliency with respect to the input (24).