Skip to main content
. 2020 Jun 3;5(2):90. doi: 10.3390/tropicalmed5020090
Case-Study: Expanding New Sequencing Technology Across the Globe to Detect Animal to Human Disease Spillover
  Climate and health are intertwined with the effects of climate shifts that are currently manifesting globally. New technology, specifically in sequencing and metagenomics, must be implemented in geographically diverse regions around the globe in order to maximize impact. These newly developed or newly implemented technologies have the capacity to benefit even remote populations, who are often the most impacted by these health shifts. In addition to the identification of new pathogens, training on use of these technologies will have long-term impact by building local capacity to detect and respond to emerging health threats on a routine basis.
  The USAID-funded PREDICT program [43,44] was implemented in over 30 countries around the globe from 2009–2020, aimed to strengthen capacity for surveillance and detection of viral threats transmitted from animals to humans. In order to address challenges of building and sustaining laboratory viral detection capacity in low-resource partner countries, the PREDICT approach built laboratory platforms based on conventional PCR methods to identify potential pathogens in wildlife and humans. Building upon this approach, the project also integrated more complex sequencing technology to empower local partner universities and governments to increase their viral detection capacity at the local level. Partner countries who successfully adopted this approach identified over 1000 new viruses at the human-animal interface. Recognition of the significant scientific and economic benefits of discovering high-consequence pathogens before evidence of spill-over into human populations, participating countries are now starting to realize the power and importance of sequencing and prioritize this technology as a key component to future capacity building [45]. This new focus in low-resource, viral hot-spot regions of the world promotes the potential for additional high-level metagenomic skills to be added to the cadre of possibilities. A critical piece of continuing the work of PREDICT is to encourage countries to store sample repositories for the long-term so that further work can be done utilizing mores powerful metagenomic approaches as they become available. As these countries are particularly impacted by drivers such as climate shifts, human and animal movement, and population growth, we anticipate continuing viral spillover at the human-animal interface, making the need for a continued increase and investment in pathogen detection capacity [46].
  The sequencing technologies discussed in this paper, which expand our ability to detect pathogens of pandemic potential, should be deployed locally and globally in areas where spillover and disease spread continue to occur. The challenge is to continue a global dialogue to encourage development of affordable platforms and training that can lead to discovery of known and novel viruses with pandemic potential [47]. The One Health Institute at the University of California, Davis, led the PREDICT Project and is also home of the University of California Global Health Institute’s Planetary Health Center of Expertise that works to raise awareness about climate and health issues as well as sustainable solutions and platforms (https://ohi.vetmed.ucdavis.edu). With the help of such centers, the global population at large is beginning to appreciate the importance of understanding local predictions for environmental change and disease spillover to utilize adaptation and mitigation measures. It has become well known that understanding drivers of pathogen spillover and risk, and utilizing state-of-the art technology for management of these threats, are critical. The authors are optimistic that there is a true space for development of easily accessible technologies that are farm, clinic or animal/human-specific, resulting in rapid, real-time on-site diagnostic care utilizing the new sequencing technologies discussed herein.