Skip to main content
. 2020 Jun 12;13(12):2695. doi: 10.3390/ma13122695

Table 4.

Comparison of the proposed I-V method with different previously reported analytical methods for the detection of Cr3+.

Methods Material Sensitivity *LDR #LOD @LOQ Ref.
Amperometric Tyrosinase biosensor 2.0 × 10−4 M 500.0 nM [48]
Capillary electrophoresis 1,2-Cyclohexanediaminetetraacetic acid (CDTA) 0.0 M–0.0019 M 961.6 nM [40]
Capillary electrophoresis Hexamolybdochromate 5 × 10−6–1 × 10−5 M 2000 nM [41]
Chemiluminescence Ethylene diamine tetra acetate (EDTA) 0.0–1 × 10−6 M 0.5 nM [42]
Cyclic voltammetry&amperometry Gold nanoparticle-decorated titania nanotube arrays 6.91 µAµM−1 0.10 µM–105 µM 0.03 µM [45]
Electrothermal atomic absorption spectrometric Nano TiO2 1 × 10−3–0.5 M 0.11 nM [27]
Thin-layer X-ray fluorescence spectrometry Solid-phase hydrous ferric hydroxide (HFO) 0.0–1.0 µM 16.9 nM [36]
High-performance liquid chromatography with diode-array detection Ammonium pyrrolidinedithiocarbamate (APDC) 190 nM–0.76 mM 76,900–134,000 nM [28]
Inductively Coupled Plasma Atomic-emission Spectrometry Micro-column of activated alumina 0.0–1.9 × 10−5 M 26.0 nM [26]
Electrochemical I-V method ATNA/Nafion/GCE 0.0071202 µAµM−1cm−2 1.0 nM–0.01 M 0.013 nM 0.04 nM This work

*LDR = linear dynamic ranger; #LOD = limit of detection; @LOQ = limit of quantification