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Tiny plastic particles considered as emerging contaminants have attracted considerable interest in the last few

Keywords: years. Mechanical abrasion, photochemical oxidation and biological degradation of larger plastic debris result in
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the formation of microplastics (MPs, 1 um to 5 mm) and nanoplastics (NPs, 1 nm to 1000 nm). Compared with
MPs, the environmental fate, ecosystem toxicity and potential risks associated with NPs have so far been less
explored. This review provides a state-of-the-art overview of current research on NPs with focus on currently
less-investigated fields, such as the environmental fate in agroecosystems, migration in porous media, weath-
ering, and toxic effects on plants. The co-transport of NPs with organic contaminants and heavy metals threaten
human health and ecosystems. Furthermore, NPs may serve as a novel habitat for microbial colonization, and
may act as carriers for pathogens (i.e., bacteria and viruses). An integrated framework is proposed to better
understand the interrelationships between NPs, ecosystems and the human society. In order to fully understand
the sources and sinks of NPs, more studies should focus on the total environment, including freshwater, ocean,
groundwater, soil and air, and more attempts should be made to explore the aging and aggregation of NPs in
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environmentally relevant conditions. Considering the fact that naturally-weathered plastic debris may have
distinct physicochemical characteristics, future studies should explore the environmental behavior of naturally-
aged NPs rather than synthetic polystyrene nanobeads.

1. Introduction

Made of various synthetic or semi-synthetic organic polymers,
plastics are malleable materials capable of being molded into solid
objects of various types and sizes. Due to the ease of manufacture, high
stability and versatile properties, plastics have been used in a wide
range of products. Thus, annual production of plastics keeps growing,
reaching 359 million tons in 2018 (PlasticsEurope, 2019). Despite the
fact that plastic recycling and management policies are improving,
improper handling of plastic disposal is still a global trend, accounting
for the unregulated release into the environment (PlasticsEurope, 2019;
Barria et al., 2020). Due to the hydrophobicity, physical and chemical
resistance, plastics can be transported from terrestrial ecosystems to
aquatic ecosystems. Plastics have been found in all kinds of environ-
mental media, including the surface freshwater and the sediment,
marine surface water and the seabed, groundwater, soil and even the
atmosphere (Alimi et al., 2018; Astner et al., 2019; Ng et al., 2018; Song
et al., 2019; Hurley and Nizzetto, 2018; Prata, 2018; Carr et al., 2016;
Eerkes-Medrano et al., 2015).

Once released into the environment, plastic particles are subjected
to weathering and fragmentation (section 2.2). Various natural forces,
such as the mechanical forces of water, ultraviolet (UV) radiation, and
biological metabolism lead to the fragmentation into smaller plastic
particles, namely microplastics (MPs) and nanoplastics (NPs). MP is
defined as the plastic particles with the size ranging from 1 ym to 5 mm
(Schwaferts et al., 2019; Collignon et al., 2014; Browne et al., 2007).
Concerning NPs, there is still debate on its definition. Some scholars
suggest that a definition of nanoparticles (from 1 nm to 100 nm) should
be extrapolated to define NPs (European Commission, 2011; Ivleva
et al., 2017), while others adopted the whole nanometer range (from 1
nm to 1000 nm) (Schwaferts et al., 2019; Gigault et al., 2018; da Costa
et al., 2016). In this review, we adopt the latter definition and regard
sub-micron plastic particles (with diameter ranging from 100 nm to 1
um) also as NPs.

Due to the recalcitrant characteristics of plastic particles, the en-
vironmental fate and the toxic effects of MPs have been widely ex-
plored. Many review articles have focused on various fields, including
the sources (Bradney et al., 2019), distribution (Fu et al., 2020a), mi-
gration (Guo et al., 2020), bioaccumulation (Xu et al., 2020), toxicity
(Chen et al., 2020), ecological risks (Ma et al., 2020a), and remediation
strategies (Zhang et al., 2020a) of MPs. In comparison, NPs are much
less explored. Downsizing the plastic debris from micro to nano scale
will result in a shift in physicochemical properties (section 2.2). Be-
sides, the environmental behavior (such as aggregation and migration),
bioaccumulation features, and toxicity of plastic particles are highly
dependent on the size. Further investigations on NPs are necessary.

Similar with investigations on MPs, current studies regarding NPs
have focused more on the marine ecosystem, especially the toxic effects
of NPs on marine organisms, including bacteria, algae and fish (Barria
et al., 2020; Rios Mendoza et al., 2018; Peng et al., 2020). Research on
NPs in terrestrial and freshwater ecosystems is still limited. This review
summarizes the current research status of NPs with focus on less-ex-
plored, poorly understood fields, especially the migration of NPs in
terrestrial systems (e.g., transport and aggregation in the porous
media), weathering and aging processes, plant accumulation (either in
freshwater or terrestrial ecosystems), and the toxic effects of attached
contaminants (i.e., organic contaminants, metals and pathogens). Fur-
thermore, possible mechanisms involved in the co-transport behavior of
NPs with heavy metals, organic molecules and human pathogens, such
as bacteria and viruses have been put forward. To better comprehend

the relationships between nanoplastics, ecosystems and the human so-
ciety, an integrated DPSIR (driving forces — pressures — states — impacts
— responses) framework is proposed. In addition, potential risk miti-
gation strategies, and the feasibility of extrapolating the remediation
strategies towards other contaminants (e.g., immobilization of organic
herbicides using biochar) to NP contamination are discussed critically.

2. Characteristics of NPs
2.1. Separation and analysis

Methodological challenges associated with the separation and ana-
lysis of NPs hinder the development of this field. High-quality pre-
treatment is necessary for the analysis of these tiny particles.
Environmental samples of NPs can cover a wide range of media, in-
cluding wastewater, drinking water, sediments, soils, sludge, compost
and even atmospheric deposition (Prata, 2018; Xu et al., 2019). Se-
paration of NPs is required for most studies, and the first step is di-
gestion (Table 1). Although acid/alkaline/oxidizing agents can be used
for chemical digestion, the change in solution ionic strength may result
in the aggregation of NPs (Rist et al., 2017). To overcome this obstacle,
a milder approach that uses enzymes such as Proteinase K can be used
for decomposition of biological tissues (Correia and Loeschner, 2018).

After digestion, preconcentration and separation steps are needed.
According to the separation mechanisms, these methods can be divided
into two categories, namely size-based and density-based separation. As
for size-based separation, the most widely used methods for nanoplastic
enrichment are filtration (Fig. 1c¢) and field flow fractionation (FFF)
(Fig. 1b) (Table 1). In (ultra)filtration systems, particles larger than the
nano-sized membrane is collected (Fig. 1c), and an external pressure
could facilitate the water flow, thus increasing the operation speed.
Field flow fractionation is a separation method where a field (e.g.,
electrical, centrifugal, gravitational, etc.) is applied perpendicularly to
the fluid suspension crossing a long channel, resulting in the separation
of particles present in the suspension depending on the differing mo-
bilities under the external field-induced force (Correia and Loeschner,
2018; Giddings et al., 1976). The most widely used FFF system is the
Asymmetrical flow field flow fractionation (AF4), where the external
field is the cross flow created by the asymmetrical wall (only the bottom
wall of the channel is permeable) (Fig. 1b). Due to the variance in
diffusivity of particles (which is determined by size and particulate
density), different particles are retained for different durations in the
AF4 system (Fig. 1b). The advantage of AF4 is that it can separate and
characterize nanoparticles simultaneously through coupling to online
detectors (Schwaferts et al.,, 2019; Correia and Loeschner, 2018).
Compared with size-based separation strategies, density-based ones
such as ultracentrifugation is seldom used in studies related to nano-
plastics. This is probably because this technique has the limitation that
it only processes small sample volumes (i.e., < 100 mL), limiting its
applicability for environmental samples with low NP concentrations
that require a much larger volume to obtain adequate amount of NPs
(Schwaferts et al., 2019).

A number of techniques can be used to analyze physicochemical
properties of NPs (Table 1). Laser light scattering is the most widely
used method for particle size assessment. When the laser passes through
the suspension of NPs, a fluctuation of its intensity can be induced by
the Brownian motion, which is dependent on the hydrodynamic dia-
meter with NPs. Electron microscopy is widely adopted to investigate
the surface morphology of NPs. Since the wavelength of electrons is
much shorter than that of visible light, electron microscopies possess
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much higher resolutions (several nanometers) as compared with optical
microscopies (> 1 pm). Besides, electron microscopies can be coupled
with Energy-Dispersive X-ray Spectrometers (EDS) to investigate ele-
mental distributions simultaneously. Although several conventional
characterization methods such as Fourier-Transform Infrared Spectro-
scopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS) cannot be
used to characterize a certain nanoplastic particle due to their size
detection limits, they can provide much useful information for bulk
samples of NPs (Schwaferts et al., 2019). For more detailed discussion
regarding the separation and characterization methods of NPs, we refer
readers to Schwaferts et al. (2019) and Fu et al.(2020b).

2.2. Physicochemical properties: from micro to nano

The size of a plastic particle is the dominant characteristic de-
termining its environmental fate (e.g., migration) (Song et al., 2019; He
et al., 2018; Tong et al., 2020a). Besides, bioaccumulation and toxicity
can be size-dependent (Kim et al., 2020; Lei et al., 2018; Sendra et al.,
2019). Considering that NPs mainly originate from the fragmentation
and transformation of larger plastic particles (secondary NPs, section
3.1), investigating the downsizing mechanisms will be helpful for a
better understanding of NPs.

NPs can be generated through the mechanical abrasion processes.
The breakdown of daily-use polystyrene products by household blender
generate considerable amounts of NPs (Ekvall et al., 2019). Fragmen-
tation of solid plastic wastes and MPs generate NPs in sewer system due
the turbulence of water flow and mechanical devices in wastewater
treatment plants (WWTPs) (Lv et al., 2019). The natural fragmentation
of larger plastic pieces can also be achieved in the sea swash zone
(Efimova et al., 2018). The mechanical fragmentation of macro- and
micro-sized plastic particles are mainly caused by the formation of
cracks (Enfrin et al., 2020; Julienne et al. 2019). The theory of crack-
induced solid failure can therefore be adopted to depict this process,
and the size of resulting NPs can be calculated using the following
equation (Eq. 1) (Enfrin et al., 2020; Grady, 2015):

K24 |
de
PCoy, @

dNP =

where dyp is the size of NPs, K. is the stress intensity factor of the plastic

.9,
C Diluted Scrub
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Fig. 1. Schematic illustration of var-
ious separation methods for NPs: (a)
Differential separation, a typical ultra-
centrifugation method. Reproduced
with permission from (Li et al., 2018).
Copyright 2018 Elsevier; (b) Separation
of particles using asymmetrical flow
field flow fractionation (AF4). Smaller
particles possess higher diffusion coef-
ficients, which stabilize further away
from the membrane. Thereby, they are
subjected to faster steamlines than
larger ones, and exit the channel more
quickly. Reproduced with permission
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material, p is the density, c, represents the elastic wave speed, ¢ refers
to the stain of plastic material, which is dependent on the applied stress.

Hydrolysis (react with water) is another potential mechanism ac-
counting for NP generation, yet it may not be the most powerful one at
reducing the sizes of plastics (Andrady, 2011). In comparison, de-
gradation initiated by UV irradiation is a very efficient downsizing
mechanism. The photodegradation of plastics is mainly induced by
reactive oxygen species. The decrease in particle size may be due to the
chain scission by attacks from free radicals, such as hydroxyl (‘OH),
alkyl (R"), alkoxyl (RO-) and peroxyl (ROO-) radicals produced from the
UV light. Possible reaction mechanisms for free-radical induced frag-
mentation include three steps (Eq. 2-9) (Liu et al., 2019a; Bracco et al.,
2018; Tian et al., 2019):

Step 1-initiation

RHZ Re + He (2)

Step 2-propagation

R+ + O, — ROO- 3)
ROO« + RH— ROOH+ Re @
ROOHZ RO. + «OH )
2 ROOHZ ROO. + RO- + H,0 (6)

Step 3-termination

R+ + Re.—Not free radical products 7
Re + ROO+—Not free radical products 8)
ROO-« + ROO-+—Not free radical products 9

Biological degradation and fragmentation of large plastic pieces and
MPs by marine and terrestrial animals could also generate NPs in en-
vironment. The ingestion of plastic MPs and potentially NPs by marine
organisms has been found among zooplankton, fish, shrimps and other
animals (Wright et al., 2013; Lusher et al., 2013; Tanaka and Takada,
2016). Fragmentation or degradation of MPs into NPs has been reported
in Antarctic krill (Euphausia superba) exposed to polyethylene MPs (31.5
um) together with algal food. After ingestion, NPs of 150 — 500 nm size
were formed, which were found in the digestive gland (Dawson et al.,
2018). Reduction of MPs into smaller sizes has been observed in the
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common earthworm (Huerta Lwanga et al., 2017) and snails (Song
et al.,, 2019), although fragmentation of MPs into NPs was not con-
sidered in these studies due to limitation of excess tools.

The morphology NPs are mainly determined by their origins (i.e.,
natural weathering vs synthetic fabrication). NPs from different origins
have diverse shapes (Fig. 2). Many studies regarding the migration,
bioaccumulation and toxicity have adopted commercially-available
NPs, which exhibit ideal spherical morphology in most cases (Fig. 2a,
b). Another type of synthetic NPs is the metal-doped nanoplastics with a
raspberry-like morphology (Fig. 2d). However, in both terrestrial and
aquatic ecosystems, NPs originate mainly from the weathering and
fragmentation of larger plastic particles, rather than the controlled
synthesis. NPs resulting from the weathering of large plastic particles
possess much rougher morphologies (Fig. 2c). Due to natural forces
such as mechanical forces of water (Koelmans et al., 2015), UV radia-
tion (Gniadek and Dgbrowska, 2019), and biological metabolism
(Austin et al., 2018), the shapes of resulting NPs become hardly smooth
and spherical.

Downsizing of plastic particles from micro to nano scale can also
lead to a shift in chemical properties, especially surface functional
groups. As shown in Eq. (2)-Eq. (9), reactive oxygen species are gen-
erated during the photodegradation process. This may result in an in-
crease in oxygen-containing functional groups such as carboxyl, car-
bonyl and hydroxyl on the surface of NPs (Liu et al., 2019a, c). The
changes in surface functional groups alter the hydrophobicity and
surface charges of NPs, which may affect the migration (Dong et al.,
2019a), aggregation (Yu et al., 2019; Tallec et al., 2019), contaminant
adsorption (Bradney et al., 2019), bioavailability (Nolte et al., 2017)
and toxicity (Zhang et al., 2019a; Della Torre et al., 2014) of NPs. It is
therefore necessary to fully understand the weathering process of
plastic particles. However, current studies mostly focus on the en-
vironmental behavior and toxic effects of synthetic spherical NPs since
they can be easily obtained. It is argued that results from current studies
may not reveal the behavior of naturally weathered NPs under field
conditions (section 6).

Journal of Hazardous Materials 401 (2021) 123415

3. Environmental behavior of NPs
3.1. Potential sources

Like MPs, the sources of NPs in environment can be categorized as
either primary or secondary, depending upon whether they are < 1000
nm before entering the natural environment, or become this size via the
degradation and fragmentation of larger pieces of plastic litter or MPs,
respectively. The primary source of NPs could include nanometer-sized
fragments from clothes washing, nano-sized particles released from
plastic tea bags (Hernandez et al., 2019) and small fragments from
plastic microbeads and industrial powders, etc. The secondary is likely
due to NP generation from plastic wastes and MPs via various ways in
environment (section 2.2).

As man-made products, plastics mostly originate from terrestrial
systems. However, due to the accumulation of plastic particles in
sewage and effluents, they may end up accumulating in aquatic eco-
systems. It is estimated that over 80 % of marine plastics are from land-
based sources, such as coastal landfill operations, NPs carried by rivers
and streams, biosolid and compost applications, and improper disposal
of untreated sewage (Barria et al., 2020; Ganesh Kumar et al., 2020).
Besides, direct marine-based sources include discharging of litters from
ships/boats and fishing nets (da Costa et al., 2016; Ganesh Kumar et al.,
2020).

In this sense, understanding the terrestrial origin of NPs is crucial.
One of the main sources of NPs is the domestic activities. Tiny fibers of
polyester, nylon, acrylic and spandex are carried off to wastewater
treatment plants during clothes laundry (UNEP, 2018). Fragmentation
of microbeads used in shampoos and scrubs release considerable
amounts of NPs (Hernandez et al., 2017). Even plastic tea bags could
release billions of NPs (Hernandez et al., 2019). Apart from domestic
origins, industrial sources include the direct fabrication of NPs (Yoshino
et al., 2012) and feedstocks of plastic products (da Costa et al., 2016;
Phuc et al., 2014). In addition, agricultural activities contribute to the
release of NPs. Application of sewage sludge as fertilizers represents a

Fig. 2. Morphologies of various NPs: (a) com-
mercially available polystyrene (PS) nano-bead
particles (Lei et al., 2018); (b) commercially
available polytetrafluoroethylene (PTFE) na-
noparticles with diameter of 120 nm (Liu et al.,
2019b); (c) nano-sized polystyrene (PS) parti-
cles attached on surface of polystyrene
spherule, which were fragmented from the
expanded polystyrene spherules by accelerated
mechanical abrasion for a month (Koelmans
et al., 2015); (d) synthetic metal-doped poly-
acrylonitrile (PAN) nanoparticle with a rasp-
berry-like appearance (Mitrano et al., 2019).
All images are reproduced with permission.
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significant source (Alimi et al., 2018; Hurley and Nizzetto, 2018), while s = 2

plastic mulching (Ng et al., 2018) and polymer-coated slow release s g §] = S . . .
fertilizers and pesticides (Bradney et al., 2019) present other potential g ; ; 4 &4 z < < ; ;F) Z =
origins of NPs. g 22 =3 5 s 5583% gag@?g@?i
3.2. Migration characteristics - - v .
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For terrestrial ecosystems, current studies have mainly focused on & é & PR E E ; ; ES® § g 2 = %
the migration of NPs in porous media (Table 2). Although both artificial . T E % ;: § -§ 8 % £ ."; b é b g g é % £
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realistic size distribution. The transport of NPs is affected by several > £ TEg7 B g E g g enSeEg 8 £5
parameters, including particle size, ionic strength, surface functional = 2 2F2%2 ZRCEZJREFA & 2%
groups of NPs, and organic matter (Table 2). Song et al. (2019) ob- o5 "
served a trend of higher mobility of larger NPs (200 nm vs 50 nm) due m . 5 3 = E 5
to greater particle stability. An increase in ionic strength inhibits NP 2 oz g E g 5 2 T;
transport, since the compression of electrical double layer results in the % '% ,31 g B g E Té 3
formation of aggregates (Wu et al., 2020a; Hu et al., 2020). Dong et al. C Y 3EY g B g E é
(2019a) found that retention of functionalized plastic particles in sa- 9 § § Esc § e & &
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modified NPs. They suggested that surface functional groups of NPs g g § 8 & 3 - 2 = ad
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contaminants, dissolved organic matter and suspended organic matter, g E <592 2 § E &£ 2
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matter and inorganic ions (Song et al., 2019). As shown in Table 2, gogg :{o:-g g gg g E '; é g E
addition of humic acid, a fraction of natural organic matter, could % s § 3 g % % _ &3 g 2 % g Es
significantly enhance the migration of NPs (Dong et al., 2019a). This is SE2SEEg g3 - 3 g E5ER8
because organic matter forms an eco-corona layer (coating) on NP 5 = g g g f) < ; 2 E g E § g LE 3
surfaces, which prevents plastic particles from aggregation (section 3.3) 2 g : g ;‘E g E g E < g é "E E 3
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tion. Song et al. (2019) observed that suspended organic matter in- o é’
creased the stability and mobility of NPs, while dissolved organic Tl s
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dissolved organic matter lowered the electrostatic repulsion between § qé le o 8 % 2 o 8 8 8 o
NPs and the sand, which allowed the attractive forces to be dominant, 8| & & & 8 & 2 2 2 = B & & =
including Van der Waals force, organic polymer bridging, cation brid- g
ging, and electrostatic attraction (from positively-charged minerals). § =3 = o % %

On the one hand, co-existing contaminants/amendments affect the s S E g = ] ., 2 £
mobility of NPs. Addition of biochar in quartz sand or soils resulted in 8 g g <. Ej go 5 8 TZ *E
decreased mobility of NPs, which was due to the formation of hetero- g E 'E E 8 ’§ % =4 *E é‘ 2 3
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other hand, NPs may also affect the migration of heavy metals, organic
molecules and even pathogens such as bacteria and viruses in porous
media. Although no available data is available regarding the co-trans-
port of NPs and heavy metals, it is inferred that weathered NPs may
favor the transport of heavy metals in porous media, since the oxidized
surfaces possess more oxygen-containing functional groups, favoring
the surface complexation between NPs and metal cations (Liu et al.,
2019c). Sorption of dissolved organic matter (DOM) onto NP surface
also promotes heavy metal complexation (section 4.2.2), leading to the
mobilization of heavy metals through NP-metal co-transport. NPs may
interact with organic molecules through various ways, including het-
eroaggregation, hydrophobic interactions and electrostatic interactions.
Dong et al. (2019b) have observed that polystyrene NPs act as a vehicle
for the transport of fullerene (Cgo) through the decrease in {-potential
(formation of NP-Cg, heteroaggregates) (Table 2). Liu et al. (2018) have
noticed that polystyrene NPs could enhance the migration of non-polar
and weakly-polar molecules (e.g., pyrene, 2,2’,4,4’-tetrabromodiphenyl
ether) in soil, while revealing no significant effect on the transport of
polar molecules (e.g., bisphenol A). This is because non-polar and
weakly-polar molecules can be adsorbed in the inner matrices of
polystyrene’s glassy polymeric structure, resulting in physical entrap-
ment of these organic contaminants. Co-transport of NPs and pathogens
in soil threatens human health. With the outbreak of novel coronavirus
(COVID-19/SARS-CoV-2), the presence of human pathogens in en-
vironmental compartments and their potential risks (e.g., groundwater
contamination as a result of soil-water transport, human inhalation due
to soil-air transport) have raised much concern (Niifiez-Delgado, 2020;
Wu et al., 2020b). Limited evidence has shown that the adsorption of
NPs on bacteria facilitates the migration of E. coli through the repelling
effect (Table 2) (He et al., 2018). It is hypothesized that NPs may affect
the mobility of bacteria and virus through various ways. Firstly, sus-
pended NPs in the soil solution repel pathogens from approaching the
soil colloid surface, thus increasing their mobility. In addition, NPs may
adsorb to the pathogen surface, forming a plastic coating that prevents
the formation of large pathogen-pathogen aggregates. NPs may also
compete with pathogens for binding sites on soil colloids directly,
promoting the desorption and migration of bacteria and viruses. More
studies on co-transport of NPs and pathogens are needed before
drawing a clear conclusion how NPs in soil and sand affect the mobility
of bacteria and viruses.

3.3. Weathering and aggregation

The environmental fate of NPs is mainly governed by the weath-
ering and the aggregation processes. Various stressors (environmental
factors), such as the heat, water, UV irradiation, oxidants, micro-
organisms, or the combination of these causes the aging of NPs in the
environment (Lambert and Wagner, 2017). An elevation in temperature
will accelerate the weathering of NPs as per the Arrhenius relationship
(Geburtig et al., 2019). The shear forces of the water cause the me-
chanical fragmentation (physical weathering) of NPs (section 2.2). Ar-
tificial aging using UV and Os co-exposure resulted in much rougher
morphology and more oxygen-containing functional groups (e.g., hy-
droxyl, carbonyl, carboxyl) as compared with pristine NPs (Liu et al.,
2019¢). During this abiotic oxidation process, reactive oxygen species
such as hydroxyl radical (O'H), singlet oxygen (10,) and superoxide
radical ('O, ") induced the chain reactions, which degraded the struc-
ture of NPs. Furthermore, oxygen was introduced to the surface of NPs,
resulting in an increased number of oxygen-containing functional
groups (Liu et al., 2019¢c; Mao et al., 2020; Zhu et al., 2020). Micro-
organisms may also play vital roles in the biological weathering of NPs
(section 2.2) through the colonization (plastisphere, section 4.2.3) and
the utilization of the polymer matrix as a food source (Lambert and
Wagner, 2017; Amaral-Zettler et al., 2020; Roager and Sonnenschein,
2019).

Aggregation is a key issue in understanding the environmental fate
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of NPs. Evidence has shown that NPs can form milli-sized (mm-sized)
aggregates in ecosystems (Wegner et al., 2012). In addition, formation
of heteroaggregates with inorganic colloids or organic matter lead to
either settlement or migration of NPs (Oriekhova and Stoll, 2018; Dong
et al.,, 2019b; Li et al., 2019). In order to describe the aggregation
process of NPs, the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory
(Derjaguin and Landau, 1993; Verwey, 1947) has been widely adopted
by various studies. The DLVO theory proposes that two independent
forces, Van der Waals force (Eq. 11) and the electrostatic double layer
force (Eq. 12) determine the stability of suspended particles (Liu et al.,
2019a; Cai et al., 2018; Gregory, 1975, 1981):

Vr(d) = Viaw (d) + Vear(d) (10$)
2 2
Vi (d) = — A 24 + 22 In d(4a+d)
6 | d(4a+d)  (2a+d)? (2a+d)? an
272,
Vear(d) = _327[€Egk2T_a X tanhz(—zqe¢) x e—xd
q,°z 4KT 12)

where V7 (d) is the total interaction energy, V,q, (d) is the Van der Waals
interaction energy, and V,q (d) represents the electric double layer in-
teraction energy in Eq. (10). The parameters in Eq. (11) are defined as
follows: A is the Hamaker constant for the NP dispersion system, whose
value is dependent on the types of NPs and the aqueous media; a is the
radius of NPs; d is the separation distance between NPs. As for the
parameters in Eq. (12), ¢ is the dielectric constant of aqueous phase; ¢,
is the dielectric constant of vacuum; k is the Boltzman constant; T is the
absolute temperature; q, is the electron charge; z is the charge number;
1 is the surface potential of NPs (assumed to be equall to {-potential); x
is Debye length (Eq. 13):

| 2000N,g21

XK=,/
\‘ ggokT (13)

where N, is the Avogadro constant, I is the ionic strength of the aqueous
phase.

As shown in Eq. (12), an elevation in absolute value of {-potential
(%) will lead to enhanced repulsive energy (V.4 (d)) and total interac-
tion energy (Vr(d)), making it more difficult for NPs to form aggregates.
Conversely, a reduction in || favors the aggregation process.

The DLVO theory is crucial for the comprehension of the environ-
mental factors that affect the aggregation process. Experimental results
have confirmed that this theory is suitable for NP dispersion systems.
Various environmental factors including pH, ion strength, natural mi-
nerals and organic matter play vital roles in NP aggregation. Liu et al.
(2019a) and Mao et al. (2020) observed that the negatively charged
surfaces of polystyrene NPs possessed more negative {-potentials with
the increase of solution pH. This resulted in an elevation in 1|, making
NPs more stable according to DLVO theory. However, if the surface of
NPs were positively charged at low pH conditions, an increase in so-
lution pH may result in the aggregation due to a decrease in li| value
(Ramirez et al., 2019). Inorganic ions also affect the aggregation pro-
cess through changing the ionic strength of the solution. Higher con-
centrations of inorganic ions result in reduced V,4(d), favoring the
aggregation of NPs (Wu et al., 2020a; Li et al., 2019; Cai et al., 2018).
Natural minerals such as clay tends to form heteroaggregates with NPs
due to electrostatic interactions (Singh et al., 2019). Natural organic
matter protects NPs from aggregation by elevating the li)| value (due to
the formation of eco-corona) (Ramirez et al., 2019; Saavedra et al.,
2019). However, Yu et al. (2019) suggested that if the concentration of
organic matter is high enough (to enable the existence of un-adsorbed
free organic matters in the system), the co-existence of natural organic
matter and inorganic ions may lead to the “bridging effect”. Inorganic
metal cations (e.g., Ca®™) could bridge oxygen-containing groups of
both NPs and the organic matter, resulting in heteroaggregation.

The conventional DLVO theory can be adapted to describe NP
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interactions in more complicated systems (e.g., soil). Liu et al. (2019¢)
adopted an extended DLVO theory to assess the interaction energy of
NPs in porous media. Total NPs-soil interaction energy takes three
forces into account: Van der Waals force, electrostatic double layer
force, and the hydrophobic effect (described by the Lewis acid-base
interaction). According to the theoretical calculations, aged NPs are
likely to possess higher primary energy barrier, making them less likely
to form aggregates. The theoretical calculation aligned with the ex-
perimental findings, that aged NPs have higher mobility in saturated
porous media. Mao et al. (2020) assessed the aggregation behavior of
NPs in the presence of extracellular polymeric substances (EPS) pro-
duced by microorganisms during biofilm formation on NPs. To better
understand the role of EPS in the aqueous media, steric repulsion was
incorporated in conventional DLVO theory. The energy barrier was
higher in solutions with EPS, which was consistent with the finding that
EPS inhibited the aggregation of NPs through steric effects.

Understanding the aggregation behavior of NPs is critical for the
assessment of environmental fate of NPs. However, current studies
mainly focus on the spherical synthetic NPs, rather than naturally aged
NPs with diverse shapes. The conventional DLVO theory is based on the
“spherical” assumption, so modifications must be made when it comes
to non-sphere nanoplastic particles.

4. Toxic effects on organisms
4.1. Toxic effects of NPs

4.1.1. Organisms in terrestrial ecosystems

Evidence has shown that NPs affect the soil microbiome. The ac-
tivities of enzymes involved in C, N and P cycles (i.e., leucine-amino-
peptidase, alkaline phosphatase,f-glucosidase and cellobiohydrolase)
can be suppressed after polystyrene NPs addition (0.1-1 mg/kg) (Awet
et al., 2018). Zhu et al. (2018) also observed a decrease in activities of
key biomes dominating the nitrogen cycling. After feeding the soil
oligochaete Enchytraeus crypticus with polystyrene NPs-added oatmeal
(10 wt. %), relative abundance of Xanthobacteraceae, Isosphaeraceae
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and Rhizobiaceae in gut decreased significantly. Kim et al. (2020) ob-
served the toxic effect of polystyrene NPs (530 nm) on nematode Cae-
norhabditis elegans. The number of offsprings decreased significantly
(p < 0.05) when the NPs concentration reached 10 mg/kg. However,
most of these studies have neglected the effects of soil properties on NP
toxicity. Adsorption of NPs by soil organic matter, the oxidation of NPs
induced by organic acids (e.g., root exudates), and the interactions with
soil minerals may affect the bioavailability and toxicity of NPs.

Apart from the toxicity to microorganisms, NPs can also affect plant
growth. NPs can be taken up and sequestered by root (Fig. 3b, ¢, d), and
even translocated to aboveground tissues (Fig. 3a). Larger NPs can be
accumulated in the cytoplasm (Fig. 3c), while smaller ones (~ 30 nm)
may even enter the nucleus (Fig. 3d), interfering with chromatin
structure and function. In this way NPs may induce genotoxic effects
(cytogenetic anomalies and micronuclei) (Giorgetti et al., 2020). The
internalization of NPs in various cellular compartments resulted in re-
duced root growth of onion (Giorgetti et al., 2020). Interestingly, in-
ternalization of NPs may also have positive effects on plant growth.
After exposure to polystyrene NPs (0.01-10 mg/L), root elongation of
Triticum aestivum L. (wheat) was significantly (p < 0.01) enhanced by
89 %-123 %, as compared with the control (Lian et al., 2020). Besides,
increases in plant biomass, carbon and nitrogen contents were ob-
served. NPs exposure resulted in enhanced growth of wheat seedlings
without any overt stress. This was probably because polystyrene NPs
increased the activity of a-amylase as a nanocatalyst, thus accelerating
the production of soluble sugars from the starch granules (Lian et al.,
2020). However, NPs were also found to accumulate in wheat tissues
(Fig. 3a, b), indicating a potential threat to higher trophic levels along
the food chain. The contradictory effects of NPs on plants as observed
by current studies may stem either from the soil properties or the plant
characteristics, and deserves further investigations.

4.1.2. Organisms in aquatic ecosystems

Ecotoxicity of MPs and NPs in the marine environment have been
extensively investigated and reviewed (Barria et al., 2020; Peng et al.,
2020; Ganesh Kumar et al., 2020; Shen et al., 2019a). NPs can affect

Fig. 3. Accumulation of polystyrene NPs in
plant tissues: (a) wheat leaves after 10 mg/L
NPs treatment (Lian et al., 2020); (b) wheat
roots after 10 mg/L NPs treatment (Lian et al.,
2020); (c) onion root cell after 100 mg/L NPs
treatment, NPs were observed in the cyto-
plasm. M, mitochondria; N, nucleus (Giorgetti
et al., 2020); (d) onion root cell after 1000 mg/
L NPs treatment, NPs were observed in the
nucleus. CR, chromatin (Giorgetti et al., 2020).
All images are reproduced with permission.
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organisms from various trophic levels, including bacteria (Sun et al.,
2018a), algae (Bhargava et al., 2018), arthropods (Zhang et al., 2020b),
echinoderms (Della Torre et al., 2014), bivalves (Baudrimont et al.,
2019), rotifers (Manfra et al., 2017) and fish (Brun et al., 2019).
Bioaccumulation of NPs in tissues (Pitt et al., 2018), effects of NPs on
growth and reproduction (Liu et al., 2020), NP-induced damages to
immune system (Bergami et al., 2019), neurotoxicity (Sokmen et al.,
2020) and alterations on metabolism pathways (especially the lipid
metabolism) (Brandts et al., 2018) are several major concerns in this
field. A comprehensive review and detailed discussion on the toxic ef-
fects of NPs on marine organisms is provided elsewhere (Barria et al.,
2020; Peng et al., 2020).

Current research regarding NPs in aquatic ecosystems mainly fo-
cuses on marine ecosystems. However, freshwater ecosystems are able
to transport and accumulate large quantities of NPs as well. Several
studies have investigated the toxic effects of NPs on freshwater aquatic
organisms. Cui et al. (2017) observed that polystyrene NPs (52 nm, 5
mg/L) caused abnormal embryonic development and inhibited re-
production of Daphnia galeata, a freshwater crustacean. van Weert et al.
(2019) examined the effects of polystyrene NPs (50-190 nm, up to 3 wt.
% addition in the sediment, 21 days) on the growth of macrophytes
Myriophyllum spicatum and Elodea sp.. A significant increase in root
biomass was observed (p < 0.05 for both plants), but the reason for this
phenomenon remains unclear. It is hypothesized that sorption of NPs
onto root surface hampered the uptake of nutrients. To overcome this
stress, the macrophytes increased the root biomass by increasing the
root length, root diameter and the number of roots for the better uptake
and transport of essential nutrients. Apart from potential physical
blockage caused by adsorption, NPs can also affect the reproduction of
aquatic plants. Exposure to polystyrene NPs (98 nm, 0-100 mg/L in
artificial freshwater, 9 days) resulted in sex differentiation in gameto-
phytes of an endangered fern, Ceratopteris pteridoides (Yuan et al.,
2019). Due to environmental stress induced by NPs, an increase in male
gametophytes were observed, which will cause drastic consequences for
the reproductive success.

4.1.3. Human beings
Inhalation, dermal exposure and ingestion are potential exposure
pathways of NPs (Fig. 4). Inhalation of NP-containing aerosols and the

Atmospheric fallout

Contaminated food
and drink

Skin penetration?

Sea salt aerosols
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penetration of NPs into the capillary blood system enable this nano-
sized contaminant to distribute throughout the human body (Lim et al.,
2019). Evidence has shown that atmospheric fallout is a potential
source of MPs and NPs (Prata, 2018), but there is no available data
concerning the concentration of airborne NPs. (Wright and Kelly
(2017)) suggested that sea salt aerosols, wind-driven transport of NPs
from sludge fertilizers, release of NPs from clothes, and the degradation
of agricultural PE sheets are potential sources of NPs in the air. Particle
size and concentrations determine the toxicity of airborne NPs, and
more studies should examine the potential health risks associated with
inhalation of NPs.

The potential contact of NPs with human skin occurs through the
exposure to contaminated air or water, or the use of personal care
products. There is some doubt whether NPs can penetrate the human
skin. Stratum corneum acts as a physical barrier of the skin. Besides, the
hydrophobic characteristic makes it hard for NPs to penetrate through
skin in water (Lehner et al., 2019). Campbell et al. (2012) found that
polystyrene NPs with diameters ranging from 20 to 200 nm could only
penetrate to a depth of 2-3 pm of the stratum corneum. However, ex-
ploitation of ingredients in personal care products may favor the pe-
netration of NPs. Extrapolation of results from other nanoparticles may
provide fresh insights into this topic. Evidence has shown that in-
gredients in skin care lotions (i.e., glycerol, urea and alpha hydroxyl
acids) enhance the penetration of quantum dot nanoparticles (20.9 nm)
into excised human skin (Jatana et al., 2016). Although the surface
chemistry of nanoplastics and other nanoparticles (e.g., quantum dot,
metal oxide nanoparticles) may be different, the penetration of NPs is
highly dependent on the particle size, so the results from nanoparticles
may provide useful information on the penetration of NPs with similar
sizes. In general, skin penetration may contribute to the human intake
of NPs, but more direct evidences are needed.

Ingestion of contaminated food and water is probably the major
exposure pathway of NPs. The gastrointestinal (GI) tract, with a large
surface area of approximately 32 m? (Helander and Findriks, 2014), is
the primary site for the uptake of NPs (Fig. 4). NPs may cross intestinal
villi and enter the blood vessel, and the formation of protein-plastic
complex (so-called protein corona) is confirmed by in vitro studies
(Gopinath et al., 2019). This phenomenon is critical to the toxicity of
NPs in organisms, since the interactions between tissues and organs

Nanoplastics

Inhalation
#| , Alveolus

Blood vessel

Intostinal villi

Ingestion

Fig. 4. Human exposure pathways of NPs. Blue — inhalation; red — ingestion; black — dermal.



L. Wang, et al.

occur with protein-coated, rather than bare NPs (Lehner et al., 2019).
Results from an in vitro study of human blood cells indicate that protein-
coated NPs can cause higher cytotoxic and genotoxic effect compared
with virgin NPs (Gopinath et al., 2019). This is probably because the
formation of biomolecular corona on the surface of NPs helps them
escape from the immune system, resulting in prolonged existence in the
circulation system. The binding mechanism of protein corona with NP
is not well understood, but it is believed that non-specific physical at-
traction (i.e., Van der Waals force), hydrogen bond, and delocalized =t
bond contribute to the formation of this protein-plastic complex
(Gopinath et al., 2019; Treuel et al., 2014).

A limited number of rodent in vivo and human in vitro studies have
shown that NPs can have adverse effects on the immune system. Toxic
effects of NPs on human cells include induced up-regulation of cyto-
kines involved in gastric pathologies (Forte et al., 2016), disruption of
iron transport (Mahler et al, 2012), induction of apoptosis
(Inkielewicz-Stepniak et al., 2018), endoplasmic reticulum stress (Chiu
et al., 2015) and oxidative stress (Ruenraroengsak and Tetley, 2015).
One feasible way for the better understanding of NPs’ toxicology is the
extrapolations from nanoparticles. However, Bouwmeester et al. (2015)
suggested that the extrapolation of information on nanoparticles to
nanoplastics should be conducted with care, since NPs possess evidently
different surface chemistry. For further information regarding the tox-
icology and the feasibility of extrapolation, we refer readers to Lehner
et al. (2019) and Bouwmeester et al. (2015).

4.2. Toxic effects of pollutants retained onto NPs

Due to the large specific surface area of NPs, various contaminants
such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydro-
carbons (PAHs), and heavy metals can be sorbed on their surfaces
(Bradney et al., 2019). The ability of contaminant sorption on NPs can
be described using a sorption coefficient (Endo and Koelmans, 2019)
(Eq. 14):

Kpw = c,, 14
where Kp, is the sorption coefficient, C, and C,, refer to the con-
centrations of contaminants in plastic and aqueous media, respectively
(at equilibrium). The sorption coefficient is crucial for the under-
standing of sorption and desorption behaviors of contaminants. If the
actual C,/C,, ratio is below Kp,,, adsorption occurs. If the C,/C,, ratio is
above K, desorption takes place. If the C,/C,, ratio falls equal to K,
the adsorption-desorption system reaches equilibrium. Equilibrium can
occur in natural conditions (Endo and Koelmans, 2019). For instance, in
marine ecosystems, sorption of contaminants to floating NPs may
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proceed till equilibrium, since the contaminant concentration is rela-
tively stable over time. However, in a wastewater treatment facility,
sorption equilibrium is less likely to occur, since contaminant con-
centrations fluctuate with time.

Understanding the sorption behavior of NPs is quite crucial in as-
sessing the toxicity of various contaminants. Organisms accumulate
contaminants via various pathways (Fig. 5), including the direct uptake
of free available contaminants and the uptake of NP-adsorbed con-
taminants. It is noteworthy that contaminants can either desorb from or
still attach to NPs after bioaccumulation (Jiang et al., 2019; Chen et al.,
2017). Results from toxicological research on MPs (Alimi et al., 2018;
Ding et al., 2020) and nanoparticles (Deng et al., 2017; Zhang et al.,
2017a) can be extrapolated to propose several potential mechanisms.
Firstly, higher specific surface areas of aged NPs favor the contaminant
adsorption, which may decrease the biological uptake of desorbed
contaminants. Secondly, the increase in polarity of NPs (e.g., in-
troduction of carbonyl groups) during photo-oxidation may elevate the
risks of NP-associated non-polar organic contaminants, while de-
creasing the risks of heavy metals (as a result of enhanced surface
complexation). Furthermore, the hydrophobicity of contaminant itself
affects the toxicity, since hydrophilic contaminants are more likely to
be desorbed from NPs after uptake. As has been discussed above, the
sorption coefficient plays a vital role in adsorption-desorption of na-
noparticles. However, this parameter is often neglected. Before in-
vestigations on the toxicity of attached contaminants, it is necessary to
conduct sorption experiments to further examine in which form con-
taminants are accumulated.

4.2.1. Organic contaminants

Discrepancy exists whether NPs can make organic contaminants
more toxic (Table 3). Several studies have found that toxicity can be
greatly enhanced due to the high adsorption capacity towards hydro-
phobic organic contaminants such as polychlorinated biphenyls (PCBs)
(Jiang et al., 2018) and bisphenol A (Chen et al., 2017). Enhanced
adsorption may result in enhanced bioaccumulation. For instance, Chen
et al. (2017) found that polystyrene NPs enhanced the bioaccumulation
of bisphenol A in head and viscera of zebrafish, which may stem from
the enhanced uptake of NP-adsorbed form. Ma et al. (2016) observed
that phenanthrene and polystyrene NPs revealed an additive toxic effect
on Daphnia magna. However, other studies have observed a reverse
trend, that enhanced adsorption resulted in reduced toxicity. Trevisan
et al. (2019) noticed that a decrease in PAHs bioaccumulation with the
presence of NPs resulted in reduced toxicity to zebrafish. Zhang, Qu, Lu,
Ke, Zhu, Zhang, Zhang, Du, Pan, Sun and Qian (Zhang et al., 2018)
observed that amino-modified polystyrene nanoparticles could alleviate
the toxic effect of glyphosate on Microcystis aeruginosa through

Toxicity

( NP concentration

NP size
=C */C *¢
p w

Organism type

\ Hydrophobicity/polarity

Fig. 5. Factors determining the toxicity of contaminants attached onto NPs. Organisms may either uptake free-available contaminants directly, or uptake NP-
adsorbed contaminants. The sorption coefficient, K, is critical for the understanding of adsorption-desorption. The toxicity of NP-attached contaminants are mainly
affected by the size and concentration of NPs, whilst the toxicity is also dependent on the species and the contaminant hydrophobicity/polarity.
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Table 3

Toxicology of organic contaminants attached to NPs.

Reference

Key findings

Toxic effects

Organism

NP concentration

(mg/L)

NP size

NP type

Contaminant

(nm)

(Chen et al.,
2017)

Enhance the accumulation of Bisphenol A in head and

viscera by 2.2, 2.6 folds, respectively

Neurotoxicity

Zebrafish

50

Polystyrene

Bisphenol A

(Jeong et al.,

2018)

Inhibit the membrane defense of organic contaminants

Generate oxidative stress

Marine rotifer
Brachionus koreanus

10

50

Polystyrene

2,2,4,4 -tetrabromodiphenyl ether and

(inhibit the activities of multidrug resistance proteins and

P-glycoproteins)

triclosan

(Jiang et al.,
2018)

Enhance the accumulation of PCBs by 1.4-2.6 folds

Lethal

Daphnia magna

2, 5,10, 20

100

Polystyrene

Polychlorinated biphenyls (PCBs)

(Jiang et al.,
2019)

NPs at environment relevant concentrations (0.4 mg/L)

contributed little to bioaccumulation of PAHs

Lethal

Clamworm Perinereis

aibuhitensis
Daphnia magna

0.4

568

Polystyrene

Polycyclic aromatic hydrocarbons

(PAHs)
Polychlorinated biphenyls (PCBs)

(Lin et al., 2019)

Low NP concentration (1 mg/L) decreased the lethality,
while high NP concentration (75 mg/L) increased the

1, 5, 10, 20, 50, 75 Lethal
lethality

100

Polystyrene

(Ma et al., 2020b)

(Ma et al., 2016)

The number of antibiotics resistance genes increased

Not investigated

Enchytraeus crypticus*

Daphnia magna

1000 mg/kg

50 - 100

50

Polystyrene

Tetracycline

The toxicity of NP and phenanthrene showed an additive

effect

Physical damage, lethal

25,5, 8.5, 11, 145

Polystyrene

Phenanthrene

(Trevisan et al.,
2019)

NP decreased the toxicity of PAHs but impared

mitochondrial energy production

Impair mitochondrial
energy production

Zebrafish

10

45

Polystyrene

Polycyclic aromatic hydrocarbons

(PAHs)
Glyphosate

(Zhang et al.,
2018)

NP has a strong adsorption capacity for glyphosate,

alleviating the toxic effect of glyphosate

Inhibit photosynthetic

capacity

Microcystis aeruginosa

200 3,5, 10, 20

Amino-modified
polystyrene

Note: *Organisms in terrestrial ecosystems.
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adsorption.

Several reasons may account for this discrepancy (Fig. 5). Con-
centration of NPs affects the sorption process greatly. For instance,
when NP concentration is very low (i.e., 0.4 mg/L), NP-adsorbed
pyrene accounted for less than 1% of the total pyrene bioaccumulation
in Perinereis aibuhitensis (Jiang et al., 2019). Pyrene is mostly free
available in this case, so NPs had little effect on its toxicity. Besides, the
particle size of NPs affects the number of available sorption sites, thus
affecting the sorption coefficient. For instance, Velzeboer et al. (2014)
found that NPs enhanced PCBs sorption by 1-2 orders of magnitude as
compared with MPs. In addition, toxicity of certain contaminants is
species-dependent (Halm-Lemeille et al., 2014; Luzardo et al., 2014), so
the selection of different species may result in varied results. Variance
in hydrophobicity/polarity of organic contaminants also results in dif-
ferent sorption capacities. Hydrophobic organic contaminants tend to
adsorb onto NPs (K, > 1), indicating that an enrichment in plastic
phase rather than aqueous phase will occur. Polarity affects the ad-
sorption mechanisms. Polar compounds bind with NPs through surface
adsorption, while non-polar/weakly polar compounds tend to adsorb in
the inner matrices of NPs (physical entrapment) (Liu et al., 2018). This
may lead to the variance in bioavailability and mobility.

As shown in Table 3, most of the studies used organisms living in
aquatic ecosystems (e.g., zebrafish, Daphnia magna, clamworm). To
date, the toxic effects of NP-attached contaminants on terrestrial eco-
systems have not been fully investigated. Limited evidence have shown
that NP-attached contaminants affects soil microbiome (Ma et al.,
2020Db). Several other challenges and future directions in this field are
discussed in section 6.

4.2.2. Heavy metals

Unlike organic contaminants, heavy metals cannot be degraded,
rendering wide distribution due to both natural and anthropogenic
sources (O’Connor et al., 2020; Hou et al., 2020). Bioaccumulation of
toxic metals along the food chain poses a severe threat to human health
(Butt et al., 2018; Tian et al., 2020; Wang et al., 2020a, 2019). How-
ever, the toxicity of NP-adsorbed heavy metals is poorly investigated.
As has been discussed above, explorations in adsorption behavior of
NPs provides useful information on the potential risks of bioaccumu-
lation. Davranche et al. (2019) examined the metal binding ability of
NPs. NPs (hydrodynamic diameter 150-450 nm) were produced by the
sonication of MPs (collected on the beach), and Pb(II) was selected as
the target contaminant. Pb(II) sorption fitted the pseudo-second order
kinetic model, indicating that chemical reactions rather than in-
traparticle diffusion were the rate-limiting step. NPs were proven to be
strong adsorbents, with similar Freundlich adsorption constant com-
pared to Fe oxyhydroxides. It is suggested that more studies should be
conducted to further assess the toxic effects of NP-adsorbed metals on
organisms.

Pristine particulate plastics with high hydrophobicity have a lower
likelihood of interacting with heavy metals when compared to parti-
culate plastic-DOM assemblages. In the latter case, there is greater in-
teraction and increased retention of trace elements. For example,
Wijesekara et al. (2018) identified the adsorption of heavy metals (i.e.,
Cu) onto particulate plastics that had modified surfaces due to DOM
adsorption. The findings implied that modified particulate plastics ad-
sorbed significantly greater concentrations of Cu than pristine parti-
culate plastics, possibly due to the introduction of oxygen-containing
functional groups (enhance surface complexation). Furthermore, long
term pre-modification (e.g., photooxidation and attrition of charged
materials) that contributes to aging of plastics causes these aged par-
ticles to have a great metal sorption capacity.

4.2.3. Potential carrier of pathogens

Previous studies indicate that many bacteria can attach/grow on
various plastics surface in either aquatic environment or ambient con-
ditions. The concept of “plastisphere” was proposed based on
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observation that plastics function as habitats and are rapidly colonized
by marine microorganisms (Amaral-Zettler et al., 2020; Zettler et al.,
2013; Kirstein et al., 2019). The plastisphere is the layer of microbial
life that forms around every piece of floating plastic. Plastics may not
only serve as a novel microhabitat for biofilm colonization, but also
increase the likelihood of pathogens propagating. Evidence has shown
that floating plastics in aquatic ecosystems can act as vectors (a means
of transport) for pathogens such as Vibrio (Zettler et al., 2013) and
Pseudomonas (Wu et al., 2019). A study by Huang et al. (2019) even
observed the enrichment of potential human pathogens Nocardiaceae,
Campylobacteraceae and Vibrio in soil as a result of LDPE film applica-
tion. Apart from the selective enrichment of pathogens, the abundance
of antibiotic resistance gene (ARG) may also increase within the plas-
tisphere. Wu et al. (2019) found that the ARG abundance of the plastic
biofilm was 3-fold higher than that of the river water samples, in-
dicating the enrichment of ARGs by the plastisphere. Wang et al.
(2020b) noticed that the adsorption of antibiotics lead to a significant
shift in ARGs (i.e., sull, tetX and ermE) on PE plastics. In addition,
plastics in the soil may also increase the abundance and act as a sink of
ARGs, affecting soil health in the long term (Lu et al., 2020; Sun et al.,
2018b).

Recently, a study on COVID-19 on contaminated surfaces and in
aerosols suggests that people may acquire the coronavirus through the
air and after touching contaminated objects. The virus was detectable
for up to three hours in aerosols, up to four hours on copper, up to 24 h
on cardboard and up to two to three days on plastic and stainless steel
(van Doremalen et al., 2020). This has raised a question about potential
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risk of air-borne disease by coronavirus and flu virus via plastic MPs
and NPs in polluted air.

5. Risk assessment and mitigation
5.1. Nanoplastics, ecosystems and human society - a DPSIR framework

It does take scientists decades to develop the concept of NPs in-
evitably, because there’s adequate evidence indicating that plastic
substances do break into NPs and remain well detectable all around the
environment (Waring et al., 2018), and reluctantly, because their more
widespread distribution and harder isolation methods compared with
MPs (Hernandez et al., 2017; Revel et al., 2018) will have led to
somehow severer threats on living creatures, human society and even
the whole ecosystem. To better understand the risk associated with NPs,
a DPSIR (driving forces — pressures — states — impacts — responses)
framework can be adopted (Fig. 6). Due to the increase in population
and economic growth, global demand of plastic products keeps
growing, leading to greater plastic waste generation (driving forces).
This has led to the release of MPs and NPs from various land-based or
sea-based sources of plastic waste input (pressures) (section 3.1). After
entering the environment, NPs undergo aging, aggregation and migra-
tion processes. For terrestrial ecosystems, soil act as a major sink of NPs,
whilst a number of plastic particles will enter the aquatic systems and
end up in river or lake sediments, or in the ocean (state). The presence
of NPs in the environment may pose risks to both terrestrial (section
4.1.1) and aquatic organisms (section 4.1.2). NPs may also threat the

Fig. 6. A DPSIR framework for the risk
assessment of NPs. The growing de-

e 1 mand of plastic products as a result of

the increase in population and eco-
nomic growth is the driving force. This
has led to the release of MPs and NPs
from various land-based or sea-based
sources of plastic waste input (pres-
sures). After entering the environment,
NPs undergo aging, aggregation and
migration processes. NPs in the terres-
trial ecosystems may end up in soils,
and some of them will be bioaccumu-
lated by plants or migrate to the
groundwater. A number of plastic par-
ticles will enter the aquatic systems and
end up in river or lake sediments, or in
the ocean (states). The presence of NPs
in the environment may pose risks to
both terrestrial and aquatic organisms.
| NPs may also threat the human health
through the food chain, or via direct
inhalation and dermal exposure (im-
pacts). It is therefore necessary to seek
for risk mitigation strategies in re-
sponse to NP contamination, including
the development of novel remediation
strategies, the establishment of po-
licies, and the enhancement of en-
vironmental education (responses).
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human health through the food chain, or through direct inhalation and
dermal exposure (section 4.1.3) (impacts). It is therefore necessary to
seek for risk mitigation strategies in response to NP contamination
(responses), which will be discussed in the following section.

5.2. Risk mitigation strategies

Due to the substantial gap of knowledge regarding NPs (e.g., their
amount in the environment, environmental behaviors, exposure path-
ways), challenges remain in the risk assessment of NPs. To better un-
derstand the risks associated with NPs, substantial scientific efforts are
imminent. The first step, however, is the acquisition of robust data on
exposure in marine, freshwater and terrestrial settings (Wagner and
Reemtsma, 2019). Currently they are very limited due to the lack of
precise analytical approaches (section 2.1), so the environmental con-
centrations of NPs are only estimates (Schwaferts et al., 2019; Wagner
and Reemtsma, 2019). For further information regarding the risk as-
sessment of NPs, readers are referred to Alexy et al. (2020) and Pinto da
Costa et al. (2019), who have provided comprehensive overviews on
this topic.

Solutions to NP pollution basically lie in the following aspects: 1)
development of novel remediation technologies, 2) policy making and
3) public awareness (Fig. 7). Although little effort has been made re-
garding the remediation strategies of NPs, several possible directions
have been proposed by present studies. Biotechnology advances make it
possible to gradually replace conventional non-biodegradable plastic
products by biodegradable ones (Silva et al., 2018), while special en-
zymes, bacteria and fungi that are capable of degrading plastics can be
introduced to promote the disposal process (Pico et al., 2019). The
biodegradation process can be divided into three stages (Tosin et al.,
2019; Lucas et al., 2008):

Stage 1: depolymerization of plastics into monomers or oligomers.
This process, which is induced by extracellular enzymes, takes place
outside the microorganisms.

Stage 2: assimilation of monomers and oligomers. The depolymer-
ized products enter the cell, and become part of the living biomass of
microorganisms through metabolism.

Stage 3: mineralization. The assimilated plastic metabolites will be
oxidized, forming CO, and H,O.

To prevent NP from entering the aquatic ecosystems, the most ef-
fective engineering technology is to remove NPs in a wastewater
treatment facility. Pre-treatment strategies including density separation
and coagulation as well as membrane separation have proven effective
for the removal of MPs in drinking water, but their ability to remove
NPs should be further examined (Enfrin et al., 2019). As has been
discussed in section 3.3, aggregation and settlement is an important
phenomenon determining the environmental fate of NPs. Future studies
may rely on the pH control, and the addition of inorganic or organic
matters to enhance the aggregation of NPs in a wastewater treatment
process, leading to effective removal of NP. Very limited research ex-
amined the risk mitigation strategies of NPs in terrestrial ecosystems.
Available literature suggests that addition of soil amendments (e.g.,

Journal of Hazardous Materials 401 (2021) 123415

biochar) could reduce the migration of NPs in porous media, thus mi-
tigating the risks through retention/stabilization (Tong et al., 2020a). It
is herein proposed that remediation strategies towards other con-
taminants can be further extrapolated to NPs. For instance, addition of
“green” remediation materials, such as engineered biochar (Wang et al.,
2020c; Rajapaksha et al., 2016) and clay minerals (Simoes et al., 2011;
Zhang et al., 2017b), have proven effective for the immobilization or-
ganic contaminants in soil. Considering the organic polymeric nature of
NPs, the mechanisms involved in organic contaminant immobilization
and NPs retention may be quite similar (e.g., 5t-;t interactions, hydrogen
bonding). Therefore, successful attempts in organic contaminant sta-
bilization may shed light on the remediation of NPs in terrestrial sys-
tems (especially the soil).

Policy making is the most efficient and reliable way to keep NPs-
related risks under control, yet one should always keep in mind that a
policy can only be promulgated after its effects have been carefully
assessed (da Costa, 2018). In practice, evidence-based policies are able
to tackle the problems caused by NPs in the whole life cycle, such as the
US Microbead-Free Waters Act (acting on the source) (the 114th United
States Congress, 2015), the Packaging and Packaging Waste Directive (94/
62/EC) (acting on the using stage) (European Commission, 1994), and
the Directive on the Landfill of Waste (1999/31/EC) (acting on the dis-
posal stage) (European Commission, 1999). Regarding the fact that
attention to emerging contaminants by policy makers often peak a few
years later than scientific attention (Halden, 2015), more interactions
between policy makers and researchers are encouraged to bring useful
findings into practice as soon as possible.

Since plastic products are an essential part in daily life, raising
public awareness of the NPs could be a feasible and advantageous so-
lution to manage the potential risks of NPs. As could be expected, this
particular aspect is fundamental but inefficient, as it usually takes
months or years to alter people’s thoughts and attitudes, not to mention
that such process ought to be supported by concrete scientific evidence
(van der Linden et al., 2015).

6. Final considerations
6.1. From the ocean to the total environment

Although research on marine plastics remains at the forefront, re-
searchers have begun to address the concern of NPs in other ecosys-
tems. The largest gap in current research is the understanding of the
environmental behavior and ecologic impacts of NPs in terrestrial sys-
tems. Due to the lack of available information regarding the con-
centrations, migration characteristics, bioaccumulation risks and toxic
effects of NP particles, it is hard to assess whether these tiny particles
will affect the well-being of terrestrial ecosystems. As discussed in
section 3.2, migration of NPs in porous media (e.g., soil, sediment and
sand) have been investigated by recent studies. However, it is argued
that most of these studies have neglected the role of natural forces (such
as rainfall, freeze-thaw, etc.) on NP migration, with only one exception
that considered the rainfall process (Keller et al., 2020). Besides, NPs
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may even enter the groundwater through vertical colloidal migration,
which has been neglected by most studies (O’Connor et al., 2019). Al-
though several attempts have been made to explore the bioaccumula-
tion of polystyrene NPs by microorganisms and plants, controversy still
exists whether NP particles can induce toxic effects on organisms living
in terrestrial systems. Some studies even observed that the presence of
NPs can enhance the plant growth, but the mechanisms involved in this
process remain unknown (Lian et al., 2020). Future explorations on the
effects of NPs on the agroecosystem should be given higher priority,
since it is very likely that soil may act as a long-term sink for NPs and
that NPs in crop tissues may be ingested, threatening the food safety in
the long run (Ng et al., 2018; Rillig et al., 2017).

Although information from marine plastic studies can be extra-
polated to freshwater to some extent, researchers should bear in mind
that NPs in freshwater will cause threats to the environment in their
unique ways. For instance, apart from toxic effects on microorganisms
and fish, NPs may affect the growth and reproduction of aquatic plant
species as well (Yuan et al., 2019). In freshwater systems, a shift in ionic
strength and dissolved organic matter content will result in distinct
aggregation behaviors of NPs, which may affect the sedimentation
process greatly. In addition, given the lack of terrestrial studies to date,
current knowledge on the freshwater systems, especially the migration
characteristics of NPs in the sediment and the phytotoxicity of NPs, may
be helpful to infer the environmental behavior and toxicology of NPs in
the terrestrial ecosystems.

It is widely acknowledged that NPs are widely spread in the hy-
drosphere, but research on the presence, transport and toxicity of NPs
in the atmosphere are scarce. Evidence is mounting that inhalation of
airborne particles containing NPs can induce toxic effects on human
lung cells (Lim et al., 2019; Lehner et al., 2019; Paget et al., 2015;
Deville et al., 2015), but the origins and the concentrations of NPs in
the air remain unknown. MPs have been detected in the atmosphere of
urban (Dris et al., 2015; Klein and Fischer, 2019) and even remote
mountain areas as a result of long-range transport (Allen et al., 2019;
Zhang et al., 2019b). Moreover, airborne plastic particles will enter
terrestrial and aquatic systems through deposition (Mbachu et al.,
2020; Wright et al., 2020; Zhang et al., 2020c). The atmosphere may
also serve as a “superhighway” for NPs. Future research on the airborne
NPs is desperately needed.

6.2. From polystyrene to other plastic types

According to the literature reviewed, the most frequently used na-
noplastic particle is the polystyrene (PS). However, this is not consistent
with the global plastic demand. It is estimated that the polyethylene
(PE), polypropylene (PP) and polyvinyl chloride (PVC) hold sig-
nificantly higher proportion of annual plastic production (29.7 %, 19.3
% and 10 %, respectively) as compared with polystyrene (PS), which
only accounts for 6% (PlasticsEurope, 2019). Considering the fact that
various types of NPs possess distinct physicochemical properties (i.e.,
functional groups, polarity, hydrophobicity, etc.), it is doubtful whether
these studies can reveal the environmental fate and toxicology of na-
noplastics from a wide range of polymers used for plastic manufacture.
For instance, plastic mulching is a widely-adopted technique to pro-
mote agricultural production in many countries (Ng et al., 2018; Qi
et al., 2020). It is estimated that plastic mulch film covers over 20
million hectares of farmland in China, which is a dominant source of
NPs in the agroecosystem (Liu et al., 2014). However, plastic mulch
films are mainly made of PE rather than PS. When it comes to the
migration and bioaccumulation characteristics of plastic particles in the
farmland soil, extrapolating the results from PS NPs is somehow in-
appropriate, and can be misleading to some extent. Besides, PE mulch
films usually contain considerable amounts of phthalate esters (PAEs)
that can be released into soil. Current studies have failed to assess the
toxic effects of these additives.
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6.3. From synthetic to naturally weathered NPs

As has been discussed above, commercially-available synthetic
polystyrene spheres may not reveal the real biogeochemical processes
of NPs derived from plastic debris. Once released into the environment,
plastic debris undergoes the weathering process. Mechanical forces
(e.g., wave and current), biodegradation and photodegradation result in
the fragmentation of plastic particles and a shift in physicochemical
properties. Only a few studies have investigated the aging process of
NPs, and used naturally weathered NPs for the analysis of migration
characteristics (section 3.3). Although the collection of tiny plastic
particles with low concentrations from the environment is not readily
possible, future studies should try to simulate real occurrences to pro-
vide more useful results. Artificial weathering and fragmentation of
natural macro plastic debris is a feasible way to simulate the physico-
chemical properties of natural NPs, and adopting these NPs in future
studies may provide much more useful information on the environ-
mental fate of this kind of emerging contaminant. For instance, Astner
et al. (2019) developed a procedure to produce NPs from a PE mulch
film. After the fragmentation with mechanical milling and wet grinding,
the resulting NPs (< 400 nm) could be used in environmental studies to
simulate the environmental behaviors of the “natural” PE NPs.

6.4. From unrealistic systems to environmentally-relevant conditions

High concentrations of NPs (i.e., mg/L) have been adopted by most
studies to assess the environmental fate and toxic effects of NPs.
However, these concentrations could be hypothetically several magni-
tudes higher than environmental estimates (Shen et al., 2019a). Cur-
rently the distribution and concentrations of NPs in marine, freshwater
and soil environments is largely unknown due to restrictions on limits
of detection (LOD). If assumed as ideal spheres, the mass of a NP par-
ticle will decrease with the third power of its diameter. Although the
environmental sample of NPs can contain high particle numbers, low
masses may hinder the analysis of concentrations (Schwaferts et al.,
2019). More advanced technique with lower LOD is therefore required
for the determination of nanoplastic concentrations in the environment.

The “unrealistic” also refers to the co-existing materials such as
particulate and dissolved organic matter. Several studies examined the
migration of NPs in pure water-saturated porous media (Liu et al.,
2019c; Keller et al., 2020). Other studies overlooked the roles of natural
minerals, dissolved organic matter and suspended organic matter on the
migration, aggregation, and toxic effects of NPs. Besides, in natural
conditions, co-existing heavy metals and organic contaminants may
adsorb onto NPs, affecting their transport and ecotoxicity. Micro-
organisms attached onto NPs may even form biofilms on the NPs
(Deschénes and Ells, 2020; Miao et al., 2019; Shen et al., 2019b). It is
indeed impossible to take everything into account in a certain study,
but researchers should spare no effort to predict the environmental
behaviors and toxicology of NPs in a more realistic way. Compared with
aquatic ecosystems, the environmental behaviors of NPs in terrestrial
ecosystems are much more complex due to the heterogeneity of the
environmental media (e.g., soil) and intensive anthropogenic activities.
Since such a complex system cannot be duplicated in the laboratories,
more field studies are therefore recommended to enhance our under-
standing towards the environmental fate, toxic effects and potential
risks of NPs.
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