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Abstract: Beta-lactams are commonly used antibiotics that prevent cell-wall biosynthesis. Beta-lactam
sensitive bacteria can acquire conjugative resistance elements and hence become resistant even after
being exposed to lethal (above minimum inhibitory) antibiotic concentrations. Here we show that
neither the length of antibiotic exposure (1 to 16 h) nor the beta-lactam type (penam or cephem) have
a major impact on the rescue of sensitive bacteria. We demonstrate that an evolutionary rescue can
occur between different clinically relevant bacterial species (Klebsiella pneumoniae and Escherichia coli)
by plasmids that are commonly associated with extended-spectrum beta-lactamase (ESBL) positive
hospital isolates. As such, it is possible that this resistance dynamic may play a role in failing antibiotic
therapies in those cases where resistant bacteria may readily migrate into the proximity of sensitive
pathogens. Furthermore, we engineered a Clustered Regularly Interspaced Short Palindromic
Repeat (CRISPR)-plasmid to encode a guiding CRISPR-RNA against the migrating ESBL-plasmid.
By introducing this plasmid into the sensitive bacterium, the frequency of the evolutionarily rescued
bacteria decreased by several orders of magnitude. As such, engineering pathogens during antibiotic
treatment may provide ways to prevent ESBL-plasmid dispersal and hence resistance evolution.

Keywords: antibiotic resistance; Extended-spectrum beta-lactamase; evolutionary rescue;
conjugative plasmid

1. Introduction

Resistance to antibiotics forms a notable burden to health care. While the evolution of resistance
may appear as a seemingly simple evolutionary process, i.e., exposure to antibiotics selects for resistant
mutants [1], the actual emergence of new resistant pathogens and the maintenance of resistance may be
a result of relatively complex interbacterial interactions [2]. This is especially relevant for horizontally
transferred resistance genes that reside in conjugative plasmids [3].

β-lactams are antibiotics that inhibit the synthesis of the bacterial cell wall. Given their minimal side
effects in humans, they are one of the most widely applied antibiotics in clinical care [4]. Respectively,
extended-spectrum β-lactamases (ESBLs) are enzymes that can hydrolyze and hence inactivate a wide
range of different β-lactams [5]. Notably, the presence of ESBL-producing bacteria allows sensitive
“cheaters” to survive in a shared environment even in lethal antibiotic concentrations [6,7]. Resistant
bacteria may be a part of the commensal flora and pose no threat in itself, therefore the resistance profile
of the pathogen may not necessarily determine whether or not the applied antibiotic is effective [7–9].
This is troublesome since ESBL-carriage, i.e., the asymptomatic colonization of the gut by ESBL bacteria,
has been continuously increasing both in hospital settings and in the community [10]. As such, a more
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complete understanding of the evolutionary dynamics of resistances during antibiotic treatment would
help us to more accurately evaluate the potential risks that may be incurred from the carriage of
resistant strains.

Sensitive bacteria may acquire resistance via horizontal gene transfer (HGT) even after being
exposed to lethal beta-lactam concentrations [7,11]. The physiological factors affecting the efficacy
of β-lactams are currently being studied by numerous groups and can include cell-wall-lacking
spheroplasts and dormant persisters [12,13]. Nevertheless, for ESBL-carriers, the evolutionary rescue
may form an additional threat as the treatment of initially sensitive Gram-negative pathogens can
be nullified by an accidental transfer of an ESBL-plasmid harboring bacterium from the gut flora to
the site of infection.

There is variability in the potential for different conjugative plasmids with various Inc.
(incompatibility)-groups and ESBL-genes to rescue susceptible bacteria [11]. It is also dependent
on the antibiotic concentration and resource availability. Rescue may occur even in antibiotic levels
that exceed the minimum inhibitory concentrations by an order of magnitude, therefore the increase
in dosage does not seem to provide a straightforward solution to prevent the transfer [14]. Furthermore,
sensitive bacteria will survive and become resistant when the resistant bacteria are subsequently
introduced into their environment [7,11]). However, several factors potentially affecting the rescue
have not been studied yet. Namely, it is unclear what the time-window is in which the transfer of
an ESBL-plasmid from a harmless bacterium may still restore the growth of the sensitive pathogen,
what the effect of different types of β-lactams is, whether the prevailing temperature (and hence
bacterial metabolic rate) plays a part, and/or whether the species of the sensitive pathogen is relevant
to the rescue. Here, we investigate how these factors affect the evolutionary rescue via a conjugative
ESBL-plasmid of clinical origin. Understanding the role of these factors assists in determining how
and when the ESBL-carriage status needs to be taken into account.

2. Results and Discussion

In this study, we selected a previously characterized plasmid pEC13 to investigate the evolutionary
rescue in lethal β-lactam concentrations. pEC13 is a 71 kb conjugative IncFII-type plasmid, which
originates from a patient-derived ESBL Escherichia coli (Figure 1; [11]) and carries a commonly circulating
ESBL-resistance gene, blaCTX-M-14 [10]. The majority of the pEC13-like plasmids in databases have been
isolated from E. coli. Yet, there are multiple closely related plasmid sequences also in Klebsiella pneumoniae,
Salmonella enterica, Citrobacter sp., Shigella sonnei and Shigella flexneri hosts, indicating that these plasmids
may serve as potential agents mediating the interspecific resistance exchange.

While pEC13 carries a single resistance gene and hence only provides resistance to non-carbapenem
β-lactams, the highest similarity to pEC13 (for the matching regions) was with a K. pneumoniae plasmid
pA1705-NDM (99.85%, GenBank id MH909349) encoding NDM-1, OXA-1 and CTX-M-14 β-lactamases
(where NDM-1 is also able to hydrolyse carbapenems) along with resistances to fluoroquinolone,
aminoglycoside, phenicol, rifampicin, sulphonamide, and tetracycline. As such, related plasmids can
also confer resistances to multiple types of antibiotics. Plasmids such as pA1705-NDM may be of
notable clinical relevance given that evolutionary rescue may also nullify any subsequent treatment
attempts with alternative antibiotics once the initial failure occurs with β-lactams. PA1705-NDM
plasmid, however, is over three times the length of pEC13. This genomic expansion appears to be
due to the accumulation of several mobile elements and resistance cassettes in the plasmid backbone,
and hence a direct comparison with the resistance dynamics observed for pEC13 in this study should
be made with caution. Still, other similar plasmids in other species appear to have retained their size
as well as gene and operon synteny with pEC13 (Figure 2), and therefore pEC13 appears to provide a
relevant proxy for ESBL-plasmids that may disperse between different species of Enterobacteriaceae
during the exposure to β-lactams.
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Figure 1. Plasmid map of conjugative pEC13. The predicted coding regions are marked in grey. 
Regions involved in the conjugation (blue), replication (green) and antibiotic resistance (orange) are 
marked. 

pEC13
71 656 bp

Conjugation

Replication

blaCTX-M-14

Figure 1. Plasmid map of conjugative pEC13. The predicted coding regions are marked in grey. Regions
involved in the conjugation (blue), replication (green) and antibiotic resistance (orange) are marked.Antibiotics 2020, 9, x FOR PEER REVIEW 4 of 9 

 
Figure 2. Comparison of pEC13 to related plasmids in other Enterobacteriaceae. The genetic regions 
are color-coded according to their predicted function (the exact gene contents within the regions vary 
between plasmids). Plasmids with relatively similar genetic contents and synteny to pEC13 are 
present in various bacterial species, hence the interspecific evolutionary rescue via horizontal gene 
transfer. 

We examined the transfer of pEC13 between two E. coli strains, as well as between E. coli and K. 
pneumoniae. Ampicillin or cephalothin sensitive E. coli and cephalothin sensitive K. pneumoniae strains 
were exposed to lethal antibiotic concentrations (50 μg/mL) for 1, 6, and 16 h before resistant E. coli 
harboring pEC13 plasmid was introduced into the environment (Figure 3A,B). New resistant bacteria 
emerged in all treatments (see Table S1). The number of evolutionarily rescued E. coli decreased with 
ampicillin and cephalothin in relation to longer exposure periods (Figure 3A; Table S2); a statistical 
difference was observed between 1 h exposure to antibiotics compared to 6 h and between 1 and 16 
h (Tukey HSD, p < 0.001), but not between 6 and 16 h (Tukey HSD, p = 0.76). In K. pneumoniae, the 
exposure time had no effect on the evolutionary rescue (p = 0.47; Figure 3B; Table S3). The antibiotic 
type used had no significant effect on the evolutionary rescue of E. coli (p = 0.055). However, given 
the notable variance in some measurements, the statistical significance needs to be taken cautiously. 
Nevertheless, both strains were able to acquire pEC13 even after 16 h and become completely 
resistant to these antibiotics. The possibility that the result may be due to spontaneous rifampicin-
resistant pEC13 donors was ruled out by testing the chloramphenicol resistance of the rescued 
bacteria, as only the pEC13 donor carried a non-mobilizable chloramphenicol resistance conferring 
plasmid pSU19. Furthermore, we observed that the viable E. coli could be isolated after one hour 
antibiotic exposure even when no donor was introduced. This suggests that cell-wall-lacking 
spheroplasts or otherwise antibiotic-withstanding phenotypes [15,16]. may persist in the presence of 

Figure 2. Comparison of pEC13 to related plasmids in other Enterobacteriaceae. The genetic regions
are color-coded according to their predicted function (the exact gene contents within the regions vary
between plasmids). Plasmids with relatively similar genetic contents and synteny to pEC13 are present
in various bacterial species, hence the interspecific evolutionary rescue via horizontal gene transfer.
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We examined the transfer of pEC13 between two E. coli strains, as well as between E. coli
and K. pneumoniae. Ampicillin or cephalothin sensitive E. coli and cephalothin sensitive K. pneumoniae
strains were exposed to lethal antibiotic concentrations (50 µg/mL) for 1, 6, and 16 h before resistant
E. coli harboring pEC13 plasmid was introduced into the environment (Figure 3A,B). New resistant
bacteria emerged in all treatments (see Table S1). The number of evolutionarily rescued E. coli
decreased with ampicillin and cephalothin in relation to longer exposure periods (Figure 3A; Table S2);
a statistical difference was observed between 1 h exposure to antibiotics compared to 6 h and between
1 and 16 h (Tukey HSD, p < 0.001), but not between 6 and 16 h (Tukey HSD, p = 0.76). In K. pneumoniae,
the exposure time had no effect on the evolutionary rescue (p = 0.47; Figure 3B; Table S3). The antibiotic
type used had no significant effect on the evolutionary rescue of E. coli (p = 0.055). However, given
the notable variance in some measurements, the statistical significance needs to be taken cautiously.
Nevertheless, both strains were able to acquire pEC13 even after 16 h and become completely resistant
to these antibiotics. The possibility that the result may be due to spontaneous rifampicin-resistant
pEC13 donors was ruled out by testing the chloramphenicol resistance of the rescued bacteria, as only
the pEC13 donor carried a non-mobilizable chloramphenicol resistance conferring plasmid pSU19.
Furthermore, we observed that the viable E. coli could be isolated after one hour antibiotic exposure
even when no donor was introduced. This suggests that cell-wall-lacking spheroplasts or otherwise
antibiotic-withstanding phenotypes [15,16]. may persist in the presence of the tested antibiotics
and still acquire the conjugative plasmid as the opportunity occurs. The media used (LB -broth) is
slightly hypotonic (85.5 mM) compared to isotonic media with the molarity of physiological saline
(154 mM), probably allowing the bacteria to retain osmotic stability. Bacteria are generally able to
tolerate slight changes in the osmolarity of the environment even in the absence of a supporting
cell-wall by adjusting their metabolism through pressure-sensitive ion channels [17] and by regulating
their fatty acid synthesis to maintain lipid membranes [15].
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Figure 3. Evolutionary rescue of Escherichia coli and Klebsiella pneumoniae after differing exposure times
and at different temperatures. The big dots represent the evolutionary rescue presented as the mean
cell density in colony forming units (cfu)/mL of formed transconjugants after the exposure to either
ampicillin (50 µg/mL) or cephalothin (50 µg/mL) and the introduction of a rescuing strain harboring
beta-lactamase resistance gene against these antibiotics in conjugative plasmid pEC13. The small dots
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represent individual data points per treatment. For reference, the number of transconjugants
in the absence of antibiotics was measured at the 1 h time point. Statistical analysis and standard
deviations are presented in Table S1. Letters indicate the results from Tukey’s “Honest Significant
Difference” test. Groups indicated by the same letter do not differ significantly. Different exposure
times to antibiotics were tested for (A) Escherichia coli and (B) Klebsiella pneumoniae. (C) The effect of
temperature (37, 22 or 4 ◦C) on the evolutionary rescue of E. coli was measured after 16 h exposure to
ampicillin and cephalothin.

The prevailing temperature has a substantial effect on the rate at which bacteria replicate. Given
that replication itself is dependent on the generation of new cell walls, it is possible that lower
temperatures hinder the efficacy of cell-wall-targeting antibiotics and thus allow more bacteria to
acquire the plasmid. As such, we tested whether temperature has an effect to bacterial survival via
evolutionary rescue in the presence of antibiotics. E. coli was exposed to cephalothin and ampicillin at
4 ◦C, room temperature (22 ◦C), and 37 ◦C for 16 h before the introduction of the pEC13-harboring
strain (Figure 3C; Table S4). We found no significant difference in the rescued cells between
cephalothin and ampicillin (p = 0.055; Table S5), nor the temperatures used (p = 0.56; Table S5).
Nevertheless, this suggests that the persisting cells are already present in the population before
the exposure to antibiotics. As such, the migration of bacteria harboring conjugative resistance
plasmids can also rescue susceptible bacteria in the environmental reservoirs and hospital areas that
contain notable beta-lactam pollution but where bacterial growth may be reduced. Qualitatively,
the results show that a rescue can occur even after 16 h exposure to commonly used antibiotics, between
different bacterial species, and within a wide temperature regime.

We studied whether the evolutionary rescue of the sensitive bacteria may be prevented by
introducing them to a CRISPR-Cas9 plasmid that targets the β-lactamase gene of pEC13. In other
words, the incoming pEC13 should be degraded by Cas9 in the persisting clones that remain viable
in the presence of the antibiotics. We first ensured that pEC13 is not able to mobilize the CRISPR plasmid
by aligning the OriT and OriR sequences from pEC13 with pCas9-plasmid and establishing that they
are absent in pCas9-gRNA. Indeed, the presence of a CRISPR-plasmid significantly reduced the number
of transconjugants on the double-antibiotic (chloramphenicol and ampicillin) plates by at least four
orders of magnitude after 2 h exposure to ampicillin (Table 1). This at least reveals the possibility that
potential pathogens would be less likely to acquire resistances if they were, in one way or another,
introduced to β-lactamase targeting CRISPR-elements before or simultaneously with an antibiotic
treatment. Hypothetically, bacteriophages could serve as an imaginable way to deliver CRISPR-systems
to bacteria, e.g., in infected wounds [18]. Alternatively, conjugative plasmids can be engineered to
transfer CRISPR-systems [19] and hence utilized within probiotic strains to prophylactically limit
the abundance of ESBL-plasmids in gut flora, and therefore the rescue events from taking place.

Table 1. The evolutionary rescue of CRISPR-plasmid harboring antibiotic susceptible E. coli.

Beta-Lactam Susceptible Strain Replicate Survivors (cfu/mL)

1 <200
E. coli DH5α (pCas9-gRNA) 2 <200

3 <200

1 1.52 × 106

E. coli DH5α (pCas9-CTRL) 2 1.76 × 106

3 2.12 × 106

To conclude, evolutionary rescue by horizontal gene transfer is an event where susceptible
bacteria may become resistant to antibiotics ‘on the fly’ after the beginning of the treatment. Here we
demonstrate that the rescue of susceptible E. coli and K. pneumoniae strains may occur even after 16 h
exposure to both ampicillin and cephalothin. The applicability of this observation to real life systems
must be taken cautiously. Yet, it is possible that if any suspected pathogen is determined to be sensitive
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to β-lactams, the protection of the infected site from the migration of (even harmless) ESBL-bacteria
may be crucial for the treatment outcome. Preventive measurements that block plasmid-conjugation
and/or maintenance [2,3,14] or nick resistance genes (such as the aforementioned CRISPR-systems) are
still in the very early stage of development for constraining evolutionary rescue and/or ESBL-carriage
but may be worth considering in the future.

3. Materials and Methods

3.1. Bioinformatic Analyses

To explore the prevalence of pEC13-like plasmids, highly similar matches were searched with a
NCBI BLAST Megablast-search using a nucleotide collection database (nr/nt) with a Max E-value of 10,
a word size of 28, a and scoring (Match Mismatch) of 1–2. The search was performed with Geneious
11.1.5 (Biomatters Ltd.; Auckland, New Zealand). The conserved gene clusters, their arrangement,
and orientation were studied for the plasmid matches from various Enterobacteriaceae species with
a grade of 70% or above (a total of 40 plasmids of which six non-E. coli plasmids are presented
in the study) using a whole genome alignment tool with a progressive Mauve algorithm with default
settings [20]. To ensure that the pCas9-gRNA plasmid is not transmissible by pEC13, oriTFinder [21]
was used to detect the origin of the transfer (OriT) region from pEC13. The origin of the replication
(OriR) region of pEC13 was identified with Ori-Finder 2 [22].

3.2. Evolutionary Rescue Experiments

Conjugation assays were performed to study the impact of a delayed introduction of an
ESBL-resistant donor to a culture of antibiotic sensitive bacteria under a lethal antibiotic concentration.
As a conjugative plasmid, we used pEC13, IncFII plasmid encoding CTX-M-14 β-lactamase [11],
GenBank id KU932024.1). Escherichia coli K-12 JM109(pEC13)(pSU19) was used as a donor for two
different recipients: Escherichia coli K-12 HMS174 and Klebsiella pneumoniae DSM681AmpR,RifR. DSM681
carries a gene for SHV-1 beta-lactamase, which makes the strain resistant to ampicillin, but not
cephalothin. The DSM681 (or ATCC 10031) genome sequence is available at genomes.atcc.org for
registered users. No other beta-lactamase genes are present in the DSM681 genome as determined
with ResFinder-3.2 [23]. We also tested the conjugation of pEC13 from E. coli to a rifampicin resistant
mutant of Salmonella enterica serovar Typhimurium SL5676, but no transconjugants were observed
and hence it was omitted from further experiments.

The donor and recipient strains were grown to a carrying capacity in overnight culture (37 ◦C,
220 rpm) in a Luria Bertani Lennox-broth (LB; Lennox 1955) [24] with an appropriate antibiotic selection:
donor in 150 µg/mL ampicillin and recipients in 50 µg/mL rifampicin. The cell density of overnight
cultures was determined by serial dilutions plated on 1% LB agar plates and incubated overnight
at 37 ◦C. Approximately 5.5 × 106 and 7.25 × 106 colony forming units (CFU) of sensitive recipient
bacteria, HMS174 and DSM681, respectively, were first introduced to 5 mL of LB-broth supplemented
with either 50 µg/mL of ampicillin or cephalothin. In a previous study, this concentration was shown
to be clearly above MIC, as 15 µg/mL was already lethal to the same strains used here [11]. DSM681
was exposed only to cephalothin due to its chromosomal resistance to ampicillin. After different
exposure times (1, 6, and 16 h) at 37 ◦C, the donor bacteria (4.1 × 106 CFU) were added to the culture.
These time points provide an estimate as to whether the protection of the sensitive bacterium
from the migration of resistant bacteria early on after antibiotic administration can have an effect.
As a control treatment, this assay was also done without antibiotic selection for the 1-h time point.
This ‘no-antibiotics’ assay represents just the plasmid conjugation and hence not the evolutionary
rescue. For the HMS174 recipient, two additional temperatures (4 and 22 ◦C) for the 16 h timepoint were
examined. Each assay was performed at a minimum in triplicates. After the introduction of the resistant
ESBL-donor, the co-culture was incubated overnight (37 ◦C, 220 rpm), after which the number of
transconjugants was determined by plating on 1% LB-agar plates with the appropriate antibiotics:
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rifampicin (50 µg/mL) and either ampicillin 150 µg/mL (for HMS174) or cephalothin 50 µg/mL (for
DSM681). Before the introduction of the donor, a 500 µL sample was taken from the 16 h exposure
experiments to determine the presence of surviving bacteria. The sample was pelleted by centrifugation
(8000 rpm, 8 min), the supernatant was removed carefully, and the pellet was resuspended in 100 µL of
sterile water before being plated on the LB-agar without antibiotics. The presence of the surviving
bacteria was quantified by observing the colonies on the plates after overnight cultivation at 37 ◦C.

We also evaluated the efficacy of CRISPR-Cas9-encoding plasmid to prevent an evolutionary rescue
via horizontal gene transfer. The CRISPR-plasmid used (pCas9-gRNA) targets a conserved region
in the blaCTX-M-14 gene with the spacer sequence CCGCTGGTTCTGGTGACCTATTT (described
in detail in Ruotsalainen et al., 2019). The original pCas9 plasmid was a gift from Luciano Marraffini
(Addgene plasmid #42876) and confers resistance to chloramphenicol. As a control, we used
the same plasmid without the targeting spacer (pCas9-CTRL). These plasmids were transformed
into E. coli DH5α strains by electroporation. HMS174 (pEC13) was used as a donor for the rescue
experiments. A total of 5 µL of overnight grown DH5α (pCas9-gRNA) and DH5α (pCas9-CTRL)
were exposed to 50 µg/mL ampicillin in 5 mL of LB-medium in 37 ◦C for 2 h before adding 5 µL of
HMS174(pEC13). This combination was cultivated for 16 h (37 ◦C, 220 rpm) and plated on LB-agar
with ampicillin (450 µg/mL) and chloramphenicol (75 µg/mL). Increased antibiotic concentrations were
used in order to inhibit the appearance of false positive rescued colonies emerging in the plating of
higher bacterial densities.

3.3. Statistical Analyses

To determine the effect of the selected antibiotics and the temperature on the evolutionary rescue
of antibiotic sensitive bacteria, a two-way between-groups analysis of variance (ANOVA) with Tukey
HSD as post-hoc comparisons was conducted using RStudio Cloud service. Three treatments were
regarded in the analysis: the type of β-lactams antibiotics, time points, and temperatures.

4. Conclusions

Dispersal of antibiotic resistance genes plays a notable part in the emerging resistance crisis.
ESBL-genes often reside in conjugative plasmids and may spread interspecifically between bacteria.
Here, we show that antibiotic susceptible E. coli and K. pneumoniae exposed to inhibitory concentrations
of beta-lactam antibiotics cephalotin and ampicillin for several hours can still become resistant by
acquiring a conjugative plasmid from migrating resistant bacteria.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/6/296/s1,
Table S1: Descriptive statistics on the evolutionary rescue of E. coli and K. pneumoniae under different β-lactams
(50 µg/mL ampicillin and 50 µg/mL cephalothin) and exposure time (1 h, 6 h, and 16 h). Table S2: Analysis of
Variance, test effect of β-lactams (50 µg/mL ampicillin and 50 µg/mL cephalothin) and exposure time (1 h, 6 h,
and 16 h) on the evolutionary rescue of E. coli., Table S3, Analysis of Variance, test effect of β-lactams (50 µg/mL
ampicillin and 50 µg/mL cephalothin) and exposure time (1 h, 6 h, and 16 h) on the evolutionary rescue of
K. pneumoniae. Table S4: Descriptive statistics on the evolutionary rescue of E. coli under different β-lactams
(50 µg/mL ampicillin and 50 µg/mL cephalothin) and temperature (37 ◦C, 22 ◦C, and 4 ◦C), Table S5: Analysis of
Variance, test effect of β-lactams (50 µg/mL ampicillin and 50 µg/mL cephalothin) and temperature (37 ◦C, 22 ◦C,
and 4 ◦C) on the evolutionary rescue of E. coli.
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