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Dysfunction of sensorimotor predictive processing is 
thought to underlie abnormalities in self-monitoring pro-
ducing passivity symptoms in psychosis. Experimentally 
induced sensorimotor conflict can produce a failure in 
bodily self-monitoring (presence hallucination [PH]), yet 
it is unclear how this is related to auditory self-monitoring 
and psychosis symptoms. Here we show that the induc-
tion of sensorimotor conflict in early psychosis patients 
induces PH and impacts auditory-verbal self-monitoring. 
Participants manipulated a haptic robotic system 
inducing a bodily sensorimotor conflict. In experiment 
1, the PH was measured. In experiment 2, an auditory-
verbal self-monitoring task was performed during the con-
flict. Fifty-one participants (31 early psychosis patients, 
20 matched controls) participated in the experiments. The 
PH was present in all participants. Psychosis patients 
with passivity experiences (PE+) had reduced accuracy 
in auditory-verbal self-other discrimination during senso-
rimotor stimulation, but only when sensorimotor stimula-
tion involved a spatiotemporal conflict (F(2, 44) = 6.68, 
P = .002). These results show a strong link between robot-
ically controlled alterations in sensorimotor processing 
and auditory misattribution in psychosis and provide ev-
idence for the role of sensorimotor processes in altered 
self-monitoring in psychosis.
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Introduction 

Psychosis is characterized by abnormal mental states in-
cluding hallucinations and delusions and a deterioration 
of cognitive and emotion processing.1 Moreover, people 
with psychosis often report strange and compelling feel-
ings that other people or external forces are influencing 
them.2 They may experience external forces as having a di-
rect and uncontrollable influence on their inner experience, 
leading to intriguing symptoms such as auditory-verbal 
hallucinations (AVHs) in the form of voices commenting 
the person’s thoughts, delusional ideas that thoughts are 
inserted or stolen from their minds, or sensations of ex-
ternal control over their bodies and actions. These symp-
toms, termed “Passivity Experiences (PE)” and formerly 
known as Schneiderian first-rank symptoms, reflect a di-
minished demarcation of self-other boundaries and mis-
attributions of self-generated thoughts and actions to 
external sources.3–5 It has been suggested that these de-
ficiencies are due to abnormal sensorimotor prediction 
mechanisms, causing erroneous self-monitoring.6–9 The 
putative mechanism for self-monitoring is based upon 
the comparison of predictions regarding sensory out-
comes of self-generated actions (ie, efference copy) with 
afferent sensory signals.10,11 When predictions and af-
ferent sensory signals match, actions are self-attributed 
and the sensory signal is attenuated.12–15 If  a discrepancy 
is found, sensory signals are less attenuated, indicating a 
probable external origin.5,16 Several studies have shown 
aberrant sensorimotor prediction and reduction of 
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normal sensory attenuation for self-generated actions in 
schizophrenia,17–24 providing evidence linking deficient 
sensorimotor prediction with self-other discrimination 
symptoms of psychosis.6,7,25 While the neurobiological 
basis for AVH is still debated,25–28 it has been suggested 
that AVH may arise from misattribution of inner speech 
to an external source due to defective efference copy 
mechanisms.28–31 Studies have found correlational evi-
dence for deficits in self-monitoring of auditory-verbal 
content in schizophrenia29,32,33 as well as a decreased sen-
sorimotor prediction in patients with AVH.17,34,35

However, this previous evidence is correlational, showing 
that deficient sensorimotor predictions in schizophrenia 
often correlate with positive symptom severity. Thus, more 
causal evidence employing an experimentally generated 
sensorimotor conflict to induce a psychosis-like mental 
state able to impair auditory-verbal processing in an on-
line fashion is still lacking. Here, we used a custom robotic 
device36 to investigate this issue. By directly manipulating 
sensorimotor contingencies, the device induces a mental 
state characterized by an illusory feeling that a person is 
standing behind them (ie, presence pallucination [PH]).37 
Here, standing and blindfolded participants control the 
“lead” robot38 by moving their arm. Their movements are 
sent to a “follow” robot, which applies tactile feedback in 
real time to the participants’ backs. In order to manipulate 
sensorimotor contingency, in the asynchronous condition, 
a 500-ms delay is introduced between the participants’ 
movements and the haptic feedback. We previously 
showed that, in healthy individuals, this asynchronous con-
dition induces the feeling that a person is standing behind 
them, ie, PH.37 Here we investigated whether the PH effects 
could be reproduced in psychosis patients with (PE+) and 
without (PE−) passivity symptoms, and critically, whether 
the same manipulation would also induce deficits in self-
monitoring of auditory-verbal stimuli. To this aim, healthy 
participants and psychosis patients were presented during 
the sensorimotor stimulation with prerecorded words, 
spoken either by themselves or by another person, and 
were asked to discriminate between the two.30 Thus, in the 
present study, we directly tested (1) whether robotic induc-
tion of a sensorimotor conflict, able to induce a mental 
state characterized by PH in healthy participants, induces 
the same effect in psychosis patients (PH experiment) and 
(2) whether it impacts self-monitoring for auditory-verbal 
information, as is thought to occur for AVH in psychosis 
(self-monitoring experiment). Thus, contrary to previous 
investigations, our design allows for online and active in-
duction of self-monitoring errors through task-irrelevant 
sensorimotor conflicts. 

Methods

Participants

Thirty-one individuals in the early phase of psychosis 
having met criteria for a psychotic episode according to 

the Comprehensive Assessment of At-Risk Mental States 
(CAARMS) criteria (mean age = 26.4 SD = 4.6  years; 9 
women) were recruited among the Treatment and early 
Intervention in Psychosis Program (TIPP), a 3-year pro-
gram launched in 2004 in Lausanne (CHUV, Switzerland). 
Twenty age-matched control subjects (mean age = 25.95, 
SD = 4.7 years; 5 women) from the control cohort of the 
TIPP program were also recruited. Exclusion criteria for 
the study were history of neurological illness or trauma, 
nonpsychiatric visual or auditory disorders, diagnosis of 
psychosis related to intoxication or organic brain disease, 
intelligence quotient <70, age below 18 and above 35 at 
the TIPP inclusion, or antipsychotic medication more than 
6 months before the inclusion; 90.3% of the subjects were 
right-handed. The participant group included all partici-
pants who were available and willing to participate in this 
study and met the inclusion criteria from the TIPP co-
hort at the time of the study. Controls were assessed and 
selected with the Diagnostic Interview for Genetic Studies. 
Major mood, psychotic, or substance-use disorder and 
having a first-degree relative with a psychotic disorder were 
exclusion criteria for controls. All were clinically stable 
during testing and gave an informed written consent. The 
study was approved by the Ethical Committee of Clinical 
Research of the University of Lausanne, Switzerland, and 
was run in accordance with the ethical guidelines of the 
ethical committee and the Declaration of Helsinki.

The patients underwent an in-depth clinical assessment 
by a trained psychiatrist the same day as the behavioral 
experiment. Symptom severity and classification were as-
sessed in the patient group using the Positive and Negative 
Syndrome Scale (PANSS) for schizophrenia with a mean 
of the total score of 52.52 (SD = 13.67) (13.90 [SD = 4.96] 
on the positive subscale, 13.72 [SD = 4.71] on the nega-
tive subscale, and 24.62 [SD = 7.2] on the general psycho-
pathology subscale). Passivity symptoms were assessed 
using specific items of the Scale for the Assessment of 
Positive Symptoms (SAPS)39 (item 2: voices commenting; 
item 3: voices conversing; item 15: delusions of being 
controlled; item 18: though insertion; item 19: thought 
withdrawal). Patients were considered PE + (N = 19) if  
they had presented at least one of these five PE during 
the psychotic episodes35,40; 12 patients never presented 
passivity symptoms and were thus included in the PE− 
group. The two groups were demographically similar in 
terms of age (P  = .94) and level of education (P  = .84). 
However, although there were no differences between the 
two groups in the global clinical features (total PANSS 
scores) (P  = .41) and treatment duration (P  = .24), there 
was an expected significant difference in the positive 
PANSS subscore (related to PE) (P  = .02) and the chlor-
promazine equivalent medication (used to treat passivity 
symptoms) (P  = .01) (see table 1 & supplementary mate-
rial for full clinical details).

Initial diagnosis of the patient based on their first-
episode symptoms revealed that at the time of the 
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experiment, 19 patients satisfied the ICD-10 criteria for 
schizophrenia, 2 for schizoaffective disorders, 6 for acute 
and transient psychotic disorders, 3 for severe depressive 
episode with psychotic symptoms, and 1 for bipolar affec-
tive disorder.

Procedure

Presence Hallucination Experiment.  The procedure of 
the PH experiment was identical to that previously used 
in healthy participants.37 While standing and blindfolded, 
participants manipulated the robot for 3 minutes and 
were presented with synchronous or asynchronous haptic 
feedback. At the end of each session, participant filled 
an 8-item questionnaire regarding the sensations elicited 
by the manipulation (see figure  1, top), including 3 ex-
perimental questions aimed at assessing illusory states 
(see Q2, Q6, and Q8 in supplementary material, and 5 
control questions [Q1, Q3, Q4, Q5, Q7]), added to con-
trol for spurious effects, such as general susceptibility and 
response biases. Synchronous and asynchronous condi-
tions were presented in a randomized order.

Auditory Misattribution Experiment.  Word record-
ings (50 in participant’s voice and the same 50 words 
in a gender matched voice) were randomly grouped in 
4 blocks of  25 words. Blindfolded participants freely 
manipulated the robot with their left hand throughout 
the experimental session (figure  1, bottom). These 

movements were replicated in real time to the parti-
cipants’ backs by the “follow” robot. After 1 minute 
moving the lead robot while they received synchronous 
or asynchronous (500  ms delay) haptic feedback, and 
while still stroking their backs, participants heard the 
prerecorded words and were required to report if  the 
word was spoken in their own voice (Self  condition) 
or in another person’s voice (Other condition). An 
interstimulus interval of  0.5, 0.6, or 0.7 seconds was pre-
sented between words, and the next word was presented 
only after the participant’s response. Reaction time and 
accuracy were measured for each trial. The synchrony 
of  sensorimotor feedback was pseudo-randomized be-
tween subjects. There were 4 blocks in total (2 synchro-
nous and 2 asynchronous). Thus, all participants heard 
the same words in both their own voice and another’s 
voice and under both synchronous and asynchronous 
sensorimotor conditions.

Statistical Analysis

Presence Hallucination Experiment.  Ordinal responses 
to the PH questionnaire were analyzed using linear mixed 
effects models,37 with synchrony (synchronous/ asynchro-
nous), group (Control/PE+/PE−) and question type (ex-
perimental vs control) as fixed effects, and subjects and 
questions as random effects. This was followed by nonpa-
rametric Mann-Withney-Wilcoxon (MWW) tests on the 
PH experimental questions.

Table 1.  Demographic and Clinical Information for all Participant Groups 

Patients with  
Passivity Experi-
ences PE + (N = 19)

Patients Without  
Passivity Experiences  
PE− (N = 12)

Controls 
(N = 20)

Comparison 
Between All 
Groups (P 
Value)

Comparison  
Between 
PE + and PE− 
Groups (P Value)

Gender M/F (male %) 13/6 (68.4%) 9/3 (75%) 15/5 (75%) 0.87 0.35
Handedness (right handed %) 18/1 (94.7%) 10/2 (83.3%) 16/3 (80%) 0.53 0.16
Mean age (year) (SD) 26.3 (±4.84) 26.5 (±4.56) 25.95 (±4.7) 0.94 0.45
Year of education (SD) 12.5 (±2.71) 13.09 (±2.02) 15.6 (±2.72) <0.01* 0.28
GAF score (SD) 61.2 (±9.32) 60.2 (±5.61) 84.05 (±4.41) <0.01* 0.38
Chlorpromazine equivalent- mg 
(SD)

399.9 (±54.06) 195.25 (±62.97) — — 0.01*

Treatment duration years (SD) 1.7 (±1.68) 1.3 (±1.11) — — 0.24
PANSS /210 52.1 (±11.04) 53.2 (±17.58) — — 0.41
Positive subscale mean /49 (SD) 15.3 (±5.03) 11.7 (±4.1) — — 0.02*
Negative subscale mean /49 
(SD)

13.1 (±4.04) 15.1 (±5.58) — — 0.13

General psychopathology 
subscale mean /112 (SD)

23.6 (±4.34) 26.4 (±10.43) — — 0.15

SAPS item rating /6 (SD)      
 2: voices commenting 3.53 (±0.63) 0 — — —
 3: voices conversing 2.95 (±0.69) 0 — — —
 15: delusions of being con-
trolled 

1.68 (±0.56) 0 — — —

 18: though insertion 3.6 (±0.52) 0 — — —
 19: thought withdrawal 1 (±0.44) 0 — — —

*Significant difference of the P value.
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Auditory Misattribution Experiment.  We used signal de-
tection theory41 to analyze the responses to the auditory 
misattribution task. Responses were categorized as hits, 
misses, false alarms, and correct rejections for synchro-
nous and asynchronous conditions; d′ measures of per-
ceptual sensitivity, as well as beta measures for subjective 
criterion changes, were then calculated for each condition 
separately and analyzed using a Synchrony(Synchronous/
Asynchronous) × Group(Control/PE+/PE−) Analysis of 
Variance (ANOVA), with synchrony as a within-subject 
variable and Group as a between-subject factor.

Results

Presence Hallucination Experiment

As expected, the mixed model ANOVA indicated a sig-
nificant interaction between synchrony and question type 

(F(1, 808) = 5.62, P  = .01), showing that experimental 
questions measuring the PH were more modulated by 
synchrony than the control questions. A main effect of 
synchrony (F(1, 808) = 5.82, P  = .01) was also found, 
showing overall higher ratings in the synchronous when 
compared with asynchronous condition; no other effects 
or interactions were significant (all F < .75) (figure  2).  
Contrary to our expectations, no differences in the PH 
were found between the PE + and control groups. The 
analysis of experimental questions indicated that parti-
cipants experienced the touch in the synchronous condi-
tion to be self-generated (Q2, P  = .003) and experienced 
the asynchronous touch as originating from another 
person (Q6, P  = .0005). Critically, participants reported 
a higher PH in the asynchronous condition than in the 
synchronous condition (Q8, P  = .000007). No other ef-
fects reached significance (all P  > .15).

Fig. 1.  Experimental design of the presence hallucination and the self-monitoring experiments. Top figure. Presence hallucination (PH) 
experimental design. Participants moved the master robot of the robotic system while receiving haptic feedback on their back from the 
“follow” robot. Critically, the tactile feedback could be either temporally synchronous to their movements or asynchronous through 
the introduction of a 500-ms delay. After 180 s of stroking, participants responded to the PH questionnaire. This was repeated for 
both synchronous and asynchronous conditions, in a randomized order. Bottom figure. Auditory misattribution experimental design. 
Participants moved the master component of the robotic system while receiving haptic feedback on their back from the “follow” 
component. Again, the tactile feedback could be either temporally synchronous to their movements or asynchronous. After 60 s of 
stroking, participants heard words either in their own voice or in the voice of another person and were required to judge if  the word was 
in their own voice or that of another person. Each block included 25 words and was repeated 4 times. 
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Auditory Misattribution Experiment

Overall accuracy rates were high (M = 84.99, 95% 
CI = +/− 0.05) and did not differ between the groups (F(2, 
44) = 1.28, P  = .28), indicating that all participants were 
able to perform the self-recognition task with good ac-
curacy. The ANOVA on d′ scores revealed a significant 
interaction of Group and Synchrony (F(2, 44) = 6.68, 
P  = .002, partial η 2 = 0.23). Post hoc analysis indicated 
that this was driven by reduced d′ for the PE + group in 
the asynchronous condition (M = 2.25, 95% CI  =  +/− 
0.45) compared to the synchronous condition (M = 2.77, 
95% CI = +/− 0.47, P  =  .0003). Thus, the asynchronous 
stimulation decreased the PE + patients’ ability to discrim-
inate their own voice from another’s voice. This difference 
in d′ for the PE + group in the asynchronous condition 
resulted from both a reduction in the hit rate (0.85–0.79) 
and a rise in the rate of false alarms (0.1–0.13). This in-
dicates a reduction of auditory self-discrimination for 
both self  and other voices. There was no significant main 
effect of Group (F(2, 44) = 0.95, P  = .39), nor any main 
effect of Synchrony (F(1, 44) = 1.1, P  = 0.28; figure  3), 
indicating that this decrease was specific to the PE + group 
during the asynchronous condition. This difference in sen-
sitivity could not be explained as a consequence of a sub-
jective change in the criterion, as the ANOVA run on beta 
values showed no main effect of Group (F(2, 44) = 0.57, 
P  = .56), no main effect of Synchrony (F(1, 44) = 0.59, 
P  = .44), nor a significant interaction (F(2, 44) = 0.24, 
P  = .78). Although not a primary outcome, reaction times 
were also recorded and analyzed (see supplementary mate-
rial and supplementary figure S1 for further analysis).

Discussion

Here we show that robotically induced sensorimotor 
conflicts can experimentally generate the PH, extending 

previous findings from healthy participants37 to early psy-
chosis patients. Critically, the same sensorimotor con-
flict induced a decrease in self-monitoring during the 
auditory-verbal task, only observed in PE + patients, 
who present symptoms of external control such as AVH 
and other passivity experiences.

These findings indicate that experimentally induced, 
task-irrelevant sensorimotor conflict can cause source-
monitoring errors for auditory-verbal stimuli in PE + pa-
tients, supporting cognitive models of schizophrenia 
which state that deficits in self-related processing are re-
lated to deficient sensorimotor prediction.5,23,42 While in-
fluential previous research has shown that schizophrenia 
patients have reduced self-monitoring and sensory at-
tenuation for self-generated actions,17,19,20,31 this is, to the 
best of our knowledge, the first study to show experimen-
tally a causal link between a task-irrelevant sensorimotor 
conflict and the induction of an online auditory-verbal 
misattribution. Interestingly, this effect is in line with a 
decreased ability for self-other discrimination, as dis-
crimination errors were present both for one’s own voice 
and for the voice of another person. Importantly, this ef-
fect was not due to changes in the response criterion or 
to general differences in performance between the psy-
chosis and healthy individuals, and was not observed in 
the experimental control condition. This work has some 
limitations that should be mentioned. Although the PH 
was found in all participants, no differences were found 
in the subjective experience of the PH between groups. 
This may stem from reduced sensitivity of subjective, ex-
plicit reports of the PH vs more objective measures of its 
effects.

Previous work has shown that the brain network re-
lated to PHs is comprised of temporoparietal, insular, 
and frontoparietal nodes, which are key regions in a net-
work of multisensory and sensorimotor areas underlying 

Fig. 2.  Induction of a presence hallucination by sensorimotor conflict. Subjective ratings indicated that the sensorimotor conflict in 
the asynchronous vs synchronous feedback condition induced a feeling of a presence in all experimental groups (left plots, controls; 
middle plot PE + patients; right plot, PE− patients), extending previous findings in healthy participants to psychosis patients. Contrarily, 
synchronous stimulation induced a feeling of self-touch.
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bodily self-consciousness.43 This was revealed using le-
sion mapping in patients with PHs caused by neurolog-
ical disease.37 In particular, the temporoparietal junction 
is a multisensory region critical for self-location and first-
person perspective, and neurologically or electrophysio-
logically induced alterations of this area have been shown 
to induce altered states of self-consciousness such as the 
so-called out-of-body experiences and PH.44,45 The in-
sular cortex is considered a fundamental cortical hub in-
tegrating interoceptive and exteroceptive stimuli45–49 and 
is involved in bodily self-representation49,50 and source 
monitoring.51 Insular lesions have been linked to distor-
tions in bodily experience, such as somatoparaphrenia50 
and heautoscopy.52 The insular cortex is also altered in 
schizophrenia51,53 and is related to auditory hallucin-
ations.26,54 Although not tested directly in the present 
study, future studies may reveal that the regions causing 
PHs in neurological patients are also of relevance for PH 
in psychiatric patients as well as self-monitoring deficits 
and related symptoms, including AVHs in schizophrenia.

To conclude, this work presents a novel link between 
sensorimotor conflicts and self-monitoring in psychosis. 
We show not only that sensorimotor conflicts can in-
duce a sensation of an external agent (PH) but also that 
such conflicts propagate to other sensory and cognitive 
processes causing self-monitoring errors in the auditory-
verbal domain.  Using a novel approach combining ro-
botics, behavioral paradigms, and psychophysics, we 
show for the first time that psychotic-like symptoms can 
be induced by sensorimotor conflicts in patients and thus 
relate to processes known to alter the representation of 

the bodily self. These findings open the way for novel ex-
plorations of the mechanisms for different levels of self-
disorder in psychosis.

Supplementary Material

Supplementary data are available at Schizophrenia Bulletin 
online.
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