Skip to main content
. 2020 May 30;10(6):358. doi: 10.3390/diagnostics10060358

Table 5.

Performance achieved by the deep learning (DL) models in classifying the pediatric CXR dataset (baseline) into bacterial and viral categories. Here, Acc.: accuracy, Sens.: sensitivity, Prec.: precision, F: F-score, and MCC: Matthews correlation coefficient.

Models Acc. AUC Sens. Spec. Prec. F MCC
Custom WRN 0.8974 0.9534 0.9381 0.8311 0.9008 0.9191 0.7806
VGG-16 0.9308 0.9565 0.9711 0.8649 0.9216 0.9457 0.8527
Inception-V3 0.9103 0.937 0.9587 0.8311 0.9028 0.9299 0.8085
Xception 0.9282 0.954 0.9546 0.8852 0.9315 0.9429 0.8469
DenseNet-121 0.9026 0.9408 0.967 0.7973 0.8864 0.925 0.7931
NASNet-mobile 0.9282 0.9479 0.9753 0.8514 0.9148 0.944 0.8477

Bold numerical values denote superior performance.