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Background: Working memory (WM) deficit is a key fea-
ture of schizophrenia that relates to a generalized neural 
inefficiency of extensive brain areas. To date, it remains 
unknown how these distributed regions are systemically 
organized at the connectome level and how the disrup-
tion of such organization brings about the WM impair-
ment seen in schizophrenia.  Methods: We used graph 
theory to examine the neural efficiency of the functional 
connectome in different granularity in 155 patients with 
schizophrenia and 96 healthy controls during a WM 
task. These analyses were repeated in another inde-
pendent dataset (81 patients and 54 controls). Linear re-
gression analysis was used to test associations of altered 
graph properties, clinical symptoms, and WM accuracy 
in patients. A  machine-learning approach was adopted 
to study the ability of multivariate connectome features 
from one dataset to discriminate patients from controls 
in the second dataset. Results: Small-worldness of the 
whole-brain connectome was significantly increased in 
schizophrenia during the WM task; this increase is re-
lated to better (though subpar) WM accuracy in patients 
with more severe negative symptom burden. There was a 
shift in the degree distribution to a more homogeneous 
form in patients. The machine-learning approach clas-
sified a new set of patients from controls with 84.3% 
true-positivity rate for schizophrenia and 71.6% overall 
accuracy. Conclusions: We demonstrate a putative mech-
anistic link between connectome topology, hub redistribu-
tion, and impaired n-back performance in schizophrenia. 
The task-dependent modulation of the connectome relates 
to, but remains inefficient in, improving the performance 
above par in the presence of severe negative symptoms. 

Key words:   schizophrenia/functional connectome/neural 
efficiency/graph theory/working memory

Introduction

Neurocognitive dysfunction is one of the core features of 
schizophrenia.1,2 Of the various neurocognitive deficits in 
schizophrenia, working memory (WM) deficit, the failure 
to represent, maintain, and update information in a short 
period of time, is a key feature that determines the degree 
of successful functional recovery.3 WM deficits persist de-
spite treatment, resulting in a lifelong illness burden4 that 
may also contribute to recurrent relapses5 and the burden 
of negative symptoms.6–9 Negative symptoms have been 
evidenced as the symptom dimension most strongly asso-
ciated with neurocognitive function10 and often mediating 
the relationship between neurocognition and functional 
outcome.11,12

A large body of research probing the neural mech-
anism of WM dysfunction in schizophrenia has revealed 
that patients have functional hyperconnectivity within 
the default-mode network (DMN),13,14 hypoconnectivity 
within the frontoparietal network (FPN),15,16 and re-
duced functional interaction among large-scale networks 
including the DMN, FPN, cingulo-opercular or salience 
network.17,18 Highly connected core hubs show reduced 
overall functional connectivity but peripheral hubs that 
are typically less connected in healthy subjects exhibit 
higher functional connectivity during n-back task.19 In 
addition, patients also show a failure to deactivate DMN 
regions, but recruit (activate) other task-irrelevant regions 
to perform WM tasks.20,21 Taken together, these results 
suggest that a generalized neural inefficiency affecting ex-
tant cortical and subcortical areas with a redistribution 
of core hubs during WM performance in schizophrenia.22

The employment of mathematical graph theory tools 
to functional neuroimaging data (functional topology) 
has provided an intuitive method to study the neural 
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efficiency at a whole-brain (connectome) level. Functional 
connectome studies have revealed that brain networks are 
organized in an efficient small-world manner (ie, a highly 
clustered/segregated neighborhood of brain regions, 
with occasional integrative long-distance connections) 
that confers high efficiency of information processing 
at relatively low connection cost.23,24 Such small-world-
like organization of task-related networks predicts 
interindividual differences in WM capacity as well as 
within-subject variations in WM performance among 
healthy individuals.25 In particular, increased integration 
instead of segregation when faced with task demands ap-
pears to confer an adaptive advantage to functional net-
works.26 To date, it is unclear whether such an adaptive 
advantage toward neural efficiency is impaired in patients 
with schizophrenia when facing task demands.

Among patients with schizophrenia, several 
studies related to electroencephalography (EEG), 
functional magnetic resonance image (fMRI), and 
magnetoencephalography (MEG) have identified a sub-
optimal small-world configuration during WM perfor-
mance when compared with healthy controls,26–29 but the 
results have been mixed.30 While some groups noted re-
duced small-worldness due to reduced local clustering 
(desegregation),31,32 others have observed normal26,27 
or increased segregation33 as well as disintegration (in-
creased path length33). These conflicting results are likely 
due to the differences in imaging modality, task differ-
ences, variations in illness severity as well as the definition 
of nodes (eg, He et  al restricted the network construc-
tion to a subset of task-related networks) and edges in 
the connectome. In particular, all of the previous fMRI 
studies (synthesized by Kambeitz et  al30) employed un-
weighted binary matrices with proportional edge-density 
thresholds to construct the functional connectome where 
edges are treated as present or absent arbitrarily. While 
studying dysconnectivity disorders such as schizophrenia, 
wherein systematic differences exist in the overall strength 
of connectivity when compared with healthy controls, the 
binarization approach results in noisy and spurious edges 
with low connectivity strength in the patient group. This 
produces an apparent (but inconsistent) group difference 
in topological metrics, with a shift toward randomness 
in the group with weaker overall connectivity that can be 
avoided when using a weighted matrix approach.34,35

The aim of the current study was to investigate how 
functional connectome topology is affected during WM 
performance in schizophrenia. To this end, we con-
structed weighted networks from 2-back WM fMRI data 
to test the hypothesis that aberrant small-world topology 
and redistribution of functional hubs occur during the 
WM task in schizophrenia. We expected a higher burden 
of negative symptoms to be associated with more severe 
WM deficits, and this relationship is being influenced by 
altered small-world topology. We also tested if  the top-
ological indices from WM fMRI data carry sufficient 

illness-specific information that can discriminate the pat-
terns observed in a patient with schizophrenia from the 
patterns that come from healthy controls. To this end, we 
employed a Support Vector Machine (SVM) approach to 
discriminate patients from controls using the independent 
discovery and validation datasets of n-back fMRI. This 
allowed us to estimate the generalizability (ie, the de-
gree to which the pathophysiological model in one group 
translates to a new group), an essential step for transla-
tional neuroimaging.36

Methods

Participants

The study cohort comprised a principal dataset (Dataset 
1) of 155 patients and 96 HCs and an independent repli-
cation dataset (Dataset 2) of 81 patients and 54 HCs. All 
participants were right-handed native Chinese speakers 
and they were provided written informed consent for the 
protocols approved by the Department of Psychiatry, the 
Second Xiangya Hospital of Central South University, 
China. Detailed descriptions of all participants are pre-
sented in the supplementary material S1.

MRI Data Acquisition and Preprocessing

Dataset 1 and dataset 2 were acquired on a Philips 
Achieva 3-T scanner and Siemens Allegra 3-T scanner, 
respectively. Scanning factors differed slightly across sites 
(detailed information is presented in supplementary ma-
terial S2), and these differences were taken into account 
during preprocessing.

Data preprocessing was performed using the DPABI 
toolbox. Preprocessing included: discarded several im-
ages to reach magnetic saturation, slice timing cor-
rection, motion realignment, spatial normalization to 
Montreal Neurologic Institute space, and smoothing. 
The preprocessing details are presented in supplementary 
material S3.

Network Construction

The adopted paradigm (detailed information is presented 
in supplementary material S3) consists of two types of 
conditions that differed in terms of WM load (0-back and 
2-back). As the 0-back is not considered to be a WM task, 
we used it to help subjects familiarize themselves with the 
task procedure. Therefore, in the construction process of 
a functional connection matrix, we only concatenated the 
fMRI volumes obtained during the 4 blocks of 2-back 
performance.31 The mean time series was extracted from 
each of the 264 nodes using 6-mm spheres defined by the 
Power atlas.37 A 264 × 264 symmetric matrix was gener-
ated for each participant by computing the Pearson cor-
relation coefficients between the time series for each pair 
of ROIs. The resultant matrix was converted to normally 
distributed scores by using the Fisher’s z transformation, 
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and the variance due to the linear effects of age, gender, 
and education years was removed to derive the corrected 
symmetric matrix.

Network measures at each density (sparsity) were cal-
culated on the 264 × 264 weighted adjacency matrices, 
which were acquired by thresholding the symmetric ma-
trices at a series of network densities, ranging from top 
10% to 50% of all connections, with 2% increments, in 
line with a prior study.38 The reason for choosing this 
range density is that network measures are less prone to 
nonbiological artifacts and noise in this density range.39 
Negative correlations were set to zero, in line with other 
studies of functional connectome construction.40,41 We 
did not use binarized matrices as binarization is arbitrary 
and can result in the loss of important illness-related bi-
ological features that can be captured by weighted net-
work approaches.34,35 We used the Brain Connectivity 
Toolbox42 to quantify network measures and the Graph 
Analysis Toolbox43 to compare the functional networks 
of patients and HCs.

Network Properties

We calculated sigma (small-worldness) and degree cen-
trality on weighted, undirected networks. As sigma is 
a ratio of gamma (normalized clustering coefficient) 
to lambda (normalized characterized path length) 
(ie,sigma = gamma

lambda), we also report gamma and lambda 
values. These normalized topological properties must 
be benchmarked against corresponding mean values of 
null random graphs (ie, gamma = C

Cnull
 and lambda = L

Lnull

, where C indicates the clustering coefficient, and L in-
dicates the path length). We generated 20 null random 
networks44,45 with the same number of nodes, degree, and 
degree distribution as the network of interest. We further 
compared the clustering coefficient (strongly associated 
with gamma) of each node to obtain the regional altera-
tion of the WM-related brain networks of patients with 
schizophrenia compared with that of HCs. We plotted 
the cumulative degree distribution curve of each group 
and defined nodes with greater than one standard devi-
ation from the mean of all nodal mean degree values as 
“hubs” to identify the core component in facilitating in-
tercommunication during the WM task. Previous studies 
have reported that brain functional networks display an 
exponentially truncated power-law distribution of nodal 
degree,46,47 that confers critical scale-free properties to the 
connectome. In line with the prior work on functional to-
pology in schizophrenia,46,48we did not expect this funda-
mental property to be altered in schizophrenia.

As influenced by the long-standing hypotheses of 
function segregation, an increasing body of studies con-
cerning mental illness and cognition paid more attention 
to some particular subnetworks related to cognition,49 
but not the whole brain. In parallel with these studies, 
we parcellated the whole brain into subnetworks based 

on Power atlas, isolated brain nodes of each subnetwork, 
and analyzed their topological characteristics (the details 
were given in the supplementary material S5).

Statistical Analysis

Group-related differences in demographic, clinical charac-
teristics, and WM task performances were analyzed using 
a one-way analysis of variance and chi-square (χ2) tests. 
Additionally, we conducted a nonparametric permuta-
tion test with 1000 repetitions to test the statistical signif-
icance of group-related differences in network properties 
across densities (more information in supplementary ma-
terial S6). Furthermore, statistical maps of regional prop-
erties were generated after multiple comparison analysis 
(FDR corrected using the Benjamini-Hochberg method 
with P < .05). It is worth noting that dataset 2 was used 
only for validation; therefore, the correction for multiple 
comparisons was not applied for dataset 2. Importantly, 
all of the above analyses were conducted in dataset 1 and 
dataset 2 separately.

Exploratory Analysis

Moderation Analysis..  We conducted a linear regression 
analysis to test the association of clinical symptoms, WM 
performance, and network properties. In this linear re-
gression model, we defined the accuracy of 2-back as the 
dependent variable, clinical symptoms including SANS 
and SAPS as the predictor, global properties as the mod-
erator variable, and scanning site as the control variables. 
We repeated the aforementioned moderation analysis 
in the 0-back condition and conducted a linear regres-
sion analysis for testing the association of sigma (under 
2-back), medication dose, and WM accuracy.

Machine Learning..  We employed global, subnetwork-
level, and nodal topological properties for the subse-
quent pattern recognition using SVM toolkit LIBSVM 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The kernel 
function of SVM was set as the polynomial type, and other 
all related parameters were set as default. The general per-
formance of the classifier was evaluated using two ap-
proaches. One approach used a 5-fold cross-validation 
after pooling dataset 1 and dataset 2; the second approach 
employed dataset 1 for classifier training and dataset 2 
as the testing sample. Evaluation indices were calculated 
to assess classifier performance. Details of our machine-
learning analysis are presented in supplementary material 
S7.

Results

Participant Characteristics

The demographic and clinical variables are presented 
in table  1. In dataset 1, we observed group-related dif-
ferences with respect to gender (P = .025, χ2 = 5.0) and 
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years of education (P < .001, t  =  −7.1). In dataset 2, 
we observed group-related differences in terms of age 
(P < .001, t  =  −7.4) and years of education (P < .001, 
t = −4.58). In both datasets 1 and 2, the performance of 
the patient group was worse than that of the HCs under 
2-back (dataset 1: P < .001, t = −5.6; dataset 2: P < .001, 
t = −4.8).

Network Properties

We observed that patients with schizophrenia showed 
consistent results of all calculated global properties of 
the whole brain under 2-back in both datasets, compared 
with HCs. As presented in figure 1, patients showed in-
creased sigma under 2-back in both datasets (dataset 1: 
patients mean(SD) = 31(2.8), HCs mean(SD) = 29.2(4), 
FDA permutation test P < .001; dataset 2: patients 
mean(SD) = 30.6(2.9), HCs mean(SD) = 28.4(3.6), FDA 
permutation test P = .003), increased gamma (dataset 1: 
patients mean(SD) = 33.8(3), HCs mean(SD) = 31.9(4.2), 
FDA permutation test P < .001; dataset 2: patients 
mean(SD) = 34.4(3.3), HCs mean(SD) = 32.1(3.8), 
FDA permutation test P = .0015), but the altera-
tion of lambda was not observed (dataset 1: patients 
mean(SD) = 22.6(0.5), HCs mean(SD) = 22.8(0.6), 
FDA permutation test P = .064; dataset 2: patients 
mean(SD) = 23.3(0.7), HCs mean(SD) = 23.5(0.7), FDA 
permutation test P = .259), compared with HCs. To en-
sure that our choice of the atlas did not bias findings, 
analyses of global properties were recomputed with AAL 
atlas, and consistent findings were observed (more de-
tails in supplementary material S8 and supplementary 
figure S2). No significant differences were observed when 

the sigma of the female patients was directly compared 
with male patients (See supplementary material S9). 
Furthermore, the examination of 0-back control con-
dition revealed that topological changes attributable to 
simple attention and motor function during the WM task 
are relatively small (more information in supplementary 
material S10 and supplementary tables S1 and S2).

Given the illness-specific changes in global clustering 
(gamma), we investigated the regional clustering coeffi-
cients and observed that in patients with schizophrenia 
nodes with higher clustering coefficient were distributed 
on the FPN and cingulo-opercular network (see figure 2 
and table 2). The results of dataset 2 are presented in sup-
plementary table S3. In the comparison of global proper-
ties on each isolated subnetwork, we did not observe any 
significant alteration of global properties of all subnet-
works in patients with schizophrenia (see supplementary 
figure S1).

In accordance with previous studies,46 we found the 
degree distribution of brain functional networks that 
generated in the current study followed an exponentially 
truncated power-law distribution (see supplementary 
figure S4). The degree distribution of patients with schiz-
ophrenia showed a shift to a more homogeneous form 
compared to HCs, with a reduction in the probability 
of finding high-degree as well as very low-degree nodes 
(see figure 3). There were significant differences between 
groups in terms of mean degree distribution parameters 
across densities: rank-ordering patients with schizo-
phrenia > HCs for the power-law exponent, α (patients 
mean(SD) = 0.3(0.37); HCs mean(SD) = 0.15(0.37) 
two-sample t-test P = .005, t = 2.9), but rank-
ordering HCs > patients with schizophrenia for the 

Table 1.  Demographic and Clinical Characteristics of Patients With Schizophrenia and HCs 

 

Dataset 1 Dataset 2

Patients  
(n = 155)

HCs  
(n = 96)

P T/χ2 Patients  
(n = 81)

HCs  
(n = 54)

P T/χ2

Age (y) 24.06 ± 5.6 23.96 ± 4.2 .13 1.53 18.08 ± 3.3 23.13 ± 3.7 <.001* −7.36
Sex(M/F) 84/49 38/42 .025* 5.0 33/29 25/20 0.81 0.057
Education (y) 11.78 ± 2.6 14.2 ± 2.1 <.001* −7.1 10.95 ± 2.6 13.79 ± 3.8 <.001* −4.58
SAPS 21.14 ± 15.9 N/A N/A N/A 26.58 ± 20.6 N/A N/A N/A
SANS 34.4 ± 27.2 N/A N/A N/A 44.38 ± 40.3 N/A N/A N/A
Total dosage (mg/d) 8.7 ± 4.6 N/A N/A N/A 13 ± 8 N/A N/A N/A
Illness duration (M) 23.3 ± 29.2 N/A N/A N/A 24 ± 25.7 N/A N/A N/A
Treat_duration (M) 4.62 ± 9.7  N/A  N/A N/A  11.6 ± 15.9  N/A  N/A  N/A
WAIS_information 16 ± 5.2 20.8 ± 4.7 <.001* −6.7 15.8 ± 5.9 18.7 ± 5.4 .002* −3.2
WAIS_digit_Sym 63.8 ± 15.6 88.8 ± 13.7 <.001* −11 60.2 ± 17.8 89 ± 17 <.001* −9
ACC_of_2-back (%) 69 ± 18 83 ± 13 <.001* −5.6 66 ± 23 84 ± 14 <.001* −4.82
ACC_of_0-back (%) 79 ± 26 93 ± 14 <.001* −4.6 85 ± 22 93 ± 13 .023 −2.6

Note. n, number; SAPS, Scale for the Assessment of Positive Symptoms; SANS, Scale for the Assessment of Negative Symptoms; 
Treat_duration, Treatment duration; ACC_of_2Back, Accuracy under the 2-back condition; WAIS_information, information subscale 
of Wechsler Adult Intelligence Scale-Chinese Revised; WAIS_digit_Sym, digit symbol subscale of Wechsler Adult Intelligence Scale-
Chinese Revised; ACC_of_0Back, Accuracy under the 0-back condition; N/A, not available; antipsychotic dosage refers to the dose 
equivalents for Olanzapine.70

*P value was calculated by independent two-sample t-test.
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exponential cutoff, β (patients mean(SD) = 17.4(25.8); 
HCs mean(SD) = 33.1(29.2); two-sample t-test P < .001, 
t = −3.9). The number of hubs (ie, nodes > 1 SD of overall 
degree38) was 54 in the HCs and 47 in patients with no ob-
vious discrepancies in the location of the hub regions in 
the two groups (see figure 3 and supplementary table S4). 
Notably, these findings were consistent with dataset 2 (see 
supplementary figure S5 and supplementary table S5).

Exploratory Analysis

Moderation Analysis..  We further assessed whether 
the altered sigma and gamma can moderate the im-
pact of  clinical symptoms on WM performance. As 
shown in figure 4, sigma moderated the relationship be-
tween SANS and WM performance (β = 0.2, P = .027, 
t = 2.236). The detailed information of  the moderation 
analysis was presented in supplementary tables S6 and 
S7. There was no moderating effect for sigma on the re-
lationship between SAPS and WM performance and for 
gamma on the relationship between clinical symptoms 
and WM performance. There were no moderating effects 
for sigma on the relationship between medication dose 
and WM performance. The sigma from 0-back task had 
no moderating effect on the relationship between clinical 

symptoms and WM performance (see supplementary 
figures S3 and S6).
Machine Learning..  From the two approaches used for 
evaluating the discriminating performance of the top-
ological properties of the brain network, we achieved 
classification results with average accuracy, AUC, true-
positive rate for schizophrenia, true-positive rate for HCs, 
of 71.4%, 0.69, 85.7 %, and 52.8%, respectively. The eval-
uation parameters of those two validation approaches are 
presented in supplementary table S8 and their receiver-
operator characteristics plotted in figure 4.

Discussion

To our knowledge, this is the first study to demon-
strate consistent and generalizable changes in small-
world global topology during WM performance across 
2 datasets in schizophrenia. We report 3 key observa-
tions. Firstly, there is a significant increase in local 
clustering (especially in the FPN network), without no-
table changes in global integration in the whole-brain 
functional connectome during a WM task in schizo-
phrenia. This resulted in an overall increase in small-
worldness among patients. Secondly, there is a shift in 
the degree distribution to a more homogeneous form 

Fig. 1.  Global properties of the whole-brain functional connectome calculated on Power atlas of patients with schizophrenia compared 
to that of HCs. The range of densities is 0.1: 0.02: 0.5, and symbol “*” represents P < .05. (A) Comparison of mean sigma across 
densities between two groups in dataset 1; (B) comparison of mean sigma across densities between two groups in dataset 2; (C) 
comparison of mean gamma across densities between two groups in dataset 2; (D) comparison of mean gamma across densities between 
two groups in dataset 2; (E) comparison of mean lambda across densities between two groups in dataset 1; (F) comparison of mean 
lambda across densities between two groups in dataset 2. 
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(fewer hubs but more non-hubs) in patients with schiz-
ophrenia. Thirdly, in the presence of  more severe neg-
ative symptom burden, an increase in small-worldness 
was associated with better WM accuracy though not 
reaching the performance of  healthy controls. Thus, the 
context (task)-dependent modulation of  the functional 
connectome appears to be inefficient to improve perfor-
mance above par in a subgroup of  patients with schiz-
ophrenia. The results from SVM analysis also indicate 
that the interplay between various levels of  topological 

parameters carries sufficient illness-specific information 
relevant to schizophrenia.

Increase in small-worldness is not associated with a con-
comitant increase in accuracy among patients and controls 
in our sample, in contrast to the performance advantage 
reported elsewhere in healthy controls.26,50 One reason for 
this might be the nature of topological change seen in schiz-
ophrenia; the small-world index is higher in patients due to 
an increased segregation, with no concomitant increase in 
integration. Interestingly, among healthy adults, increased 

Fig. 2.  Nodes showing significantly altered clustering coefficient in patients with schizophrenia compared to HCs. (A) The bar plots 
of the nodes with significantly altered clustering coefficient; (B) the spatial distribution of nodes with significantly altered clustering 
coefficient in patients.
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segregation appears critical for motor execution, whereas 
distal integration is critical for working memory.50 It is im-
portant to note that ketamine infusion, which provides 
a pharmacological model of acute psychosis, selectively 
reduces distal connectivity51–53 but increases global54 and 
short-distance regional connectivity55 in humans and non-
human primates. In terms of network topology, this trans-
lates to less-integrated and more-segregated functional 
connectome,56,57 an effect similar to our own observations 
in schizophrenia. Insofar as invoked changes in functional 

connectivity relate to network plasticity,58,59 we speculate 
that the observed pattern in patients may indicate a tilt to-
ward preferential proximal plasticity, as opposed to distal 
integrative plasticity, that may be linked to NMDA-related 
synaptic inefficiency. This pattern of segregation may aid 
in improving task performance to some extent (eg, by op-
timizing specific modules such as the motor system), es-
pecially when the demand is low, but not sustainable (or 
produce functional interference) at higher loads, probably 
contributing to the leftward shift of the typical inverted-U 

Table 2.  Nodes Showing Significantly Altered Clustering Coefficient in Patients With Schizophrenia Compared to HCs in Dataset 1

Index Coordinate (MNI) Subsystem Patients Mean(SD) HCs Mean(SD) FDR Corrected (P value)

Patients with schizophrenia > HCs
1 [−51, 8, −2] Cingulo-opercular 24(8.4) 23.7(9.2) <.001
2 [49, −42, 45] Frontoparietal 22.2(6.7) 21.4(8.5) <.001
3 [44, −53, 47] Frontoparietal 21.3(6.9) 20.3(8.4) <.001
Patients with schizophrenia < HCs
None

Note. P value was calculated by FDA permutation test.

Fig. 3.  Hubs of the whole-brain functional connectome in patients with schizophrenia and HCs. (A) The spatial distribution of hubs in 
patients with schizophrenia and HCs; (B) the cumulative degree distribution in patients with schizophrenia and HCs. (Inset) boxplots 
represent the within-group distributions and between-group differences in the two parameters: α (the power-law exponent) and β (the 
exponential cutoff); Symbol “*” indicates significant between-group differences.
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shaped trend in WM-related neural recruitment60 in pa-
tients with schizophrenia.61,62

We noted a notable shuffle in the degree distribution 
curve, with patients having significantly reduced high-
degree hubs as well as low-degree nodes, indicating a 
degree of “liberalization” of degree centrality. This is 
consistent with the observation of hub de-escalation and 
redistribution during n-back task made in the study of 
Palaniyappan and Liddle et  al,19 the observation of ho-
mogenization of degree during resting state made in the 
study of and Lo et al, and the observation of less fat-tailed 
degree distribution during the odd-ball task made in the 
study of Ma et al.46,63 Such an effect is likely in the context 
of widespread dendritic reduction (or pruning), wherein 
cortical hubs with highest number of functional synaptic 
connections get preferentially de-escalated, whereas the 
peripheral hubs increasingly come “on-line” when task 
demands arise.64 Longitudinal neuroimaging studies are 
required to determine the relationship between structural 
brain changes and hub redistribution in schizophrenia.

Contrary to our initial expectation, we noted no signif-
icant relationship between WM accuracy and the burden 
of negative symptoms. In part, this may be due to the 

pervasive selection bias in case-control studies of schizo-
phrenia, wherein patients with low motivation, anhedonia, 
and apathy often do not participate in study recruitment, re-
sulting in insufficient variance in negative symptom severity 
to make meaningful related observations. Nevertheless, 
we noted that in the presence of higher degree of nega-
tive symptoms, increased small-worldness (though not in-
creased segregation per se) facilitated WM performance, 
albeit not reaching the level seen in healthy controls. If  
sigma can be taken as a physiological index of effort needed 
to achieve the desired WM accuracy, our mediation results 
indicate that in the presence of higher levels of negative 
symptoms, much higher physiological efforts are needed to 
reach even a modestly higher WM accuracy, but the accu-
racy level thus achieved is still considerably lower than what 
HCs achieve with less effort. Such inefficient compensa-
tion did not occur in relation to positive symptom burden, 
underscoring the link between the pathophysiology of WM 
deficits and negative symptoms in schizophrenia.

Our study had a number of strengths, including the 
use of two independent samples of patients performing 
the same task, a fairly large sample, the use of state-
of-art graph-theoretical methods, and cross-validation 

Fig. 4.  Exploratory analysis results. (A)The moderating model of sigma on the relation of symptoms and WM performance; (B) The 
receiver-operating characteristics of the machine-learning analysis.
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approaches to demonstrate reproducibility. Nevertheless, 
it is important to note that the results pertaining to re-
gional nodal properties were somewhat different be-
tween the 2 datasets. While this may be due to a type 2 
error in dataset 2 (as the sample size was ~50% less than 
dataset 1), it is also worth noting that dataset 2 com-
prised of subjects with adolescent-onset schizophrenia. 
Notwithstanding this, the observed consistency of aber-
rant task-related small-worldness and degree distribution 
supports the claim that these changes are a cardinal fea-
ture of the pathophysiology of schizophrenia, irrespec-
tive of the age of illness onset. Further, we used a limited 
n-back paradigm that precluded examination of the par-
ametric effect of WM load. Load-sensitive WM tasks 
that provide meaningful measures in patients with schiz-
ophrenia are required to confirm our interpretations. 
All patients with schizophrenia were on antipsychotics. 
Medication administration may influence our findings, 
but the fact that our findings were replicated across 2 
samples with different duration of medication exposure 
suggests that our observations are likely to withstand the 
confounding effects of antipsychotics.

Treatment strategies to alleviate WM deficits in schiz-
ophrenia are of great interest, though to date, empirical 
studies have shown mixed results.65 Lack of understanding 
of the neural basis of WM performance in schizo-
phrenia remains as a critical gap in the development of 
novel disease-modifying, pro-cognitive intervention.66,67 
Furthermore, animal models of cognitive impairment 
are of limited utility to study the subtle aspects of cog-
nition that are unique to humans, with many putative 
procognitve interventions in animal studies failing to 
show comparable effects in humans.68,69 Utilizing a reli-
able human neuroimaging methodology could allow us to 
test the efficacy of putative interventions in humans at an 
early stage, thus providing an efficient filtering for agents 
to undergo later phase studies. By demonstrating a mech-
anistic link between inefficient functional segregation 
(clustering), hub redistribution, and impaired n-back per-
formance in schizophrenia, our study raises the possibility 
of an fMRI-based “engagement” target for developing 
novel WM-enhancing interventions (we also expanded 
this point in supplementary material S11). It also raises 
the question of whether treatments that increase distal in-
tegrative connectivity, rather than proximal clustering, are 
likely to be promising precognitive agents in schizophrenia.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online. 
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