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Abstract: Large-scale aluminum parts are used in aerospace and automotive industries, due to
excellent strength, light weight, and the good corrosion resistance of the material. Additive
manufacturing processes enable both cost and time savings in the context of component manufacturing.
Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of
large volume parts due to deposition rates in the range of kilograms per hour. Challenges during
the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties,
can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of
AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process.
Herein, correlations between the energy input and the resulting temperature–time-regimes show
the effect on resulting microstructure, weld seam irregularities and the mechanical properties of
additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using
the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse
advanced arc modes. These processing strategies were analyzed by means of energy input, whereby
the geometrical features of the layers could be controlled as well as the porosity to area portion to
below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties
like tensile strength and material hardness can be adapted throughout the energy input per unit
length significantly.

Keywords: additive manufacturing; aerospace; aluminum; automotive; GMAW; grain size;
homogenous properties; microstructure; temperature; wire arc additive manufacturing

1. Introduction

Aluminum and its alloys can be used in a wide variety of applications due to their combination
of favorable properties. They are characterized by low density, favorable strength and deformation
properties as well as high thermal and electrical conductivity. In addition, aluminum alloys exhibit
high corrosion resistance, good weathering and chemical resistance due to the development of a
passivating oxide layer [1,2].

Based on the special requirements of the aerospace, automotive and tool-making industries, the
production of complex metal components including aluminum, titanium and nickel alloys has become
a major focus in recent years. Due to its low cost and material properties, aluminum in particular is of
great relevance for the production of large-volume lightweight components. Subtractive manufacturing
methods such as milling or turning reach their technical process limits in terms of maximum available
space or fabrication of undercuts in complex components. This also results in a high chip volume,
which reduces the efficiency of the processes.
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In recent years, additive manufacturing processes have gained increasing importance in
industrial applications due to specific advantages such as material utilization, freedom of design and
timesaving [3,4]. A suitable approach for the additive manufacturing of large volume components is the
usage of arc-based manufacturing processes. In particular, wire arc additive manufacturing (WAAM)
with gas metal arc welding (GMAW) is of high interest due to high deposition rates, material efficiency
> 90% and the almost unlimited space available [5]. In addition, WAAM offers the possibility to create
complex geometries, which allows the production of novel, lightweight structures [6]. Although,
the manufactured parts exhibit surface roughness, which requires post processing with subtractive
methods [7,8].

However, WAAM of aluminum materials is limited by defects such as porosity and solidification
cracks [9,10]. Porosity is the main problem and can severely limit the mechanical properties of the
components, such as component strength or ductility [11,12]. In contrast to single-pass welding, the
deposited metal is built layer-wise during additive manufacturing. Accordingly, the heat input acts as
a low-temperature heat treatment for the previously deposited layer, which influences the growth of
pores, especially in age-hardenable aluminum alloys [12]. However, the porosity, the microstructure,
the mechanical properties and the final contour of aluminum parts depend to a large extent on
the choice of the arc-welding process, the process parameters, such as the welding speed, and the
resulting heat input [9,11,13–15]. Porosity is also affected by other factors such as wire quality and
alloy composition [16,17], as well as interpass temperature [18,19], and depends on the microstructure
being formed [11,20].

An established method for WAAM with GMAW is the cold metal transfer (CMT) process from
Fronius and its variations in arc mode. Herein, polarity reversal of the welding current (CMT advanced
(CMT-ADV)) or the simultaneous pulse superimposition of the base current during positive polarity of
the wire electrode (CMT-pulse advanced (CMT-PADV)) [21] can effectively reduce the heat input [22].
The influence of different CMT arc modes and process parameters on porosity is of high interest in
scientific publications [11,14,20,23]. Fang et al. found that in welding with S Al 2319, the pore size
and the spatial distribution of the pores in the generated geometry are of relevance, in addition to the
proportion of pores in the total area. The area percentage varies considerably among the processes and
is lowest with 0.98% for the CMT-PADV arc [14]. Cong et al. conducted investigations with the same
material and came to the same results regarding the lowest porosity in the CMT-PADV process [11].
As a result, the porosity can be reduced by lowering the energy input due to a reduction of the peak
temperature and the shortened residence time at high temperatures [11,14]. Simultaneously, it was
found that the porosity in block structures is lower than in thin-walled structures. This is due to a
higher heat dissipation through a larger cross-sectional area and results in a smaller number of pores
and a finer microstructure [13]. Further investigations on the influence of the CMT process in WAAM
were carried out for aluminum alloys of the groups 2xxx [24], 6xxx [25] and 7xxx [26].

The group of aluminum–magnesium alloys are characterized by medium to high strength,
corrosion resistance and good fatigue properties. They are highly cold-workable and can be easily
welded if the magnesium content exceeds 3%. Al–Mg alloys are mainly rolled products. In addition,
they are used for the production of bars, tubes and wires, and are processed into drop forgings and
open-die forgings. Therefore, aluminum–magnesium alloys are part of the most important construction
alloys [27]. Derekar et al. compared the influence of the impulse arc process and the standard CMT
process on hydrogen solubility and thus on the formation and distribution of pores in the aluminum
alloy S Al 5183. It was found that lower porosities could be achieved with the CMT process [28].
Li et al. investigated the influence of pure argon and pure nitrogen as a shielding gas on the resulting
geometrical and technical properties of the alloy S Al 5356 by using a short arc WAAM process [29].

Another representative of this group with industrial relevance is the alloy AlMg5Mn (S Al 5556).
This alloy is used in automotive, wagon and ship building due to its high strength. Example applications
are stiffeners and seat cushion frames in automotive engineering [30]. To date, no studies have been
published on this material in the context of WAAM with GMAW. Accordingly, there is no information
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on the correlation of the CMT arc mode used and the process influencing variables with the resulting
microstructure and porosity. The same applies to the effects on the achievable mechanical properties.

2. Scope of the Investigations

The aim of this study was the systematic investigation of the aluminum alloy AlMg5Mn in wire-
and arc-based additive manufacturing. For this purpose, gas-shielded metal arc welding was applied
using the energy reduced and controlled short-arc technology. The focus is on the analysis of the
influence of the considered arc modes CMT, CMT advanced (CMT-ADV) and CMT-pulse Advanced
(CMT-PADV) on the energy input per unit length, the temperature–time curve and the resulting final
contour, microstructure and mechanical-technological properties. Thus, the selection of the appropriate
arc mode and the specific adjustment of the welding parameters should enable the additive production
of flawless primary structures. In order to achieve the goal, the process parameters, such as wire feed
or welding speed, were first varied in preliminary tests and small volume structures were welded.
Subsequently, the porosity of the samples was analyzed and the final contour was visually assessed.
Subsequently, the CMT process, which was used to achieve the lowest porosity, was used to investigate
buildup strategies for further reducing the porosity and increasing the final contour accuracy and
avoiding bonding defects. Subsequently, a large-volume wall structure was built up using the CMT
processes in the main tests and examined and compared with regard to the achieved final contour, the
microstructure and the mechanical-technical properties. Thus, a recommendation for the most suitable
arc mode for the additive manufacturing of AlMg5Mn using WAAM can be derived.

3. Materials and Methods

The experimental trials were carried out with a robot-supported experimental setup as shown
in Figure 1. The basic components for the welding process were a CMT Advanced 4000 R welding
power source (Fronius Deutschland GmbH, Neuhof-Dorfborn, Germany), a VR 7000-CMT wire feeder
with 4-roller drive (Fronius Deutschland GmbH, Neuhof-Dorfborn, Germany), a Robacta Drive CMT
push-pull robot welding torch (Fronius Deutschland GmbH, Neuhof-Dorfborn, Germany) and a hose
package with wire buffer (Fronius Deutschland GmbH, Neuhof-Dorfborn, Germany). As the handling
system, a KUKA KR 150-2 robot (KUKA Aktiengesellschaft, Augsburg, Germany) was used. For the
additive buildup process, the substrate was fixed on a welding table. The welding power source was a
digitally regulated GMAW power source, which enabled welding with the three energy-reduced arc
modes CMT, CMT-ADV and CMT-PADV, which were used in this investigation. The use of the KUKA
six-axis robot provided an accurate and repeatable torch movement with a positional repeatability of
0.06 mm.

The welding current, the arc voltage, the measurement data for determining the wire-feed speed
as well as the temperature on the surface of the structure at the defined measuring points during the
buildup process were acquired by a Dewetron DEWE-PCI 16 measuring system (Dewetron GmbH,
Grambach, Austria) with measuring cards, recorded and analyzed with the integrated data acquisition
software DEWESoft 7.1.1 (DEWESoft Deutschland GmbH, Unterensingen, Germany). An EWM
MWSTROM measuring box was integrated into the welding circuit to measure the current intensity.
Using the measured welding currents and arc voltages, the line energy can be calculated based on
Equation (1), where Es is the energy input per unit length, U is the arc voltage, I is the welding current
and vs is the welding speed. Since there are no constant current and voltage values for the arc regime
used and the average values falsify the result, the time-dependent Equation (2) is used. Irrespective of
the arc mode, the same time interval is integrated for the calculation of the energy input per unit length:

ES
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]
=

U·I
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[
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cm
s
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Figure 1. Experimental setup for the experimental trials using gas metal arc welding (GMAW). 
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proximity to the substrate, to analyze when the substrate reached thermal equilibrium and what 
temperature was reached in this state. The second measuring point was placed at a distance of 
approx. 55 mm from the substrate in the buildup direction. Here, the temperature–time curve in the 
continuous buildup process was monitored and recorded, whereby changes in the cooling rate were 
suspected. At the same time, the establishment of a thermal equilibrium could be observed. The third 
measuring point was located in the upper area of the wall structure at a distance of approx. 105 mm 
from the substrate surface and allows an investigation of the temperature–time curve at this late stage 
of the additive buildup process (little reheating). 

Type C thermocouples with a diameter of 1 mm were used to record the temperature curve. 
They were placed on the substrate or welding bead at the corresponding measuring points and 
overwelded. In addition, the process was monitored with an ImageIR 8300 thermal imaging camera 
(InfraTec GmbH, Dresden, Germany) and the cooling behavior in the areas of the measuring points 
was recorded and analyzed using the IRBIS 3.1 plus analysis software (InfraTec GmbH, Dresden, 
Germany). 

The interpass temperature was measured with a type K sheath thermocouple with a diameter of 
1 mm in combination with a 4-channel data logger MCR-4TC (T&D Corporation, Matsumoto, Japan) 
in contact in the middle of the last welded bead. 

Figure 1. Experimental setup for the experimental trials using gas metal arc welding (GMAW).

For the analysis of the temperature–time curve during the additive buildup process, three
temperature measuring points in the wall structures were distributed over the progress of the process
at defined positions. As shown in Figure 2, the measuring points are located in a horizontal direction
in the middle of the structure. In the buildup direction, the first measuring point was placed directly at
the height of the first weld bead (approx. 5 mm) in order to measure the cooling rate in close proximity
to the substrate, to analyze when the substrate reached thermal equilibrium and what temperature
was reached in this state. The second measuring point was placed at a distance of approx. 55 mm from
the substrate in the buildup direction. Here, the temperature–time curve in the continuous buildup
process was monitored and recorded, whereby changes in the cooling rate were suspected. At the
same time, the establishment of a thermal equilibrium could be observed. The third measuring point
was located in the upper area of the wall structure at a distance of approx. 105 mm from the substrate
surface and allows an investigation of the temperature–time curve at this late stage of the additive
buildup process (little reheating).

Type C thermocouples with a diameter of 1 mm were used to record the temperature curve. They
were placed on the substrate or welding bead at the corresponding measuring points and overwelded.
In addition, the process was monitored with an ImageIR 8300 thermal imaging camera (InfraTec GmbH,
Dresden, Germany) and the cooling behavior in the areas of the measuring points was recorded and
analyzed using the IRBIS 3.1 plus analysis software (InfraTec GmbH, Dresden, Germany).

The interpass temperature was measured with a type K sheath thermocouple with a diameter of
1 mm in combination with a 4-channel data logger MCR-4TC (T&D Corporation, Matsumoto, Japan) in
contact in the middle of the last welded bead.
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Figure 2. Representation of the placement of the temperature measuring points and dimensions of the
substrate and the built wall structures.

In this research, a welding wire of the type S Al 5556 with a diameter of 1 mm was used as a
consumable electrode for the GMAW process. The aluminum alloy EN AW-5754A H111 in the form of
a plate with the dimensions 200 × 150 × 10 mm3 (see Figure 2) was used as a substrate. The chemical
composition of the welding wire and the substrate material are listed in Table 1.

Table 1. Chemical composition of the substrate and the welding wire (wt %).

Material
(Function)

Chemical Composition in wt %

Si Fe Cu Mn Mg Cr Zn Ti Al

EN AW-5754A H111
(substrate) 0.4 0.4 0.1 0.5 2.6–3.6 0.3 0.2 0.15 bal.

S Al 5556
(welding wire) 0.06 0.18 0.009 0.7 5.3 0.08 0.01 0.08 bal.

Both argon 4.6 with a flow rate of 20 L/min and a mixture of argon and helium in a ratio of 70/30
with an adjusted flow rate of 24 L/min were used as a shielding gas. Argon was used because of its
good shielding effect due to its high density. As a result of the lower density of helium, the flow rate
had to be adjusted when using the gas mixture. Due to the amount of helium, the energy input into
the molten bath can be increased, which influenced the formation of the beads.

The investigated wall structures had a minimum height of approx. 110 mm and a length of
180 mm (see Figure 2), and were generated with an alternating buildup strategy. The separation
from the substrate was carried out with a band saw. Subsequently, wall segments were cut off for
the analysis of the microstructure, hardness and final contour. For the determination of the tensile
strength, the remaining wall segments were milled over so that a planar surface with a thickness of
3.5 mm was created and tensile specimens of form E according to DIN 50125:2016-12 (see Figure 3b)
were cut out by wire-electro discharge machining (EDM). The tensile specimens were removed in the
buildup direction (vertical) and in the welding direction (horizontal). The arrangement of the different
specimens and the minimum distance of the edge of the structure are shown in Figure 3a.
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Figure 3. (a) Schematic representation of the arrangement of the tensile specimens vertically (V) and
horizontally (H) to the buildup direction, as well as the wall segments to evaluate hardness, porosity and
the final contour and (b) dimension of the tensile specimen of form E according to DIN 50125:2016-12.

The samples for the analysis of the geometric properties and microstructure were grinded and
polished. To investigate the microstructure, an electrolytic etch polishing and an etching according to
Barker were additionally carried out. The sample structures were then examined under polarized light.
The grain size determination was carried out according to the standardization for steels by DIN EN ISO
643 using the line section method. The result was the determination of the average linear grain size.

In order to assess the final contour, the material utilization (MU) and the surface irregularity (SI) of
the lateral surfaces of the cross-sections were measured. As the number of layers increases, the width
of the molten bath in the WAAM changes due to the heat accumulation and the change in the heat
transfer (see Figure 4a). To calculate the surface irregularity of the side surfaces, the effective wall width
(EWW) and the maximum wall width (MWW) were measured (see Equation (3) and Figure 4b). EWW
is the maximum effectively usable width of the wall. The surface irregularity SI of the side surfaces
was calculated by the quotient (MWW-EWW)/2. On both sides, the span between the narrowest point
and the highest vertex in the vertical profile of the side surface in the cross-section of the sample was
added and divided by two. Figure 4c schematically shows the effective usable wall area (EUWA) of the
generated wall. Areas A, B and C must be removed after additive manufacturing for most applications.
However, area C is not considered in this paper when calculating the material utilization, as it always
occurs regardless of the number of layers and must be removed subtractively. Consequently, this
area has a greater influence with a small number of welded layers than with a large number of
layers. The quotient EUWA/(EUWA + A + B) indicates the maximum material utilization with the full
utilization of the EWW, considering that area C of the wall was not measured (see Equation (4)):

SI =
(MWW − EWW)

2
(3)

MU =
EUWA

(EUWA + A + B)
(4)
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Figure 4. Schematic representation of (a) the characteristic development of the bead width with
increasing structure height, (b) the maximum wall width MWW and effective wall width EWW and
(c) the effective usable wall area EUWA.

In the present study, the porosity measurement was carried out by means of microsectioning and
sectional testing on the metallographically prepared sample. The porosity was determined using the
open source image-processing program ImageJ (version 1.52e) on the basis of the panoramic images
of the prepared specimens, which were taken at a magnification of 25:1 under the Axio Scope.A1
(Carl Zeiss Microscopy GmbH, Jena, Germany) incident light microscope. The procedure for evaluating
the porosity is shown as an example in Figure 5.
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Figure 5. Exemplary representation of the process of porosity analysis.

For the porosity analysis, the scale was initially set according to the magnification of the microscope.
Then, an upper brightness threshold was set with respect to the color thresholds using the brightness
slider so that the color values were filtered according to the brightness of the color values of the pores
and displayed in the selected color red. The selection of the contour of the wall was made including
the weld penetration, but without the rest of the substrate. The analysis tool was used to measure
the area of the selected contour. Then, the number of pores, the total pore area, the average pore size
and the percentage of porosity in the total area were determined. Due to the resolution of the optical
microscope, only pores with a diameter greater than 10 µm were measured.

The tensile test was performed with a universal testing machine inspekt retrofit 1455 (Hegewald &
Peschke Meß- und Prüftechnik GmbH, Nossen, Germany) according to DIN EN ISO 6892-1 at a testing
speed of vc = 10 mm/min and an estimated strain rate of ėLc = 0.0054 s−1. The strain rate was estimated
based on the parallel length Lc = 31 mm and the constant testing speed due to the inhomogeneous
flow of the material during the tensile tests. The hardness was determined on the cross-sectional areas
along the wall height by using a hardness test according to Vickers (DIN EN ISO 6507-1) in the small
force range with a force of 9.807 N (HV1). The imprints have a distance of 1 mm from each other.
The measurement was done with an automatic hardness testing machine DuraScan 70 (EMCO-TEST
Prüfmaschinen GmbH, Kuchl, Österreich).
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4. Results and Discussion

4.1. Preliminary Analysis of the CMT Process with Different Arc Modes

In the preliminary investigations, the influence of the arc modes, the welding speed and
consequently the energy input per unit length on the porosity, wall geometry, final contour and
the connection to the substrate were investigated by using the CMT, CMT-ADV and CMT-PADV arc
mode. For this purpose, four five-layer wall structures were additively manufactured with each arc
mode. The wire feed rate was kept approximately constant. A variation of the energy per unit length
was achieved by changing the welding speed between 0.3 and 0.6 m/min. With regard to the ratio of
positively/negatively poled arc cycles in the CMT-ADV or CMT-PADV process, the starting point was
defined as the ratio of seven positive cycles followed by seven negative cycles as stored in the welding
characteristic curve of the power source.

Figure 6 shows the current and voltage characteristics for (a) the CMT, (b) the CMT-ADV and
(c) the CMT-PADV arc mode. The curves were measured at a welding speed of 0.3 m/min and the
determined wire-feed speeds of 9.45 m/min for CMT, 9.64 m/min for CMT-ADV and 9.26 m/min for
CMT-PADV. The slight deviations in the measured wire feed speed can be explained by the different
arc modes and the appropriate integrated control of the welding power source. Figure 6b shows the
cyclical polarity change of the welding current during the short circuit phase, which is a characteristic
feature of the CMT-ADV process. The pre-set ratio of seven positive cycles followed by seven negative
cycles can also be seen. The material transfer during both positive and negative polarity occurs in the
short circuit phase. Negative polarity, in contrast to positive polarity, increases the arcing point, which
increases the deposition rate despite the lower heat input. During the positive cycle, more heat was
introduced into the base material (for bonding) and cleaned the workpiece surface of the aluminum
oxide layer. The CMT-PADV process in Figure 6c illustrates the combination of negative-polarity CMT
cycles with cyclic wire movement and positive-polarity pulse cycles with continuous wire feed. Here,
seven negatively poled CMT cycles follow seven positively poled pulse cycles. In the pulse cycles,
the material transfer is short-circuit-free and allows a higher heat input into the base material. Higher
deposition rates can be achieved than in the CMT-ADV process [21].
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Figure 6. Current and voltage characteristics of (a) Cold Metal Transfer (CMT), (b) CMT advanced
(CMT-ADV) and (c) CMT pulse advanced (CMT-PADV) and (d) the energy input per unit length as a
function of the arc mode at a welding speed of vS = 0.3 m/min.
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Figure 6d shows the resulting energy input per unit length at a welding speed of 0.3 m/min. Using
the CMT arc mode, an energy input per unit length of 3.67 kJ/cm was obtained. Due to the changing
polarity in the CMT-ADV arc mode, the energy input was reduced to 3.08 kJ/cm. The lowest energy
input per unit length of 2.86 kJ/cm could be measured in the CMT-PADV arc mode and results from
the positively poled pulsed current cycles in combination with the alternating polarity. Since the heat
input correlates with the energy input per unit length, it can be assumed that the heat input into the
welding process in CMT-ADV or CMT-PADV arc mode can be reduced.

Figure 7a shows the porosity in the cross-sections of the additive manufactured walls made of
AlMg5Mn that were investigated as a function of the welding speed and the used arc mode. During
the trial series the wire-feed speed was kept constant at approx. vw = 9.4 m/min. The measured
area percentage of porosity was the highest at all four welding speeds in the standard CMT process.
At vS = 0.4 m/min, the observed porosity was more than four times as high compared to the CMT-ADV
process at the same speed. Using the CMT-ADV arc mode, the lowest porosity was observed, apart
from the welding speed of vS = 0.3 m/min. While the porosity was already at a very low level when
using the CMT-ADV mode at a welding speed of 0.4 m/min, and remained almost unchanged at
around 0.07% at higher speeds, the other two arc modes show a decrease in porosity as the welding
speed increases. The thus reduced energy input per unit length and the associated reduction in heat
input have a corresponding porosity reducing effect.
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Figure 7. (a) Correlation of the porosity and the welding speed for the arc modes CMT, CMT-ADV and
CMT-PADV with a wire-feed speed of approx. vw = 9.4 m/min and (b) the optically observed porosity
in the cross-sections of the five-layer wall structures for the different arc modes at a welding speed of
vS = 0.4 m/min.

In addition, in the CMT-ADV and CMT-PADV processes, a significant oxide cleaning effect was
achieved at the wire electrode end during the cycles with negative electrode polarity. This reduces
the hydrogen content entering the melt pool. The stirring effect caused by the change in polarity and
the resulting turbulence in the melt pool leads to grain refinement and has a beneficial effect on the
escape of pores [15]. The high percentage of porosity in the CMT-PADV process at a welding speed of
0.4 m/min is caused by the two large pores that have formed between the first layer and the substrate.
These can be seen in the comparison of the structures at a welding speed of 0.4 m/min in Figure 7b.
As the entire structure was examined for porosity, these are part of the analysis. A possible reason for
the pores is a polluted substrate surface.

It could be detected that the pores were mainly distributed at the boundaries between the
individual layers. In addition, an insufficient weld penetration and/or lack of bonding between the
substrate and the first layer of the walls can be observed. The bonding to the substrate and thus the
relatively small bead width of the first layer is most significant in the CMT-PADV process with the
lowest heat input.
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4.2. Preliminary Analysis of the CMT-ADV to Improve Final Contour and Porosity

In further experiments, the influence of the varying ratios of positively and negatively poled
current cycles within an arc phase on energy input per unit length, surface irregularity, material
utilization and porosity were investigated using the CMT-ADV arc mode. Starting from a balanced
ratio of seven positive and seven negative cycles, the number of positive and negative cycles was
systematically reduced by two to a minimum of one while the number of other polarity cycles was
kept at seven. As can be seen in Figure 8a, a gradual reduction of the positive cycles in relation to the
negative cycles led to a successive decrease in the energy input per unit length at a welding speed
of 0.6 m/min. With a constellation of 7/1 cycles, an energy input per unit length of 1.73 kJ/cm can be
measured. In contrast, one positive cycle and seven negative cycles result in a line energy of 1.17 kJ/cm.
This is a reduction of about 33%.
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Figure 8. Correlation between (a) the energy input per unit length and (b) the porosity and the energy
input per unit length (assigned with the number of positive and negative cycles per arc phase) at a
welding speed of 0.6 m/min.

The correlation between the number of positive and negative cycles per arc phase and the
determined area percentage of porosity at a welding speed of 0.6 m/min is shown in Figure 8b. Apart
from the constellation 3/7, the area proportion of porosity decreased with the decrease in the quotient
of the number of positive cycles to the number of negative cycles and consequently with a reduction of
the energy input. The decrease in the area proportion of porosity is due to a decrease in the pore density
and a decrease in the average pore size when the number of negative cycles increases (from 7/1 to 7/5).
When the number of positive cycles is gradually reduced (from 7/7 to ultimately 1/7), the decrease in
porosity, apart from the outlier at 3/7 cycles, is exclusively due to a decrease in pore size. The decrease
in porosity with the gradual increase in the negative cycles in relation to the positive ones, from a
constellation with 7/1 cycles to 1/7 cycles, can also be attributed to the reduction of the energy input
and thus to a reduced heat input.

Figure 9 shows the cross-sections of the samples produced with different numbers of cycles per
arc phase and a welding speed of 0.6 m/min. For each constellation of cycles analyzed, the porosity Φ
is given as a percentage of the measured pore area on the examined cross-section. It can be seen that
the gradual change in the cycle constellation from seven positive cycles and one negative cycle to one
positive cycle and seven negative cycles has led to a continuous reduction in the wall width and to
an increase in wall height. In addition, a trend towards a decrease in the weld penetration area and
depth was observed. These phenomena are due to the reduction in energy input per unit length and
thus the reduced heat input. A colder melt pool is less flowable and solidifies faster. This results in
welding beads with a comparatively large height to width ratio. At the same time, the penetration is
reduced due to the faster heat dissipation in the substrate. Accordingly, the weld beads are bonded
to the substrate on a small area. A narrow first layer reduces the heat dissipation to the substrate by
reducing the heat conduction surface. Furthermore, too little penetration due to component distortion
can lead to the wall peeling off the substrate plate.
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The highest surface irregularity at 1.7 mm was measured for the constellation of one positive cycle
and seven negative cycles. In addition, with this number of positive and negative current phases per
arc phase, the material utilization was lowest at just under 37%, which was due to a very narrow first
layer. The gradual change in the cycle constellation towards one positive cycle and seven negative
cycles led to a gradual increase in the surface irregularity and a decrease in the material utilization.
Accordingly, the surface irregularity of the side surfaces was lowest within the constellation of one
negative cycle and seven positive cycles. In addition, the material utilization was highest in this cycle
constellation at around 75%. A reduction of the positive cycles in relation to the negative cycles also
led to a decrease in both the penetration depth and the penetration area.

To increase the final contour, various strategies were investigated, which generally involved an
increasing energy input as well as the melting rate for the first layers. This was realized by decreasing
the welding speed, increasing the wire-feed rate and/or using the argon–helium mixture. The final
contour accuracy was evaluated based on the surface irregularity as well as the material utilization
(MU) in the cross-section of the samples (see Section 4 Figure 4). The structure manufactured with
the CMT-ADV arc mode with five positive and seven negative cycles per arc phase, the shielding
gas argon, the welding speed vS = 0.6 m/min and the wire-feed speed vw = 5.5 m/min was used as
the reference sample. The cycle constellation of five positive cycles followed by seven negatively
poled cycles was selected because the lowest porosity and the highest possible material utilization was
achieved in the previously conducted investigations under the variation of the cycle configuration (see
Figure 9). The constellation of one positive and seven negative poled arc cycles was not used due to
the low material utilization. Starting from the parameter of the reference specimen, a reduction in the
welding speed when applying the first layer, combined with the use of 70% argon and 30% helium
within the first two layers as the only strategy, led to both an improvement in the final contour in
combination with a reduction in porosity. The results are summarized in Figure 10.

An increase in the wire-feed rate within the first two layers led to the lowest waviness and
the highest material utilization of 94%. However, this resulted in a significant increase in porosity
and a decrease in penetration. In addition, a significantly increased spatter formation was observed.
The reduction of the welding speed and the use of the argon–helium mixture also led to an improvement
of the final contour compared to the initial situation. However, these two strategies also resulted in
an increase in porosity. Furthermore, a visual inspection of the wall geometries showed, that all four
strategies are suitable for additive manufacturing. The wall width and height were uniform over the
length of all four specimens.
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Figure 10. Comparison of the different strategies to increase the final contour accuracy (represented by
material utilization (MU) and surface irregularity) of the CMT-ADV arc mode with a cycle constellation
of 5/7.

The strategy, which combines the lowest porosity and the highest material utilization, can be
shown throughout reduced welding speed in the first layer and the adapted shielding gas mixture of
70% argon and 30% helium within the first two layers. This shows a contradiction to the conclusions
reached so far. Up to this point, an increase in the energy input resulted in an increase in porosity.
The opposite can be observed in the shown build-up strategy. The contradiction may be described
throughout the combination of the resulting effects. By reducing the welding speed, a comparatively
higher amount of material is molten. By using the shielding gas mixture, the helium content increases
the heat of the melt and enhances degasification. As a result, a lack of fusion between the substrate and
the first layer can be prevented and the porosity reduced (see Figure 10). Accordingly, this buildup
strategy for the first layers is to be favored for the additive manufacturing of AlMg5Mn using the
CMT-ADV arc mode.

4.3. Analysis of Geometrical Properties of Multi-Layered Structures

Based on the conclusions of the preliminary investigations, large volume wall structures were
generated with the CMT, CMT-ADV and CMT-PADV arc modes. The following Sections describe the
resulting properties in terms of geometry (see Section 4.3), temperature–time curve (see Section 4.4),
porosity (see Section 4.5), microstructure (see Section 4.6) and the selected mechanical properties
(see Section 4.7).

The walls have a length of 180 mm and a height of at least 110 mm. The contact tube to work
distance was set to 15 mm, periodically checked during the construction process and adjusted if
necessary. An alternating buildup strategy was used for the process, i.e., the welding direction was
reversed after each generated layer. The interpass temperature was set at 50 ◦C. To compare the
structures with each other, the same welding parameters were used as far as possible. The wire-feed
rate was adjusted so that a value of approx. 9.5 m/min could be measured. A welding speed of
0.6 m/min was used. This has been reduced to 0.3 m/min due to the results obtained with regard to the
improvement of the final contour and the connection in the first two layers (see Figure 9). For reasons
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of better comparability, a cycle constellation of 7/7 was used for the CMT-ADV and CMT-PADV arc
modes. The reason for the selection of the standard cycle splitting (seven positive and seven negative
cycles) is due to the fact that, with regard to the CMT-PADV arc mode, no more in-depth investigations
were carried out during the preliminary analysis to improve the final contour and porosity, as they
were not part of the project. Argon 4.6 was used as a shielding gas.

The multilayer walls built up by means of (a) CMT, (b) CMT-ADV and (c) CMT-PADV are shown
in Figure 11. The wall structure built up with the CMT process has a decreasing height in the welding
direction. The difference in height between the beginning of the structure and the end is approx. 5 mm.
On the one hand, the deviations are due to a significantly higher cooling rate at the beginning of the
deposition of a layer, which leads to an increased layer height. On the other hand, low heat dissipation
at the end of the layer and the arc pressure lead to a decrease in the layer height. This effect could not
be completely compensated by the alternating buildup strategy.
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Figure 11. Side view of the multilayer walls made of AlMg5Mn, which were additively manufactured
(a) by CMT with 62 layers, (b) by CMT-ADV with 56 layers and (c) by CMT-PADV with 56 layers and
the information to the surface irregularity and material utilization (MU).

The wall structure produced with the CMT-PADV mode shows a wavy height profile and a
comparatively strong drop in height directly at the beginning or end of the structure. A possible reason
for the wavy shape is the different amount of melted material between the positively poled and pulsed
current phase and the negative poled CMT current phase. Accordingly, there is an accumulation of
material depending on the cycle phase and the wavy bead course. In comparison, the wall structure
welded with the CMT-ADV mode shows a uniform height profile.

Regarding the final contour, the multi-layer wall produced with the CMT-PADV arc process has
the most regular contour in the cross-section. The measured surface irregularity of this wall is the
lowest at 0.89 mm and the material utilization is the highest at 80%. On the other hand, the surface
irregularity of the CMT-ADV was the highest at 1.4 mm and the material utilization was the lowest at
73%. This is mainly due to the displacement, which is clearly visible in the cross-section.

4.4. Characterization of the Temperature–Time-Regimes of Multi-Layered Structures

Wire- and arc-based additive manufacturing results in complex temperature–time profiles within
the manufactured object. When a new layer is deposited on top, the previously placed layer is partially
melted and undergoes repeated temperature changes. The resulting temperature–time profile during
the additive manufacturing depends, among other things, on the thermal conductivity of the base
material and filler material, the heat input, the dwell time between the deposition of individual layers
or the interlayer temperature and the size or volume of the part.

The location-related development of the microstructure, and consequently, the location-dependent
mechanical properties of an additive-manufactured component are directly related to the



Materials 2020, 13, 2671 14 of 22

temperature–time curve. The temperature–time curve recorded during the generation of the structure
using the CMT-ADV arc mode is shown in Figure 12b. On the left side (Figure 12a), the arrangement of
the measuring points in the experiment is illustrated. A temperature peak indicates the time of a new
layer generation. It is observed that with an increasing number of layers, the maximum temperature at
the surface of the layer from which the temperature was recorded by a thermocouple decreases. It is
also indicated that, regardless of the buildup height, the temperature of the measured layer surface
was heated over 300 ◦C by the following five welded layers. Depending on the structure height,
a temperature of 100 ◦C is no longer surpassed after 20 to 24 subsequent layers. Accordingly, an influence
on the microstructure may be expected, since the increased temperature causes grain growth.
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Figure 12. (Left) Representation of the temperature measuring points and (Right) the recorded
temperature–time curve for the different temperature measuring points.

With an increasing construction height or number of layers, the welding pause time, indicated by
the time intervals between the two temperature peaks, increases. Using the recorded temperature–time
curves, cooling rates C500/300 (K/s) for cooling from 500 to 300 ◦C were determined for the layers under
investigation (see Equation (5)). Herein, the temperature difference ∆T between 500 ◦C and 300 ◦C was
divided by the time ∆t, which is required for the cool down:

C500/300 =
∆T
∆t

[K
s

]
=

T500 ◦C − T300 ◦C

t500 ◦C − t300 ◦C

[K
s

]
(5)

With the aid of these, differences in cooling behavior were analyzed as a function of the position
of the measuring point in the walls, the energy input per unit length and the arc mode. The results are
shown in Figure 13. It is obvious that the cooling rate in the immediate area of the substrate was about
four to five times as high as at the other measuring points. The high cooling rate at the beginning is
due to the high temperature gradient and the high heat conduction to the substrate. While during the
application of the first layers, with a small vertical distance to the substrate, the heat transfer occurs
mainly in the form of heat conduction in the direction of the substrate, and the heat transport occurs
increasingly by convection and thermal radiation as the wall height increases. However, these two heat
transfer mechanisms have a much smaller effect than heat conduction. With an increasing wall height,
the heat conduction decreases and therefore heat accumulation along the direction of the substrate
occurs. Decreasing heat conduction and heat accumulation leads to a reduction of the cooling rate [31].
However, this effect also decreases as the number of layers increases. For this reason, the cooling rates
for the two measuring points at 55 and 105 mm are almost identical. At the same time, there is a slight
dependence on the applied arc mode and the correspondingly different energy input per unit length.
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Figure 13. Representation of the cooling rate for cooling from 500 to 300 ◦C as a function of the vertical
distance of the measuring point to the substrate plate and of the arc mode.

With regard to the required time to build up the structures, significant differences could be
observed (see Table 2). With a time span of 5 h and 20 min, the most time was consumed during
the CMT process. By using the CMT-ADV arc mode, this time was reduced by approx. 22% to 4 h
and 10 min due to the lower heat input. The shortest set-up time was achieved with the CMT-PADV
arc mode, which also has the lowest energy input per unit length and thus the lowest heat input.
Compared to the CMT mode, the duration was reduced by approx. 33% to 3 h and 35 min.

Table 2. Comparison of the buildup time of the different arc modes for the large-volume wall structures.

Welding Process Buildup Time (min) Time Savings (%)

CMT 320 –
CMT-ADV 250 −22

CMT-PADV 215 −33

4.5. Analysis of the Porosity of Multi-Layered Structures

As already observed in the preliminary tests, it has been confirmed in the WAAM of multilayer
wall structures with AlMg5Mn, that a reduction of the energy and thus the heat input leads to a
decrease in porosity (see Figure 14a). The differences in the cross-sections of the central area of the wall
structures are shown in Figure 14b, illustrated by the microscopic images for the analysis of porosity.

The observed porosity was the highest in the standard CMT process, as in the five-layer walls,
in comparison with the other two processes. Moreover, 0.347% porosity as a proportion of the total
cross-sectional area was found, which was more than twice as high as the porosity observed for
the same welding parameters in the five-layer wall. When using the CMT-ADV arc mode, the area
percentage of porosity of 0.288% was even more than four times as high as with the same parameters
in the five-layer wall. While the porosity in the first five to six layers of the wall was unchanged
compared to the area fraction of five-layer walls, the observed porosity in the central and upper area of
both walls was significantly higher. As a result of the inhomogeneous pore distribution, the scattering
of the measured values of both samples was comparatively large. In contrast, the porosity in the
sample welded with CMT-PADV was on average 0.06%, even slightly lower than in the five-layer wall.
The pores were also homogeneously distributed along the height of the wall. In all three structures,
the pores occurred more often at the layer boundaries.
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Figure 14. (a) Area percentage of porosity in the multilayer walls as a function of the arc mode and (b)
the samples taken from the central area of the walls for the porosity analysis.

4.6. Microstructural Analysis of Multi-Layered Structures

The observed microstructure and grain size varied with the used arc mode. To characterize
the grain size, the average linear grain size was measured in the lower wall section (between the
second and third layer), in the center of the wall and in the area of the third and fourth last layer,
respectively, in the center of the layer and at the transition between the two layers. Figure 15 compares
the microstructure observed in the center of the layers for the three arc modes in dependence of the
vertical distance to the substrate with a detail of the average linear grain size lgrain for the different
layers and the whole structure.
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The line energy of 1.93 kJ/cm and consequently the heat input was the highest in the CMT arc
mode compared to the CMT-ADV and CMT-PADV methods. In addition, the standard CMT process
does not involve any polarity reversal, so most of the heat is conducted into the base material. As a
result, when applying new layers, the penetration into the previously applied layer or the amount
of re-melting was significantly increased compared to the other arc modes. Furthermore, since the
tests were carried out without preheating, the temperature gradient was larger for the first layers.
Due to the high thermal conductivity of aluminum, the interlayer temperature could be kept constant
at 50 ◦C after a few layers. Since grain growth is primarily aligned along the largest temperature
gradients, a microstructure with predominantly columnar grains, which have grown perpendicular to
the substrate, appears in the lower wall section. The average grain size measured in the CMT process
was 63.3 µm in the lower wall section.

Once the interlayer temperature was reached, the temperature gradient was highest in the CMT
process compared to the other two processes due to the high heat input. As a result, columnar grain
growth also took place in the center and upper wall sections along the melt lines. As a result of the
preheating that resulted from the previously applied layers, the temperature gradient along the fusion
lines decreased. As a result, the observed columnar grain structure was significantly coarser at the
layer boundaries.

While the heat is quickly and effectively dissipated through the previously applied layers in
the direction of the substrate during the application of the first layers, the heat flow to the substrate
slows down with the increasing wall height due to the increase in distance to the heat source. Due
to the reduced heat conduction, the cooling rate decreased (see Section 4.3). As a result of a smaller
temperature gradient and a higher crystallization speed, the grains show an undirected globulitic
growth in the center of a layer and due to the higher cooling rate in the center and upper wall section.
However, the area was comparatively narrow since a large percentage of the layers was remelted
when new layers were applied. Only the uppermost layer showed a distinct equiaxial dendritic
microstructure. The decrease in the cooling rate resulted in a significantly coarser microstructure in the
center and upper wall area (see Figure 15). The measured grain size was 85.4 µm in the middle wall
section and 72.6 µm in the upper part of the wall.

The multilayer samples welded using the CMT-ADV and CMT-PADV arc modes with alternating
polarity showed a significantly finer microstructure with a cellular grain structure compared to the
welded sample using the standard CMT method. The reason for this observation is, on the one
hand, the periodic change of the electromagnetic force and its direction by the polarity changes. This
results in a flow in the melt pool in the form of a strongly oscillating turbulence of the melt. The
dendrites growing directionally along the melt line break apart and the broken dendrite arms act
as heterogeneous nucleation sites. A finer grained microstructure results from a melt solidifying
uniformly at several points [15]. On the other hand, a larger part of the existing Al3Ti phase particles
remains because of the lower heat input and the high melting point. These particles result from the
titanium admixtures in the welding wire of up to 0.08%. They act as heterogeneous nucleation particles
during solidification and lead to a refinement of the microstructure [9].

The measured grain size using the CMT-ADV method was 56.2 µm near the substrate. In the
center and upper wall area, the grain size was 62.0 and 68.7 µm, respectively, due to a lower cooling
rate. In the CMT-PADV process, the finest globulitic grain structure was observed in comparison to the
other two processes, with an average grain size of 48.7 µm in the lower wall section, 53.4 µm in the
middle wall section and 52.5 µm in the upper wall section. This can be explained by the fact that the
grain size and morphology correlate with the heat input. A lower heat input results in a finer grain
structure and in comparison, the CMT-PADV process has the lowest energy input. At the same time,
the pulsed current in the CMT-PADV mode reinforces the effect of turbulence in the melt pool, since
the electromagnetic force is directly proportional to the current intensity.
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4.7. Analysis of Mechanical Properties of Multi-Layered Structures

Regarding the mechanical properties of the welded structures, a hardness measurement was
carried out along the height of the structure. The average hardness values are plotted in Figure 16a
as a function of the applied arc mode. The structure produced with the CMT process has the lowest
hardness value of 81.4 HV1. The produced structures using the CMT-ADV or CMT-PADV arc mode
have slightly higher hardness values of 83.4 or 85 HV1. A possible explanation is the lower energy and
heat input and the resulting finer microstructure for the two arc modes, because the amount of grain
boundaries and hence the resistance against penetration is higher. In the CMT-ADV and CMT-PADV
process, the hardness curve over the structure height decreases slightly with increasing distance to the
substrate up to a structure height of 95 mm and increases slightly in the further course to the end of
the structure. This gradient agrees with the analysis of the microstructure (see Section 4.5), since a
finer-grained structure is present in the lower area than in the areas above. An increase in hardness in
the uppermost layers can be attributed to the fact that less heat was introduced into these layers by
fewer subsequent weld beads.

Figure 16b shows the tensile strength of the sample structures produced with the different arc
modes. In each case, the samples taken in the horizontal direction (welding direction) and vertical
direction (buildup direction) are shown. The dashed line at 275 MPa represents the manufacturer’s
specification of the tensile strength of the pure weld metal. The highest tensile strength in the horizontal
direction of 296.1 ± 2.3 MPa was determined in the CMT-PADV process and differs only slightly from
the values of the CMT-ADV (293.8 ± 2.7 MPa) and CMT (292.8 ± 2.0 MPa) arc modes. As the results
are within the scattering range of each other, the tensile strength values in the horizontal direction
can be considered equivalent. Furthermore, the small standard deviations in all three methods allow
conclusions to be drawn about homogeneous strength properties in the horizontal direction. This
is reflected in the determined elongations to fracture. For the horizontally taken test specimens,
elongations to fracture of 28.6% ± 1.2% for the CMT, 28.5% ± 1.5% for the CMT-PADV and 29.1% ± 2.1%
for the CMT-PADV modes were achieved (see Figure 17). No differences in ductility between the
arc modes can be observed. The values exceed the reference value for the pure weld metal of 17%
elongation at fracture given by the manufacturer, represented by the dashed line in Figure 17a.
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Figure 16. (a) Representation of the average hardness measured along the structure in the buildup
direction as a function of the arc mode and (b) the representation of the tensile strength of the samples
taken vertically and horizontally as a function of the arc mode and the manufacturer’s specification of
the tensile strength of the pure weld metal (dashed line).

In contrast, the tensile strength and elongation to fracture of the samples taken from the vertical
direction are significantly lower for the CMT and CMT-ADV processes than for the horizontally
arranged samples. The lowest tensile strength of 266.4 ± 1.5 MPa and elongation to fracture of
15.6 ± 0.9% could be determined for the CMT process. For the CMT-ADV arc mode, these characteristic
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values are 282.2 ± 5.3 MPa, and 21.2% ± 3%, respectively. Furthermore, there is no decrease in
stress in the stress–strain diagram shortly before specimen failure. Thus, the deformation capacity
in the vertical direction of the specimens manufactured with the CMT and CMT-ADV processes is
reduced. Accordingly, the anisotropic strength and ductility properties are present in the structures,
and the direction of loading has an influence on the maximum bearable force or stress. Only with the
CMT-PADV process an almost isotropic behavior in the structure could be determined. The measured
tensile strength in the vertical direction is 292.3 ± 2.2 MPa and thus differs only by 2.2 MPa from the
tensile strength in the horizontal direction. The same applies to the values determined for elongation
to fracture. At 28 %, the elongation to fracture is approx. 1% lower in the vertical direction than in the
horizontal direction. In addition, in the samples of the CMT-PADV mode, no significant differences in
the failure pattern or the stress–strain curve could be found.

Since a concentration of porosity was found at the layer boundaries, the anisotropy between the
vertical and horizontal directions can be attributed to the cross-sectional weakening by the pores [10]
and crack initiation by stress concentration at the pores [32]. In addition to reducing the tensile strength,
this also has negative effects on ductility. As a result, the tensile strength and elongation to fracture in
the vertical direction correlate with the determined porosities, which were highest in the CMT process,
followed by the CMT-ADV process. With the CMT-PADV arc mode, the lowest porosity and the finest
microstructure could be determined due to the lowest heat input. Accordingly, an almost isotropic
strength and ductility properties were measured.

Figure 17b shows the stress–strain diagram using the example of a horizontally taken tensile
specimen of the wall structure produced by CMT-ADV. From the diagram, the 0.2% proof stress at
approx. 120 MPa can be determined and a breaking elongation of approx. 29% results. Furthermore,
a zigzag stress curve is observed, which occurred in the stress–strain diagram of every sample.
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Figure 17. (a) Representation of the elongation to fracture of the samples taken vertically and
horizontally as a function of the arc mode and the manufacturer’s specification of the elongation to
fracture of the pure weld metal (dashed line) and (b) the stress–strain diagram for a horizontally taken
tensile specimen in the CMT-ADV manufactured structure with dynamic strain ageing.

This phenomenon is due to the Portevin-Le-Chatellier-(PLC) effect. The occurrence of the effect
is a typical characteristic of AlMg(Mn) alloys and depends, among other factors, on the magnesium
content. At a magnesium content above 0.5%, the dynamic strain ageing increases. The dissolved
magnesium atoms remain in the vicinity of the dislocations and block their movement. This leads to an
increase in the yield stress. This rises to a critical value, above which the dislocations break away from
their blockade of dissolved magnesium atoms. This results in a sudden drop in the yield stress. After
tearing, the mobile dislocations again collide with other blocked dislocation walls and the magnesium
atoms again impede movement, which leads to the blocking of the movable dislocations. The resultant
stress deflection increases as the dislocation density increases with deformation [27].
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As shown in Table 3, the determined mechanical properties of the structure generated by the
CMT-PADV process exceed the minimum values specified by the manufacturers for the pure weld
metal in terms of tensile strength, 0.2% proof stress and elongation to fracture.

Table 3. Mechanical properties of the weld material and the tested specimen (CMT-PADV).

Mechanical Properties Standard Values for the
Weld Material [33,34]

Wire Arc Additive Manufacturing
(WAAM) Using CMT-PADV

Rm (MPa) 275 294.2 ± 3
Rp0.2 (MPa) 125 131.8 ± 4.4

A (%) 17 28.5 ± 1.5

5. Conclusions

In this study, the arc-based additive manufacturing of the aluminum alloy AlMg5Mn was
investigated. The controlled and energy-reduced short arc technology in form of the CMT process and
its variations, CMT-advanced and CMT-pulse advanced, were applied for this purpose.

In the preliminary tests, the different arc modes CMT, CMT-ADV and CMT-PADV were examined
and their influence on the energy input, the near-net shape and the porosity were analyzed by varying
the welding speed. For this reason, small volume wall structures were generated. Furthermore,
the influence of the number and the ratio of different pole changing cycles in the CMT-ADV process
was part of the investigations. Different strategies to avoid the bonding defects and to improve the final
contour proximity while reducing porosity were investigated. For this purpose, the welding speed,
the wire feed and the shielding gas composition were varied. Compared to the reference structure, only
one buildup strategy was able to achieve a simultaneous increase in the final contour proximity and
the reduction of porosity. For this purpose, the welding speed was reduced by 50% in the first layer
and a mixture of 70% argon and 30% helium instead of pure argon was used within the first two layers.

Subsequently, in the main trials, three large volume wall structures with a total height of 110 mm
were built up layer by layer using the arc modes CMT, CMT-ADV and CMT-PADV, and then analyzed
regarding geometric properties, porosity, microstructure and mechanical properties tensile strength
and hardness. The results are summarized as follows:

• With CMT-PADV, structures with the least surface irregularity and the highest material utilization
in cross-section could be manufactured.

• With the CMT-ADV process, the most homogeneous wall structure height could be produced,
i.e., the wall drop at the beginning or end of the structure is the lowest.

• The differences in energy input result in shorter cooling times for the CMT-ADV and the
CMT-PADV arc mode during the buildup process. As a result, the buildup time could be reduced
by approx. 22% for the CMT-ADV process and by 33% for the CMT-PADV process compared to
the standard CMT process. In addition to the technical or material advantages, this results in a
further economic advantage when using the CMT process variations by reducing the buildup time.

• A strong correlation between the microstructure and the energy input with regard to both the
grain size and porosity was shown. The CMT-PADV process achieved the lowest energy per unit
length of 1.44 kJ/cm and thus had the finest grain structure. The porosity was reduced to 0.06%.

• Regarding the hardness in the direction of the buildup, a slight influence of the applied arc
mode could be determined. This was in the range of 81.4 HV1 for the CMT and 85 HV1 for the
CMT-PADV. Accordingly, the hardness increased slightly with the reduced energy input.

• About the tensile strength tests, it was shown that the characteristic values fluctuated in the
horizontal direction by the value of 294 ± 2 MPa, independent of the arc mode. Due to the porosity
concentrating at the layer boundaries, anisotropic properties between the horizontal and the
vertical loading direction were observed in the CMT and the CMT-ADV processes. The tensile
strength was 26.4 and 19.8 MPa lower in the vertical direction, respectively. In the CMT-PADV
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mode, an almost isotropic behavior could be concluded with tensile strengths of 294.5 MPa in the
horizontal direction and 292.3 MPa in the vertical direction. This was attributed to the lowest
porosity and the finest grain structure.

Author Contributions: Conceptualization, M.G. and P.H.; investigation, P.H., Y.A. and J.S.; methodology, P.H.,
Y.A. and J.S.; project administration, J.P.B.; supervision, J.P.B.; writing—original draft, M.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dorn, L. Schweißverhalten von Aluminium und seinen Legierungen. Mater. Materialwissenschaft und
Werkstofftechnik 1998, 29, 412–423. [CrossRef]

2. Grave, M. Beitrag zum MIG- und WIG-Schweißen von Aluminiumlegierungen. In Aachener Berichte
Fügetechnik; Dilthey, U., Ed.; Shaker Verlag: Düren, Germany, 1998; Volume 3.

3. Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional
manufacturing. Bus. Horiz. 2017, 60, 677–688. [CrossRef]

4. Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages
and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [CrossRef]

5. González, J.; Rodríguez, I.; Prado-Cerqueira, J.L.; Diéguez, J.L.; Pereira, A. Additive manufacturing with
GMAW welding and CMT technology. Procedia Manuf. 2017, 13, 840–847. [CrossRef]

6. Bai, J.; Ding, H.L.; Gu, J.L.; Wang, X.S.; Qiu, H. Porosity evolution in additively manufactured aluminium
alloy during high temperature exposure. IOP Conf. Ser. Mater. Sci. Eng. 2017, 176, 012045. [CrossRef]

7. Karunakaran, K.P.; Suryakumar, S.; Pushpa, V.; Akula, S. Low cost integration of additive and subtractive
processes for hybrid layer manufacturing. Robot. Comput. Integr. Manuf. 2010, 26, 490–499. [CrossRef]

8. Veiga, F.; Del Val, A.G.; Suárez, A.; Alonso, U. Analysis of the Machining Process Titanium Ti6Al-4V Parts
Manufactured by Wire Arc Additive Manufacturing (WAAM). Materials 2020, 13, 766. [CrossRef]

9. Gu, J.; Cong, B.; Ding, J.; Williams, S.W.; Zhai, Y. Wire+Arc additive manufacturing of aluminium.
In Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA,
4–6 August 2014; Bourell, D.L., Ed.; University of Texas: Austin, TX, USA, 2014.

10. Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive
Manufacturing. Mater. Sci. Technol. 2015, 32, 451–458. [CrossRef]

11. Cong, B.; Ding, J.; Williams, S. Effect of arc mode in cold metal transfer process on porosity of additively
manufactured Al-6.3%Cu alloy. Int. J. Adv. Manuf. Technol. 2015, 76, 1593–1606. [CrossRef]

12. Gu, J.; Ding, J.; Williams, S.W.; Gu, H.; Ma, P.; Zhai, Y. The effect of inter-layer cold working and post-deposition
heat treatment on porosity in additively manufactured aluminum alloys. J. Mater. Process. Technol. 2016, 230,
26–34. [CrossRef]

13. Cong, B.; Qi, Z.; Qi, B.; Sun, H.; Zhao, G.; Ding, J. A Comparative Study of Additively Manufactured Thin
Wall and Block Structure with Al-6.3%Cu Alloy Using Cold Metal Transfer Process. Appl. Sci. 2017, 7, 275.
[CrossRef]

14. Fang, X.; Zhang, L.; Li, H.; Li, C.; Huang, K.; Lu, B. Microstructure Evolution and Mechanical Behavior of
2219 Aluminum Alloys Additively Fabricated by the Cold Metal Transfer Process. Materials 2018, 11, 812.
[CrossRef] [PubMed]

15. Zhang, C.; Li, Y.; Gao, M.; Zeng, X. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity
cold metal transfer arc as power source. Mater. Sci. Eng. 2018, A711, 415–423. [CrossRef]

16. Gu, J.L.; Ding, J.L.; Cong, B.Q.; Bai, J.; Gu, H.M.; Williams, S.W.; Zhai, Y.C. The Influence of Wire Properties
on the Quality and Performance of Wire+Arc Additive Manufactured Aluminium Parts. Adv. Mater. Res.
2014, 1081, 210–214. [CrossRef]

17. Ryan, E.M.; Sabin, T.J.; Watts, J.F.; Whiting, M.J. The influence of build parameters and wire batch on porosity
of wire and arc additive manufactured aluminium alloy 2319. J. Mater. Process. Technol. 2018, 262, 577–584.
[CrossRef]

http://dx.doi.org/10.1002/mawe.19980290806
http://dx.doi.org/10.1016/j.bushor.2017.05.011
http://dx.doi.org/10.1016/j.jclepro.2016.04.150
http://dx.doi.org/10.1016/j.promfg.2017.09.189
http://dx.doi.org/10.1088/1757-899X/167/1/012045
http://dx.doi.org/10.1016/j.rcim.2010.03.008
http://dx.doi.org/10.3390/ma13030766
http://dx.doi.org/10.1179/1743284715Y.0000000073
http://dx.doi.org/10.1007/s00170-014-6346-x
http://dx.doi.org/10.1016/j.jmatprotec.2015.11.006
http://dx.doi.org/10.3390/app7030275
http://dx.doi.org/10.3390/ma11050812
http://www.ncbi.nlm.nih.gov/pubmed/29772708
http://dx.doi.org/10.1016/j.msea.2017.11.084
http://dx.doi.org/10.4028/www.scientific.net/AMR.1081.210
http://dx.doi.org/10.1016/j.jmatprotec.2018.07.030


Materials 2020, 13, 2671 22 of 22

18. Derekar, K.; Lawrence, J.; Melton, J.; Addison, A.; Zhang, X.; Xu, L. Influence of interpass temperature on
wire arc additive manufacturing (WAAM) of aluminium alloy components. In Proceedings of the 71st IIW
Annual Assembly and International Conference, Bali, Indonesia, 15–20 June 2018; International Institute of
Welding: Bali, Indonesia, 2018.

19. Geng, H.; Li, J.; Xiong, J.; Lin, X. Optimisation of interpass temperature and heat input for wire and arc
additive manufacturing 5A06 aluminium alloy. Sci. Technol. Weld. Join. 2016, 22, 472–483. [CrossRef]

20. Cong, B.; Ouyang, R.; Qi, B.; Ding, J. Influence of Cold Metal Transfer Process and Its Heat Input on Weld
Bead Geometry and Porosity of Aluminum-Copper Alloy Welds. Rare Met. Mater. Eng. 2016, 45, 606–611.
[CrossRef]

21. Bruckner, J. Schweißpraxis aktuell: CMT-Technologie, Cold Metal Transfer—Ein neuer Metall-Schutzgas-Schweißprozess,
1st ed.; WEKA MEDIA: Kissing, Germany, 2013.

22. Ammann, T.; Jaeschke, B.; Schmidt, K.P. Das Handbuch des Metall-Schutzgasschweißens, Verfahren, Werkstoffe,
Fertigung; DVS Media: Düsseldorf, Germany, 2017; Volume 162, pp. 72–92.

23. Ortega, A.G.; Corona Galvan, L.; Salem, M.; Moussaoui, K.; Segonds, S.; Rouquette, S.; Deschaux-Beaume, F.
Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a
Cold Metal Transfer process. Sci. Technol. Weld. Join. 2019, 24, 538–547. [CrossRef]

24. Gu, J.; Gao, M.; Yang, S.; Bai, J.; Zhai, Y.; Ding, J. Microstructure, defects and mechanical properties of wire +

arc additively manufactured Al-Cu4.3-Mg1.5 alloy. Mater. Des. 2020, 186, 109357. [CrossRef]
25. Ünsal, I.; Hirtler, M.; Sviridov, A.; Bambach, M. Material Properties of Features Produced from EN AW 6016

by Wire-Arc Additive Manufacturing. Procedia Manuf. 2020, 47, 1129–1133. [CrossRef]
26. Morais, P.J.; Gomes, B.; Santos, P.; Gomes, M.; Gradinger, R.; Schnall, M.; Bozorgi, S.; Klein, T.; Fleischhacker, D.;

Warczok, P.; et al. Characterisation of a High-Performance Al-Zn-Mg-Cu Alloy Designed for Wire Arc
Additive Manufacturing. Materials 2020, 13, 1610. [CrossRef] [PubMed]

27. Ostermann, F. Anwendungstechnologie Aluminium, 3rd ed.; Springer Vieweg: Berlin, Germany, 2014.
28. Derekar, K.S.; Addison, A.; Joshi, S.S.; Zhang, X.; Lawrence, J.; Xu, L.; Melton, G.; Griffiths, D. Effect of pulsed

metal inter gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc
additive (WAAM) of aluminium. Int. J. Adv. Manuf. Technol. 2020, 107, 311–331. [CrossRef]

29. Li, S.; Zhang, L.J.; Ning, J.; Wang, X.; Zhang, G.F.; Zhang, J.X.; Na, S.J.; Fatemeh, B. Comparative study on the
microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and
nitrogen as the shielding gas. Addit. Manuf. 2020, 34, 101206. [CrossRef]

30. Ostermann, F. Aluminium-Werkstofftechnik für den Automobilbau, 1st ed.; Expert Verlag: Ehningen bei Böglingen,
Germany, 1992.

31. Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited review article, Strategies and
processes for high quality wire arc additive manufacturing. Addit. Manuf. 2018, 22, 672–686. [CrossRef]

32. Mayer, H.; Papakyriacou, M.; Zettl, B.; Stanzl-Tschegg, S.E. Influence of porosity on the fatigue limit of die
cast magnesium and aluminium alloys. Int. J. Fatigue 2003, 25, 245–256. [CrossRef]

33. MIG WELD S.A.S.U. Material Data Sheet S Al 5556 (AlMg5Mn)/ER 5556. Available online: https://www.mig-
weld.eu/ml-5556-almg5mn (accessed on 11 February 2020).

34. CHEM-WELD International GmbH MIG/MAG Schweißdrähte Material Data Sheet S Al 5556 (AlMg5Mn)
ER 5556. Available online: http://www.chem-weld.com/downloads/chemweld_draehte.pdf (accessed on
11 February 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/13621718.2016.1259031
http://dx.doi.org/10.1016/S1875-5372(16)30080-7
http://dx.doi.org/10.1080/13621718.2018.1564986
http://dx.doi.org/10.1016/j.matdes.2019.108357
http://dx.doi.org/10.1016/j.promfg.2020.04.131
http://dx.doi.org/10.3390/ma13071610
http://www.ncbi.nlm.nih.gov/pubmed/32244679
http://dx.doi.org/10.1007/s00170-020-04946-2
http://dx.doi.org/10.1016/j.addma.2020.101206
http://dx.doi.org/10.1016/j.addma.2018.06.020
http://dx.doi.org/10.1016/S0142-1123(02)00054-3
https://www.mig-weld.eu/ml-5556-almg5mn
https://www.mig-weld.eu/ml-5556-almg5mn
http://www.chem-weld.com/downloads/chemweld_draehte.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Scope of the Investigations 
	Materials and Methods 
	Results and Discussion 
	Preliminary Analysis of the CMT Process with Different Arc Modes 
	Preliminary Analysis of the CMT-ADV to Improve Final Contour and Porosity 
	Analysis of Geometrical Properties of Multi-Layered Structures 
	Characterization of the Temperature–Time-Regimes of Multi-Layered Structures 
	Analysis of the Porosity of Multi-Layered Structures 
	Microstructural Analysis of Multi-Layered Structures 
	Analysis of Mechanical Properties of Multi-Layered Structures 

	Conclusions 
	References

