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Multimodal registration is a challenging task due to the significant variations exhibited from images of different modalities. CT and
MRI are two of the most commonly used medical images in clinical diagnosis, since MRI with multicontrast images, together with
CT, can provide complementary auxiliary information. The deformable image registration between MRI and CT is essential to
analyze the relationships among different modality images. Here, we proposed an indirect multimodal image registration
method, i.e., sCT-guided multimodal image registration and problematic image completion method. In addition, we also
designed a deep learning-based generative network, Conditional Auto-Encoder Generative Adversarial Network, called
CAE-GAN, combining the idea of VAE and GAN under a conditional process to tackle the problem of synthetic CT
(sCT) synthesis. Our main contributions in this work can be summarized into three aspects: (1) We designed a new generative
network called CAE-GAN, which incorporates the advantages of two popular image synthesis methods, i.e., VAE and GAN, and
produced high-quality synthetic images with limited training data. (2) We utilized the sCT generated from multicontrast MRI as
an intermediary to transform multimodal MRI-CT registration into monomodal sCT-CT registration, which greatly reduces the
registration difficulty. (3) Using normal CT as guidance and reference, we repaired the abnormal MRI while registering the MRI
to the normal CT.

1. Introduction

Deformable image registration (DIR) is to find the spatial
relationship between two or more images and is abundantly
used in medical image analysis, such as image fusion, lesion
detection, disease diagnosis, surgical planning, and naviga-
tion. It is necessary to analyze the relationships among
images that were acquired from different viewpoints, at dif-
ferent times, or using different sensors/modalities [1]. Com-
puter Tomography (CT) and Magnetic Resonance Imaging
(MRI) are two of the most commonly used medical images
in the clinical diagnosis due to the complementary informa-
tion and multicontrast images they provided. Among them,
CT shows precise skeletal location information and electron
density information, which is often used for the dose plan-
ning of cancer patients. On the other hand, MRI has clear
anatomical structures and multiple imaging modalities that
enable the detection and segmentation of diseased organs

and tissues. The DIR of MRI and CT is essential and a chal-
lenging task, due to the inherent structural differences among
different modalities and the missing dense ground truth.

Typically, image registration is an iterative optimization
process. It requires both a metric that quantifies the similarity
between a moving image and a fixed image and an optimiza-
tion algorithm that iteratively updates the transformation
parameters such that the similarity between the images is
maximized. The main difficulty of MRI-CT DIR is the defini-
tion of the image similarity measure, which is an inherent
problem in multimodal image registration. What is more,
the registration of MRI and CT is more difficult to perform
due to MR images that may be contaminated or damaged
by abnormal magnetic fields during acquisition, resulting in
unknown deformation. This is a challenging task, not only
for image registration but also for image completion.

The significant variations exhibited from images of dif-
ferent modalities make multimodal registration much more
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troublesome than monomodal registration. Various methods
have been proposed to solve multimodal registration tasks,
such as mutual information-based [2, 3], elastodynamics-
based [4], and learning-based [5, 6]. However, most of these
methods are task-sensitive, high-dimensional iterative opti-
mization methods, which are disadvantageous in terms of
computational complexity and are difficult to apply in the
clinic [7]. Inspired by image fusion, we explore to utilize syn-
thetic images to address the challenge of multimodal image
registration and ultimately repair the problematic images.
That is, we try to adopt image synthesis algorithms to gener-
ate synthetic CT (sCT) from corresponding multicontrast
MRI and then use sCT and corresponding CT scans from
the same subject to perform image registration. The main
idea of our method is to replace the traditional input for mul-
timodal registration with synthetic and real CT images. In
this way, multimodal registration is approximately converted
into monomodal registration, soMRI-CT registration is indi-
rectly transformed into sCT-CT registration. Guided by the
real CT, sCT is generated by the fusion of multiple modality
MRI from the same subject, so it has the ability to incorporate
the deep features of MRI and the surface features of CT to the
greatest extent.

Concerning image synthesis, there are already several
existing methods, such as atlas-based [8] and learning-
based [9–11]. Atlas-based methods are aimed at generating
an atlas among a set of images and then applying the atlas
to a new subject. Since this method only relies on geometric
transformations, effectiveness and stability are difficult to
guarantee. Learning-based methods are achieved by learning
a potential nonlinear mapping between source and target
domain images. Among them, three themes are mainly used:
Variational Auto-Encoder (VAE) [12], Generative Adversar-
ial Network (GAN) [13], and Autoregression [14]. VAE pairs
a differentiable encoder network with a decoder network to
reconstruct images. However, due to the lack of imperfect
similarity measurements, its outputs are often blurry. GAN
automatically learns the measurement via a discriminative
network and thereby promoting the generative network to
generate near-real synthetic images. Inspired by conditional
GAN (CGAN) [15] and VAE/GAN [16], we proposed a
new deep generative network that combines the idea of
VAE and GAN under a conditional process to tackle the
problem of sCT synthesis.

The main target of our method is to convert multimodal
registration into monomodal registration through a robust
image synthesis algorithm and ultimately repair the prob-
lematic images. Therefore, our main efforts can be summa-
rized into three aspects:

(1) We combined the current popular image synthesis
algorithms, i.e., VAE and GAN, to propose a new
Conditional Auto-Encoder Generative Adversarial
Network, called CAE-GAN. Compared with existing
methods, the synthetic images generated by our net-
work are of higher quality and more generalized

(2) We utilized the generated sCT to transform multi-
modal MRI-CT registration into monomodal sCT-CT

registration, which greatly reduces the registration
difficulty caused by inherent structural differences
among different modalities

(3) Using normal CT as reference and guidance, through
the deformation fields obtained by sCT and CT, we
succeed not only in registering multiple modality
MRI but also in repairing abnormal MRI

The following parts of the manuscript are arranged as
such. Related work, e.g., image synthesis and image registra-
tion algorithms, is reviewed briefly in Section 2. The proposed
method, CAE-GAN and sCT-guided image registration and
completion, is introduced specifically in Section 3. The exper-
imental studies, results, and discussion are presented in
Sections 4. Conclusions are given in Section 5.

2. Related Work

2.1. Image Synthesis. Most traditional image synthesis algo-
rithms include feature extraction, modeling, and target
reconstruction, with an assumption that data have a simple
formation. They have difficulty in modeling complex pat-
terns of high dimensional, irregular distributions. There have
been many recent developments of deep learning-based gen-
erative models [17–20], since deep hierarchical architectures
are capable of capturing underlying complex features in data.
VAE [12] and GAN [13] are two of the most commonly used
methods for image synthesis.

VAE is composed of a recognition model and a genera-
tive model. Recognition model is also referred to as a proba-
bilistic encoder (E), since given a datapoint x, it can produce
a distribution (e.g., a Gaussian). Through this distribution, a
latent code z can be sampled, so that datapoint x can be
reconstructed from z by the generative model (G, also called
probabilistic decoder). However, a disadvantage of VAE is
that, due to the injected noise and imperfect elementwise
measurements such as the squared error, the generated
samples are often blurry.

GAN is a generative model that generally includes two
subnetworks, a generator G and a discriminator D. G learns
a mapping to generate fake samples from random noise,
and D tries to discriminate whether the samples are from real
or fake. The two networks are like the two sides of a game,
and the performance of the two networks gradually improves
in the confrontation until D cannot discriminate whether the
sample is real or fake. No prior knowledge is needed, and the
fake samples are fitted by random noise. This is both an
advantage and a disadvantage of original GAN, because the
mapping without premodel is too free and broad, it is difficult
to get good results. With the proposal of CGAN [15], it adds
constraints (condition) to the original GAN to guide image
synthesis, which alleviates this problem to some extent. How-
ever, the problem still exists, and GAN-based models are
hard to converge in the training stage.

There have been some methods which tried to combine
GAN and VAE, such as VAE/GAN [16], adversarial autoen-
coders [21], CVAE-GAN [22]. Inspired by these works, we
proposed a new condition-driven deep generative network
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combining the idea of VAE and GAN, called CAE-GAN. In
addition, inspired by the classifier used in Auxiliary Classifier
GAN (ACGAN) [23], we reuse the discriminative network as
a classifier to further enhance the performance of the
network. The detailed network framework is described in
Section 3.1.

2.2. Image Registration. Generally speaking, image registra-
tion is an iterative optimization process, which is achieved
by maximizing a predefined image similarity metric calcu-
lated from the moving image and the fixed image through
an optimization algorithm. Several manually crafted metrics
are frequently used, such as the sum of squared differences
(SSD), cross-correlation (CC) [24], mutual information
(MI) [25], normalized cross-correlation (NCC), and normal-
izedmutual information (NMI). The optimization algorithms
aremostly intensity-based [26, 27] and feature-based [28–30].
Actually, image registration generally includes linear (rigid)
registration and deformable (nonrigid) registration, where
linear registration intends to globally align the two images,
and deformable registration is used to correct local deforma-
tions. Deformable registration is used to compute a displace-
ment vector for each voxel of an image according to a
metric, enabling the estimation of the spatial variations of
the anatomy. The displacement vectors are computed to point
to the best corresponding location of the voxels in another
image according to the metric which is a measure of the
image matching.

Among the existing methods, nonparametric deformable
registration algorithms are widely used to estimate tissue
deformations in highly deformable anatomies due to the
advantage of being fast and easy-to-use, such as Demons
[31] and Morphons [32]. Demons is an intensity-based regis-
tration algorithm, which requires no particular preprocessing
nor patient-specific modeling. It is aimed at calculating a reg-
ular displacement field which produces a good matching of
the intensities in fixed and moving images, along with a
measure of the field regularity. However, intensity-based
methods are not suitable for registering images with different
contrast enhancements. Morphons is a method similar to
Demons but phase-based, whose principle is to match transi-
tions rather than intensities, by looking locally at the spatial
oscillations in intensities. This method uses Gaussian
smoothing as a regularization of the displacement field and
additive accumulation during the iterative process. What is
more, diffeomorphic transforms [33], which preserve
topology and invertibility on the transformation, have
shown remarkable superiority in various computational
anatomy studies [34–38]. Actually, there have been many
learning-based registration methods, such as Quicksilver
[39], VoxelMorph [40], and BIRNet [41]. They utilize Con-
volutional Neural Network (CNN) and spatial transforma-
tion function [42] to estimate the similarity measure of the
two images or directly predict the transformation parameters
of the deformation field. But they are beyond the scope of this
article, so we do not introduce much here. In this work, we
adopted a registration method based on local phase differ-
ences and diffeomorphic accumulation like Diffeomorphic

Morphons [38]. The detailed algorithm is presented in
Section 3.2.

3. Our Proposed Method

Our proposed method consists of two main phases. The first
phase is sCT synthesis, two advanced deep learning-based
methods, i.e., VAE and GAN, are applied. The second phase
is sCT-guided multimodal image registration and image
completion. Further details will be given below.

3.1. Phase 1: sCT Synthesis Based on Deep Generative
Network. In order to obtain high-quality sCT, we combined
the most popular image synthesis methods, i.e., VAE and
GAN, to propose a new deep generative network, called
CAE-GAN. As shown in Figure 1, it consists of four subnet-
works: (1) the encoder network (E), (2) the generator net-
work (G), (3) the discriminator network (D), and (4) the
classifier network (C).

The function of networks E and G is the same as that in
VAE [12]. The network E maps the input data x (e.g., brain
fat, R2, and water MR images) to a latent distribution Pz with
mean μ and standard deviation δ. The latent variable sample
¯z is sampled from Pz through sample¯z = μ + ðδ ∗ zÞ as the
input data of G, where z is random noise. The function of net-
workG andD is the same as that in GAN [13]. The networkG
tries to generate synthetic images from the latent variable
sample¯z, and D tries to discriminate whether the input
images are synthetic or real and outputs a probability distribu-
tion d over input images. They automatically update gradients
through adversarial training to improve network perfor-
mance. The network C is realized by reusing the network
structure of D, which only need to change the last activation
function of D from sigmoid to softmax. Because the ana-
tomical structure of the brain is relatively simple and clear,
its internal tissues can be roughly divided into three types:
soft tissue, air, and bone. Therefore, C performs 3-class
classification and outputs a probability distribution c over
the class labels.

However, it is not sufficient to reconstruct images only
through the data distribution mapped by E, which results in
blurred images. We redesigned the network E and G in the
form of concatenation and residual blocks, to form a sym-
metric encoder-decoder structure. Using this structure, the
features of the same resolution at different stages can be fused
on the channel via concatenation operation. What is more,
we designed encoder and decoder residual blocks to retain
more latent features and accelerate network convergence.
The use of residual blocks can also avoid possible problems
of gradient disappearance or gradient explosion to a certain
extent. The detailed structures can be seen in Figure 1.

As for the specific network structure, all convolutional
layers (Conv) are followed by normalization (Norm) and
the Rectified Linear Unit (Relu) to form a module of Conv-
Norm-Relu and all deconvolutional layers (Deconv) are
followed by Norm, Dropout (Dp), and Relu to form amodule
of Deconv-Norm-Dp-Relu. The normalization methods
commonly used in deep learning are Batch Normalization
(BN) and Instance Normalization (IN). We use IN in our
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network, because it is normalized from image pixels that are
more suitable for image translation tasks. There are three
contrast (modality) brain MRI (fat, water, and R2) as input
data; we start with three convolutional layers for each input
data separately (late-fusion) instead of stacking them as
channels (early-fusion). We found late-fuse is better than
early-fuse during the experiment.

Using an appropriate and effective loss function is essen-
tial for network parameter optimization and performance
improvement. As illustrated in Equation (1), we utilize the
adversarial loss Ladv to ensure the adversarial training of G
and D. Specifically, G tries to minimize the adversarial loss
and D tries to maximize it. In addition, we also introduce
an image reconstruction loss Ll1 to minimize the difference
between synthetic images and reference images, as presented
in Equation (2). Therefore, the ultimate objective function is
summarized as Equation (3). In these equations below, x rep-
resents the source domain images (MR), y represents the tar-
get domain images (CT), and c represents class labels. We use
a parameter λ to control the relative weight of the image
reconstruction loss function, set to 100 by default.

Ladv = Ey log D yð Þ½ � + Ex 1 − log D G E xð Þð Þð Þ½ �
+ Ey log D c yjð Þ½ � + Ex 1 − log D G E c xjð Þð Þð Þð Þ½ �

ð1Þ

Ll1 = Ex,y y − G E xð Þð Þk k1
� �

, ð2Þ

Ltotal = Ladv + λLl1: ð3Þ

3.2. Phase 2: sCT-Guided Multimodal Image Registration and
Image Completion. In our method, we adopted a registration
algorithm similar to Diffeomorphic Morphons [38]. This is a
nonparametric deformable registration method based on
local phase differences at multiple scales. The deformation
field estimation is stabilized by using a simple smoothing
and downsampling procedure to decompose the fixed and
the moving images on several scales. This registration algo-
rithm contains an iterative loop that mainly consists of four
interconnected steps, i.e., deformation field computation,
deformation field accumulation, deformation field regulari-
zation, and image deformation. The idea is to progressively
build a proper displacement field by iteratively improving

s
3
k
1

s
3
k
1

s
3
k
1

s
3
k
2

Fat MRI

R2 MRI

Water MRI

𝜇, 𝛿 Sample_z = 𝜇+(𝛿⁎z)

sCT

z

s
3
k
1

s
3
k
1

s
3
k
1

s
3
k
2

Fat MRI

R2 MRI

Water MRI

𝜇, 𝛿 Sample_z = 𝜇+(𝛿⁎z)

sCT

z

real_CT

s
3
k
2

s
3
k
2

s
3
k
2

s
3
k
2

s3
k
2

c

c

c

c

c

c

c

d

c

Encoder Generator

Discriminator & classifier

Conv-Norm-Relu Encoder residual block

Decoder residual blockFully connection layer

Decon-Norm-Dp-Relu c Concatenation

s1k1

s2k2

s1k1

s1k1

s1k3

s1k1

+ +

En_in

De_out

+ Elementwise addTanh

De_in

En_out

(a) (b)

Figure 1: The overall framework of our proposed ACE-GAN. It consists of four subnetworks, encoder (E), generator (G), discriminator (D),
and classifier (C). The detailed structure of the encoder and decoder residual block is shown in (a) and (b), respectively. Specifically, s1k1
represents that the convolution stride is 1 and the kernel size is 1 × 1 × 1.
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the matching between the fixed and moving images warped
by the displacement field, according to a certain metric.
The overall framework of this phase is shown in Figure 2.

(1) Deformation field computation: the deformation
field is estimated by the dephasing between the local
phase of the fixed and moving images. This local
phase can be probed at a certain frequency and in a
particular direction using quadrature filters [43].
Given the fixed image f and moving image m, the
deformation field Du can be calculated by solving a
weighted least square optimization problem. Accord-
ingly, the global certainty mapping of deformation
field can be expressed mathematically as

Θc f ,mð Þ =〠
k

ck xð Þ, ð4Þ

where ckðxÞ = Af ðx ; kÞAmðx ; kÞ is the certainty map-
ping of the filter mentioned above, with Af ðx ; kÞ and
Amðx ; kÞ denoting the amplitudes of the fixed and
moving images, respectively. Then, this update of
certainty map will be combined with an accumulated
certainty computed from previous iterations

(2) Deformation field accumulation: the complete accu-
mulated field is computed as a weighted sum of the
update field and the previous accumulated field.
The weights are given by the certainty on the update
field and the accumulated certainty map. Besides,
some new tricks are adopted in this method. Let the
deformation field be represented by a vector field D,
and let Δ= Δ Id +D denote the deformation opera-
tion, where Id denotes the identity deformation:
IdðxÞ= Δ x. Then, the accumulation process can be
expressed as

D1 ⊕D2 =
Δ
Δ1 ∘ Δ2 − Id, ð5Þ

where ∘ represents the common function composi-
tion operation, denoting the warping of two objects.
The composition will remain diffeomorphic in the
case of two diffeomorphic deformation fields

(3) Deformation field regularization: field regularization
is in order to get a smoother transformation and
reduce the impact of image noise on the registration
output. In our method, regularization is achieved by
using a normalized convolution [44] of the deforma-
tion field by the Gaussian kernel. In addition, the cer-
tainty map obtained from local phase computation is
also used to adjust the importance of the target loca-
tions, i.e., the higher significance is attached to loca-
tions with larger values in certainty map

(4) Image deformation: the three steps mentioned above
are performed iteratively a certain number of times at
each scale from coarse to refine, until it reaches a cer-
tain stopping criterion. Then, the resulting regular-
ized deformation field is used to warp the moving
image to obtain the registered image

In our method, we use sCT (moving image) and real
CT (fixed image) as input and then apply the optimal
deformation field output to original MRI, so as to obtain
the final registered MRI (moved image). Because sCT is
completely generated on the basis of MRI, which is rep-
resentative of the characteristics of the original MRI, so
the deformation field obtained by registering sCT and
real CT can be used to register original MRI to reference
normal CT. In this process, we transformed multimodal
MRI-CT registration into monomodal sCT-CT registra-
tion and repaired the problematic MRI at the same time.
Thus, our overall approach consists of two interrelated
phases, i.e., sCT synthesis based on deep generative net-
work and sCT-guided multimodal image registration and
image completion. To some extent, the image registration
and completion results in the second phase largely
depend on the quality of synthetic CT generated in the
first phase.

Real_CT
(fixed image)

Original MR

sCT
(moving image) Image deformation

Deformation field
computation

Deformation field
accumulation

Deformation field
regularization

Deformation field Apply deformation field
to original MR

Registered MR
(moved image)

Workflow

Data flow

Figure 2: The pipeline of sCT-guided multimodal image registration used in our method.
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4. Experiment and Discussion

4.1. Experiment Setup. The dataset used in our experiment
includes nine sets of brain MR-CT images from nine healthy
subjects after providing informed consent. For each subject,
there are three types of MR sequences, e.g., fat, water, and
R2, and corresponding CT scans from the same anatomy.
To simulate the deformation and other unknown corruption
that MR images may encounter during acquisition, we ran-
domly warped the original MR images with salt-and-pepper
noise. To make full use of these brain MR-CT images, we
adopted a leave-one-out (LOO) strategy to get unbiased
cross-validation results of each subject. LOO trains the net-
work on all but one case and tests on that case and then
repeats this process on each case. In other words, for the
sCT of each subject, we obtained it by testing on the network
which was trained with the images from the other nine sub-
jects. To fit the memory and computing resources of the
computer, we divided the original MR and CT images with
the resolution of 256 × 256 × 256 into many 64 × 64 × 64
patches. The training and testing patches for the network
are extracted by sliding over the original images. After the
network converges, the generated patches are then recom-
bined to form a complete sCT.

In order to demonstrate the superiority of our proposed
framework, two image synthesis methods, i.e., FCN-based
deep generative network and FCM-based clustering algo-
rithm, are chosen as opponents for the comparison of sCT
synthesis. On the other hand, two classical traditional regis-
tration methods, i.e., Diffeomorphic Morphons (D_ Mor-
phons, a method based on local phase differences) [38] and
Diffeomorphic Demons (D_Demons, a method based on
the sum of squared differences) [37], are selected for the com-
parison of image registration. In all non-learning-based
approaches, the methods using diffeomorphic transforms
can preserve topology and the invertibility of the transforma-
tion, so they are still effective and representative methods
nowadays. We utilize the OpenREGGUI, an open-source
image registration package to implement these registration
methods.

Our experimental studies were carried out on a computer
with an Intel Xeon® CPU E5-2640 V4, GeForce RTX 2080 Ti
GPU using the Ubuntu 16.04 (64 bit) operating system. We
use TensorFlow (Google, California, USA) and MATLAB

2016a (MATHWorks, Natick, MA, USA) to implement our
proposed method.

4.2. Metrics for Evaluation. To demonstrate the effectiveness
of our proposed deep generative network, we use the Mean
Absolute Error (MAE) and the Pearson Correlation
Coefficient (CC) to quantitatively measure the similarity
between generated and reference images. That is, the values
(see Table 1) are calculated by measured CT and sCT gener-
ated by different algorithms, i.e., FCN-based, FCM-based,
and our proposed CAE-GAN. A lower value of MAE and
higher value of CC indicate a smaller error and higher quality
of generated images.

As for the evaluation of image registration, two metrics
are used in our research: the mutual information (MI) and
the sum of local phase differences (SLPD). Giving the fixed
image f and moved image m, the MI measures the mutual
dependence between two images and can be defined as

MI f ;mð Þ = 〠
f ∈F

〠
m∈M

p f ,mð Þ log p f ,mð Þ
p fð Þp mð Þ

� �
, ð6Þ

where pð f ,mÞ is the joint probability function of f and m,
and pð f Þ and pðmÞ are the marginal probability distribution
functions of f and m, respectively. The SLPD is calculated
as the sum of the local phase differences in all directions
between two images. Mathematically, it can be defined as

SLPD =〠 sin Δφð Þð Þ, ð7Þ

where Δφ denotes the local phase differences between two
images. A lower value of SLPD and higher value of MI indi-
cate higher registration accuracy and better results.

4.3. Results and Discussion. The sCT synthesis phase is an
important component of our proposed sCT-guided multi-
modal image registration and completion method. We sepa-
rately ran CAE-GAN, FCN_based, and FCM_based methods
on the brain images obtained from 9 subjects. To illustrate
the effectiveness of our proposed deep generative network,
we calculated the evaluation metrics between measured CT
and sCT that are generated by FCM_based, FCN_based,
and our CAE-GAN methods, respectively. The values of

Table 1: Performance comparison of three image synthesis algorithms. The best results of each subject are presented in bold.

Sub
MAE CC

FCM_based FCN_based CAE-GAN FCM_based FCN_based CAE-GAN

1 157.81 77.11 58.88 0.75 0.94 0.96

2 176.91 95.24 98.44 0.61 0.91 0.89

3 157.94 99.77 69.99 0.71 0.90 0.92

4 178.49 87.34 67.49 0.74 0.92 0.93

5 165.03 103.34 99.32 0.70 0.89 0.89

6 152.67 105.57 97.54 0.71 0.89 0.89

7 169.38 82.08 78.96 0.67 0.92 0.93

8 146.57 94.91 71.76 0.67 0.89 0.92

9 171.82 110.18 88.94 0.79 0.88 0.90
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MAE and CC of different methods for each subject are listed
in Table 1. As can be seen from the bold fonts (best) marked
in the table, except for sub2, our proposed method has lower
MAE and higher CC than other methods, which demon-
strates that our method produces more precise and higher
quality synthetic images. Figure 3 shows the results of sCT
synthesis by different methods on subject 1. From these syn-
thetic slices, we can clearly see that the sCT generated by our
method is very similar to the measured CT with clearer inter-
nal tissue textures and higher-quality synthesis effects. In
addition, we can conclude that deep learning-based methods
(FCN_based and our method) are superior to traditional
machine learning-based methods (FCM_based), which can
be seen from Table 1 and Figure 3.

For the purpose of the performance comparison of differ-
ent registration methods, we measured the MI and SLPD
introduced above for each subject and listed in Table 2. They
are calculated by measured CT and registered MRI obtained
from different registration methods. It can be seen from evalu-
ation metrics that our proposed sCT-guided image registration
method has similar and even more superior performance to
other classical traditional registration methods. From Figure 4

that shows the results of registration and completion on subject
1, we can clearly see that the registered MRI obtained using our
method has a high matching of tissue deformation and spatial
location with the corresponding reference CT and it repairs
the initial abnormal MRI. Besides, it can be illustrated that the
matching of structures in images based on intensity is unsuit-
able for registering variable contrast images, as can be seen from
Figure 4(f). It may lead to uncontrollable abnormal tissue defor-
mation, making the registration results not credible. What is
more, considering that in clinical applications, time is very
important. We recorded the total time consumption used in
our experiments, which is listed in Table 3. Our proposed
method in this work consists of two interrelated phases, i.e.,
sCT synthesis and image registration. Once the image synthesis
network is trained well, the total time cost of our method is less
than two minutes, which is much more efficient than the other
two registration methods. Thus, our method obviously con-
sumes less time and obtains better results than either of
these methods.

Overall, in our method, we utilized a deep generative net-
work to obtain sCT and then used sCT as an intermediary to
convert the problem of multimodal MRI-CT registration into

Measured_CT

(a)

sCT generated by CAE-GAN

(b)

sCT generated by FCN-based method

(c)

sCT generated by FCM-based method

(d)

Figure 3: Results of different image synthesis algorithms on subject 1. (a) is the measured CT, and (b)–(d) are the synthetic CT generated by
different methods. Each slice image is viewed from three perspectives, transverse, coronal, and sagittal, from left to right. It can be seen that (b)
is the closest to the measured CT with high synthesis accuracy and quality.

Table 2: Performance comparison between our proposed method and other registration methods. The best results are presented in bold.

Sub
MI SLPD

Ours D_Morphons D_Demons Ours D_Morphons D_Demons

1 0.9482 0.9465 0.9466 1.6159E+ 05 1:6803E + 05 1:7738E + 05
2 0.9220 0.9177 0.9161 2.6173E+ 04 4:1678E + 04 2:9328E + 04
3 0.9338 0.9307 0.9328 1.9668E+ 04 1:1733E + 05 5:8928E + 04
4 0.9397 0.9340 0.9386 6.0200E+ 04 7:6741E + 04 9:0167E + 04
5 0.9251 0.9184 0.9238 1.0450E+ 05 1:3337E + 05 1:5216E + 05
6 0.9316 0.9456 0.9311 9:4646E + 04 8.2707E+ 04 9:2987E + 04
7 0.9437 0.9378 0.9435 1.1808E+ 05 1:3797E + 05 1:2557E + 05
8 0.9414 0.9348 0.9411 1.4943E+ 05 1:6041E + 05 1:8494E + 05
9 0.9286 0.9271 0.9278 4.3636E+ 04 1:6514E + 05 7:6691E + 04
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the problem of monomodal sCT-CT registration. In this
way, we successfully addressed the challenges of multi-
modal registration caused by the significant differences
between different contrast images and reduced the diffi-
culty of registration. We utilized a traditional deformable
registration method based on local phase differences and
diffeomorphic accumulation to perform the image registra-
tion process and enable the completion of problematic MR
images. We did not use the latest popular deep learning-
based registration algorithms due to insufficient data and
the lack of optimal optimization goals. The deep genera-
tive models are relatively mature now, but the deep regis-
tration methods still face many challenges, especially for
multimodal registration. It is very difficult to design a

common optimal similarity index to measure the accuracy
of registration. Due to the inherent defects of deep learn-
ing, strong data dependence, and poor interpretability,
model stability and generalization are limited in practice.
Besides, one disadvantage of our method is that we require
normal CT scans from the same subject to serve as a
guide and reference to enable indirect multimodal registra-
tion and completion, which may have trouble in practical
application scenarios. Nevertheless, with limited data, we
have proved the effectiveness of our proposed deep gener-
ative network and indirect multimodal image registration
and completion method. Compared with the existing
methods of multimodal registration, our method exhibits
clear superiority.

Initial MRI

(a)

sCT obtained by CAE-GAN

(b)

Normal/reference CT

(c)

reg_MRI obtained by using our proposed method

(d)

reg_MRI obtained by D_Morphons

(e)

reg_MRI obtained by D_Demons

(f)

Figure 4: Results of image registration and completion on subject 1. (a) is the initial contaminated MRI, (b) is the synthetic CT as an
intermediary, (c) is the normal CT as guidance and reference, and (d)–(f) are registered MRI obtained by using different registration
methods. Each slice image is viewed from three perspectives, transverse, coronal, and sagittal, from left to right. The results demonstrate
that the reg_MRI obtained by our method has a high matching of tissue deformation and spatial location with the reference CT and
repairs the abnormal MRI.

Table 3: Time consumption of three image registration methods.

Sub
Ours D_Morphons D_Demons

sCT synthesis (s) Registration (s) Total time (s) Total time (s) Total time (s)

1 3.5 84 87.5 450 376

2 3.5 84 87.5 582 380

3 3.5 89 92.5 583 353

4 3.7 90 93.7 586 354

5 3.5 85 88.5 585 355

6 3.6 84 87.6 585 356

7 3.5 82 85.5 582 353

8 3.5 89 92.5 582 352

9 3.6 92 95.6 583 378
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5. Conclusion

In this paper, inspired by image synthesis, we utilized syn-
thetic CT as an intermediary to solve the challenging multi-
modal image registration problem. We proposed a sCT-
guided multimodal MRI registration and completion method
and designed a new deep generative network called Condi-
tional Auto-Encoder Generative Adversarial Network
(CAE-GAN), which combined the idea of VAE and GAN,
to obtain high-quality synthetic CT. We conducted experi-
ments on brain MR-CT images provided by nine subjects.
The experimental results illustrated that our designed deep
generative network can yield high-quality synthetic images
and our proposed image registration method can exhibit
clear superiority in registration accuracy and time consump-
tion compared with other methods.
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