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ABSTRACT: Natural products continue to be major sources of
bioactive compounds and drug candidates not only because of their
unique chemical structures but also because of their overall
favorable metabolism and pharmacokinetic properties. The number
of publicly accessible natural product databases has increased
significantly in the past few years. However, the systematic ADME/
Tox profile has been reported on a limited basis. For instance,
BIOFACQUIM was recently published as a public database of
natural products from Mexico, a country with a rich source of
biomolecules. However, its ADME/Tox profile has not been
reported. Herein, we discuss the results of an in-depth in silico
ADME/Tox profile of natural products in BIOFACQUIM and
other large public collections of natural products. It was concluded that the absorption and distribution profiles of compounds in
BIOFACQUIM are similar to those of approved drugs, while the metabolism profile is comparable to that in the other natural
product databases. The excretion profile of compounds in BIOFACQUIM is different from that of the approved drugs, but their
predicted toxicity profile is comparable. This work further contributes to the deeper characterization of natural product collections as
major sources of bioactive compounds with therapeutic potential.

1. INTRODUCTION
Natural products (NPs) offer diverse therapeutic alternatives
as a result of their ability to produce diverse bioactive
metabolites with scaffolds of difficult synthesis. NPs also show
a broad range of biological activities, although some NPs have
toxicity issues. Indeed, it is estimated that about 40% of all
approved drugs have origin in NPs or are an inspiration from
them.1,2 A recent estimation indicated that in 2014 this
percentage increased to 50%.3 This includes drugs that were
obtained from synthetic and semisynthetic derivatives or drugs
whose scaffolds were identified from natural sources.1

As NPs are contributing to drug discovery programs, there
has been a boost in the development of databases of NPs,
many of which are now in the public domain. In the last 20
years, there was a rapid increase in the number of various
databases and collections as general or thematic resources for
NP information. Over 120 different NPs databases and
collections were published and reused since 2000. Of them,
98 are still somehow accessible and only 50 are open access.
The latter include not only databases but also large collections
of NPs published as Supporting Information in scientific
publications and collections that were backed up in the ZINC
database for commercially available compounds. Some data-
bases, even published relatively recently, are already not
accessible anymore, which leads to a dramatic loss of data on
NPs.4 The virtual NP libraries include encyclopedic databases
as well as many specialized libraries focused, among others, on

NPs related to certain geographic regions5 or specific
indications.4 In addition to NPs, combinatorial libraries are
attractive sources to expand the medicinally relevant chemical
space. Some combinatorial libraries, although small-sized, are
inspired by NP scaffolds.7

One of the recently developed databases of NPs is
BIOFACQUIM. This is a novel compound database with
compounds isolated and characterized from Mexican natural
sources. BIOFACQUIM is being built, curated, and main-
tained manually by an academic group in the School of
Chemistry, UNAM. The first version of BIOFACQUIM was
published in 2018 and includes 423 compounds. Figure 1
shows the representative chemical scaffolds of compounds in
BIOFACQUIM. It should be noted that 316 compounds were
isolated from 49 different plant genera, 98 were isolated from
19 genera of fungi, and nine compounds were isolated from
Mexican propolis (a sticky dark-colored hive product collected
by bees from living plant sources).8 The most recent version of
BIOFACQUIM contains 535 compounds. The last version has
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a higher scaffold diversity than the first release, and it also has
privileged functional groups.9

Absorption, distribution, metabolism, and excretion
(ADME) properties play a significant role in drug develop-
ment.10 In fact, around 40% of all drug failures are, overall, due
to ADME problems. Despite the fact that preclinical ADME
studies have led to a reduction of failures caused by
pharmacokinetics (PK), drug toxicity remains a problem.
Both, nonoptimal ADME and toxicity can end up with late-
stage failures, responsible for a large unproductive investment
of time and money.11 Toward the improvement of ADME
prediction, in silico models are contributing to drug
optimization. Due to the complexity of the ADME process,
it is not possible to make decisions based on a single
descriptor.12 Big data and machine learning implementations
promise a hopeful landscape in ADME13 and toxicity
prediction.14

Since NPs are relevant in drug discovery as well as ADME/
Tox profiling of chemical databases, there have been efforts to
obtain, at least in silico, the ADME/Tox profile of NP
databases. For instance, a computational ADME/Tox profiling
of several different phytochemical databases with a detailed
analysis of diverse PK criteria was recently published. It was
concluded that 24 compounds have all of the ADME/Tox
properties that can be considered for drug development.5

However, the ADME/Tox profile of BIOFACQUIM has not
been reported.
Based on the fact that NPs are excellent sources of drug

candidates and that it is valuable to obtain their in silico
ADMETox profile,15,16 the objective of this work was to obtain
a detailed ADME/Tox profile of the NPs included in the
BIOFACQUIM database and compare them with the ADME/
Tox properties of other NP databases. This work further
contributes to the deeper characterization of NP collections for
their applications in drug discovery.

2. MATERIALS AND METHODS

2.1. Databases. To characterize the diversity of BIO-
FACQUIM and to explore the diversity of ADME/Tox
properties, four compound databases of a broad interest in
drug discovery were used as a reference. Table 1 summarizes
the compound databases used in this work, which are
described below. The link to the relevant publication is
provided. From there, the reader can see the details of each
compound database and access the website of the collection.
Small-molecule drugs approved by the Food and Drug

Administration (FDA) of the United States were obtained
from the DrugBank database17 using an in house script.
As mentioned in Introduction, BIOFACQUIM compounds

were isolated from diverse natural sources in Mexico and

several of them have shown biological activity.8 The most
recent version of BIOFACQUIM contains 535 compounds
that have larger scaffold diversity than compounds in the first
release and also have demonstrated to contain privileged
functional groups.9

AfroDB is an NP database from the flora of the African
continent. It has recorded activities for a broad range of
tropical diseases as well as diseases dominant in rich
countries.16

NuBBEDB is a collection of NPs from Brazil that contains
botanic, chemical, pharmacologic, and toxicologic information
of compounds and derivatives from plants and micro-
organisms.6

Traditional Chinese Medicine Database@Taiwan (TCM)
collects information from Chinese medical texts and scientific
publications. This web-based database contains more than
42 000 unique NPs based on ∼16 000 Murcko scaffolds and
more than 20 000 pure compounds isolated from 453 TCM
ingredients.18 In this work, a sample of 2000 compounds was
taken from TCM to minimize the use of imbalanced data sets.
For each database, removal of inorganic compounds and

neutralization of salts was done using KNIME.19

2.2. ADME Descriptors. Only when the ADME/Tox
properties of a druglike compound are of sufficiently high
quality, and when the target has been validated, the compound
could be developed into new medication.20,21 This is why
diverse methods have been integrated into web servers to
predict drug-likeness of molecules.22 For instance, Jia et al.
recently reviewed freely accessible online resources to evaluate
drug-likeness of compound data sets. It was concluded that
comprehensive databases that collect and offer high-quality
and up-to-date data are essential for constructing rules or
models for in silico drug-likeness evaluation. It was also found
that online ADME/Tox resources provide useful guidelines to
extract rational compounds that match the desirable PK
properties or to filter compounds that are not likely to be

Figure 1. Most frequent chemical scaffolds identified in the first version of BIOFACQUIM.

Table 1. BIOFACQUIM and Reference Databases Used in
This Work

database
number of
compounds link

BIOFACQUIM 531 http://dx.doi.org/10.3390/
biom9010031

FDA 1692 http://dx.doi.org/10.1093/nar/
gkx1037

AfroDB 954 http://dx.doi.org/10.1371/journal.
pone.0078085

NuBBEDB 1333 http://dx.doi.org/10.1038/s41598-
017-07451-x

TCM 2000 http://dx.doi.org/10.1371/journal.
pone.0015939
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drugs. Finally, it was concluded that NP databases are
attractive sources for selecting novel scaffolds with promising
bioavailability properties.22

Some physical properties have a strong correlation with
ADME endpoints. For example, log Pw/oct (the partition
coefficient of a compound between water and 1-octanol) has
a strong association with the permeability of compounds. In
the past several decades, a significant amount of in vitro and in
vivo assay data has been accumulated as a byproduct of
pharmaceutical development. This accumulated data enabled
the development of models and software to predict ADME
properties with high reliability and accuracy.23

2.3. Toxicity Descriptors. Determining the toxicity of
chemical compounds is necessary to identify their harmful
effects on humans, animals, plants, or the environment. In vivo
animal tests are constrained by time, ethical considerations,
and financial burden. Therefore, computational methods for
estimating the toxicity of chemicals are considered useful. In
silico toxicology aims to complement existing toxicity tests to
predict toxicity, prioritize chemicals, guide toxicity tests, and
minimize late-stage failures in drug design.14,24

3. RESULTS AND DISCUSSION

3.1. ADME/Tox Descriptors. To calculate the ADME/
Tox-related descriptors of BIOFACQUIM and the reference
databases (Table 1), we used the SwissADME and pkCSM
pharmacokinetics servers. As discussed in this section, the two
web servers have been extensively validated with experimental
data (cf. refs 26, 38, vide infra). In addition, these web servers
were selected because they are freely accessible and provide
robust computational methods to estimate a global appraisal of
the pharmacokinetics and toxicity of small molecules.
SwissADME contains methods selected for robustness, speed,
and straightforward interpretation. The pkCSMpharmaco-
kinetics sever enables a fast and reliable prediction of ADME/
Tox properties. It was built performing a careful selection of
data sets and published methods available in the literature.
3.1.1. Chemical Space. A visual representation of the

chemical space covered by different NPs databases and drugs
approved by the FDA was made by employing principal
component analysis (PCA) based on 16 physicochemical and
ADME/Tox descriptors. PCA was performed based on the
molecular weight (mw), rotatable bonds, hydrogen bond
acceptors and donors, surface area, Silicos-IT LogSw,
Consensus LogP, intestinal absorption, BBB permeability,
fraction unbound, total clearance, fraction Csp3, number of
heavy atoms, number of Lipinski violations, Veber violations,
and lead-likeness violations. The loadings of the first and
second principal components (PCs) are listed in Table S1 in
the Supporting Information. PC1 and PC2 explain 38.72 and
17.52% of the total variance, respectively. The surface area and
Consensus LogP were the descriptors that mainly contribute to
the principal components 1 and 2, respectively.
Figure 2 illustrates that the chemical space covered by the

different NPs is similar to the chemical space of FDA-approved
drugs. FDA covers the major chemical space. Most of the
BIOFACQUIM chemical space is covered by the FDA. Some
BIOFACQUIM compounds do not share the chemical space
with FDA or other NP libraries. NuBBEDB shares a similar
chemical space to FDA and BIOFACQUIM. AfroDB chemical
space is close to TCM and FDA. Finally, the chemical space of
TCM is close to FDA.

3.1.2. Absorption. Absorption is the process of movement
of a drug from an extravascular site of administration into the
systemic circulation.25 It can be modeled with different
properties described hereunder.

3.1.2.1. Solubility. Solubility in the intestinal fluid is an
important property of oral drugs since insufficient solubility
may limit the intestinal absorption through the portal vein
system to obtain a therapeutic effect when systemic effects are
warranted.25 Water-soluble compounds greatly facilitate many
drug development activities, primarily because of the ease of
handling and formulation. For oral administration, solubility is
a major property influencing absorption. Similarly, a drug
meant for parenteral usage has to be highly soluble in water to
deliver a sufficient quantity of the active ingredient.26

Silicos-IT LogSw is the selected descriptor provided by
SwissADME. It is the third predictor for solubility and was
developed by SILICOS-IT. Silicos-IT LogSw estimates the
decimal logarithm of the molar solubility in water (log S).26

Figure 3 shows the probability distribution of the five data
sets. A summary statistics is in the Supporting Information
(Table S3). Data suggest that NuBBEDB is the only database
with a central distribution. In contrast, TCM shows high
negative values, which indicate the presence of poorly soluble
compounds. The distribution with the lowest Silicos-IT LogSw

Figure 2. Visual representation of the chemical space of reference
data sets based on 16 physicochemical and ADME/Tox descriptors.
Of note, the total variance represented is 56.2%, and it is an
approximation of the actual property-based chemical space.

Figure 3. Distribution curve and summary statistics of Silicos-IT
LogSw predicted with SwissADME.
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is FDA, which indicates that, overall, it has more water-soluble
compounds as compared to other compound databases. The
distribution of Silicos-IT LogSw values for BIOFACQUIM and
AfroDB are similar, with most values between a range of −10
and 0. FDA has a mean value of −3.996. In contrast, AfroDB
has the lowest mean value (−5.171) and BIOFACQUIM has a
value between those of FDA and AfroDB (−4.197). FDA has a
median value of −4.105, also AfroDB has a higher value
(−5.03), and BIOFACQUIM has a value between these
libraries (−4.4).
3.1.2.2. Lipophilicity. The partition coefficient between n-

octanol and water (log Po/w) is a common descriptor to
measure lipophilicity. Lipophilicity of the compounds is related
to the permeability through biological membranes. It could be
decreased when lipophilicity is too low, whereas very
hydrophilic compounds are usually not able to diffuse passively
through them.25 SwissADME computes five values of this
descriptor using different models. In this work, we used the
descriptor Consensus LogPo/w, which is the arithmetic mean of
the values predicted by the five proposed methods.
Figure 4 presents the probability distribution of Consensus

LogP of the five data sets. A summary statistics is in the

Supporting Information (Table S4). The TCM data set shows
high positive values, which indicate the presence of highly
lipophilic compounds. In contrast, the distribution with the
lowest Consensus LogP is the FDA library, which indicates
very hydrophilic compounds. The distributions of Consensus
LogP values for BIOFACQUIM and AfroDB are comparable
with most values between 0 and 10. The FDA mean value is
1.949, while AfroDB has the highest mean value (3.541) and
BIOFACQUIM has a mean value between those in these
libraries (2.993). The median value of FDA is 2.275, whereas
BIOFACQUIM has a similar value (2.76) and AfroDB has the
highest value (3.35).
3.1.2.3. Intestinal Absorption in Human (HIA). Upon oral

administration of a drug, its absorption in the small intestine is
one of the key PK processes determining its bioavailability.
The human intestinal absorption (HIA) of a substance is
usually quantified as a portion of the given dose that has
reached the portal vein

= D DHIA /blood oral

where Dblood is the amount of a substance that has reached the
portal vein and Doral is the total amount of the orally
administered substance. Thereby, the effect of metabolic
changes during the first passage of a substance through the
liver before entering the systemic circulation is excluded.

In this work, the HIA descriptor was computed with
pkCSMpharmacokinetics. For a given compound, this
model predicts the percentage that will be absorbed through
the human small intestine.27 Figure 5 shows the probability

distribution of intestinal absorption in humans of the five data
sets. Results show that the distributions of BIOFACQUIM and
AfroDB are comparable. A summary statistics is in the
Supporting Information (Table S5). Data also indicates that
FDA has a mean of 75.46, whereas NuBBEDB has a higher
mean value (92.24). NuBBEDB also has a higher minimum
value and median value than the FDA set. BIOFACQUIM has
a similar mean value to AfroDB (83.433 and 86.934,
respectively); in addition, the median of these libraries is
similar (93.61 and 94.236, respectively). TCM has a mean
value close to FDA (72.288 and 75.458, respectively).

3.1.3. Distribution. This ADME property refers to the
distribution of the drugs throughout different compartments
within the body.25 It can be quantified using different
descriptors that were computed for BIOFACQUIM and
reference databases.

3.1.2.4. P-Glycoprotein (P-gp) Substrate. This protein acts
as a drug-extracting pump that needs energy in the process.
The efflux takes place by means of a pore in the cell membrane
that consists of 12 α-helices. High expression levels of P-gp are
found in normal tissues such as the liver, pancreas, kidneys
(renal tubules), colon, and adrenal cortex. These findings
suggest that P-gp could have a physiological role in the
secretion process. In tumor tissues, there is a correlation
between the increase of P-gp expression and resistance to
multiple drugs, being the cause of the phenotype multiple drug
resistance (MDR).28 Binding to P-gp prediction was calculated
with SwissADME in a binary form (yes/no).

3.1.2.5. BBB Permeability. The blood−brain barrier (BBB)
protects the central nervous system (CNS) by separating the
brain tissues from the bloodstream. It is mainly formed by the
brain endothelium, which can prevent larger molecules (100%)
and small molecules (98%) from entering into the CNS and
allow transport of only water- and lipid-soluble molecules and
selective transport molecules. Also, the barrier expresses
numerous active transporters such as P-gp and glucose
transporters. Glucose transporters allow glucose entry into
brain cells.29 The BBB descriptor was calculated with
SwissADME, and it predicts the permeable compounds in a
binary form (yes/no).
Figure 6 summarizes the results of the percentages of

compounds predicted to cross the BBB and the percentage of
compounds predicted to be substrates of P-gp for each of the
compound libraries. A summary of the percentages of

Figure 4. Distribution curve and summary statistics of Consensus
LogP predicted with SwissADME.

Figure 5. Distribution curve and summary statistics of intestinal
absorption in humans predicted with pkCSMpharmacokinetics.
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inhibition is in the Supporting Information (Table S6). The
highest percentage of compounds predicted to penetrate the
BBB corresponds to NuBBEDB with 70% probability. FDA and
BIOFACQUIM have similar percentages (39 and 41%,
respectively); AfroDB and TCM have the lowest percentages
(36 and 30%, respectively). TCM had the highest percentage
predicted to be a substrate of P-gp (47%). FDA and AfroDB
have similar percentages (41 and 37%, respectively), while
BIOFACQUIM and NuBBEDB had the lowest percentages (28
and 18%, respectively).
3.1.2.6. Fraction Unbound. Drugs can bind extensively to

proteins in the plasma. The free or unbound fraction of a drug
is usually the portion that exerts a pharmacologic effect. If
protein binding is reduced, a greater free fraction is available
for any given total drug concentration, which may increase
drug activity. Organic acids usually have a single binding site
on albumin, whereas organic bases have multiple binding sites
on glycoproteins. Predicting the effect of changes in protein
binding is difficult because even though more free drugs are
available at the site of action, more is available for metabolism
or renal excretion. Hence, lower plasma concentrations can
occur and drug half-life may decrease rather than increase.30 In
this work, the fraction unbound descriptor was calculated with
pkCSMpharmacokinetics. For a given compound, the server
predicts the fraction that would be unbound in plasma. Figure
7 summarizes the probability distribution of the fraction

unbound in humans of the five databases. A summary statistics
is in the Supporting Information (Table S7). The FDA set has
a mean value of 0.339, while AfroDB has the highest mean
value (0.158). BIOFACQUIM and NuBBEDB have similar
mean values (0.213 and 0.233, respectively). Of all data sets,
TCM has the closest mean value (0.253) to FDA. AfroDB has

the lowest median value (0.114). NuBBEDB has a maximum
value (0.989), similar to the maximum value of FDA (0.987).
BIOFACQUIM has a mean value close to NuBBEDB (0.213
and 0.233, respectively). In addition, BIOFACQUIM has a
median value (0.148) similar to AfroDB (0.114). BIOFAC-
QUIM, FDA, and NuBBEDB have comparable maximum
values.

3.1.4. Metabolism. 3.1.4.1. Inhibition of the Main
Cytochromes. The metabolism of drugs is a complex
biotransformation process where drugs are structurally
modified to different molecules by different enzymes.
Metabolism plays a major role in drug development, and its
effects on PK, pharmacodynamics (PD), and safety should be
studied extensively.31 Prediction of inhibition of the main
cytochromes was calculated with SwissADME in a binary form
(yes/no).

3.1.4.2. CYP450. Cytochrome P450 enzymes are primarily
located in the liver and intestine and metabolize the majority of
drugs through oxidation. CYP450 enzymes can either be
induced or inhibited by various drugs and substances, which
results in drug interactions that lead to toxicity or reduction in
the therapeutic effect.32 Consistent with its highest abundance
in humans, cytochrome P450 (CYP) 3A is responsible for the
metabolism of about 60% of xenobiotics including drugs,
carcinogens, steroids, and eicosanoids.33 A summary of the five
CYPs considered in this work is presented in Table 2.
Prediction of the percentage of inhibition of the isoenzymes

was done with SwissADME. Figure 8 shows the results for each
database. A summary of inhibition of CYPs is in the
Supporting Information (Table S8). According to the results,
31% of compounds in BIOFACQUIM inhibit CYP2C9 and
30% of compounds in this database would inhibit CYP1A2 and
CYP3A4; 47% of compounds in NuBBEDB would inhibit
CYP1A2. Also, it is predicted that between 31 and 37% of
compounds in NuBBEDB inhibit the other four predicted
CYPs. Compounds in AfroDB are predicted to inhibit mainly
CYP3A4 (41%) followed by CYP2C9 (38%). Figure 8 also
indicates that compounds in TCM inhibit mainly CYP3A4
(23%). Among the data sets studied in this work, compounds
in TCM overall seem to inhibit the smallest number of
cytochromes. Regarding the reference set FDA, compounds
inhibit mainly CYP2D6 (30%) followed by CYP3A4 (24%).
Several compounds in BIOFACQUIM and reference

databases were predicted to inhibit more than one cytochrome.
Figure 9 summarizes the percentages for multiple inhibitions of
CYPs: 11% of compounds in FDA are predicted to inhibit two
CYPs and just 5.3% of the data set could possibly inhibit four
CYPs. BIOFACQUIM has 69 compounds (13%), which are
predicted to inhibit three of five CYPs. AfroDB exhibits a
similar proportion (13%). The TCM data set, overall, has the
lowest inhibition of multiple CYPs. Heat maps that summarize
the prediction of multiple inhibitions of the five CYPs for each
library are included in the Supporting Information.

3.1.5. Excretion. 3.1.5.1. Total Clearance. This is an
important PK parameter because it influences both the half-
life (together with the volume of distribution) and
bioavailability (together with oral absorption), thus impacting
the dose regimen (how often) and dose size (how much) of a
drug. Its prediction helps us to determine the feasibility of
clinical dosing and provides a framework for the starting dose
for first in human studies.37 In this work, drug clearance was
represented by the proportionality constant CLtot and occurs
primarily as a combination of hepatic clearance (metabolism in

Figure 6. Percentage of compounds predicted to penetrate the BBB
and be substrates of P-gp. The predictions were done with
SwissADME.

Figure 7. Distribution curve and summary statistics of the fraction
unbound predicted with pkCSMpharmacokinetics.
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the liver and biliary clearance) and renal clearance (excretion
via the kidneys). The selected model provided by pkCSM
pharmacokinetics predicts the total clearance log(CLtot) of a
given compound in log(mL/min/kg).38

Figure 10 shows the probability distribution of the total
clearance of the five data sets. A summary statistics is in the

Supporting Information (Table S9). BIOFACQUIM has a
similar median value (0.605) close to FDA (0.505). TCM has
a median value (0.519) between BIOFACQUIM and FDA
median values. AfroDB has the lowest median value (0.458).
NuBBEDB has the highest median value (0.643). FDA has the
lowest minimum value (−10.922). AfroDB and BIOFAC-
QUIM have similar minimum values (−2.689 and −2.458,
respectively). All of the five libraries have similar maximum
values.

3.2. Toxicity. Toxicity is the degree to which a substance
can damage an organism or organs of the organism, such asT
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Figure 8. Percentages of the inhibition of the main cytochromes
predicted with SwissADME.

Figure 9. Heat map for the prediction of multiple inhibitions of
cytochromes. The Y-axis represents different libraries. The X-axis
indicates the frequencies to inhibit CYPs per compound.

Figure 10. Distribution curve and summary statistics of the total
clearance predicted with pkCSMpharmacokinetics.
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cells and tissues, and is one of the most significant reasons for
failure in late-stage drug development. Early identification of
toxicity would thus be very valuable.25 In this work, we
computed four descriptors associated with toxicity using
pkCSMpharmacokinetics. The descriptors are summarized
in Table 3.
Figure 11 shows the prediction for different toxicity

endpoints. A summary statistics is in the Supporting
Information (Table S10). FDA is the only data set predicted
to inhibit hERG I. AfroDB would mainly inhibit hERG II
(45%). For BIOFACQUIM, the relative highest percentage of
inhibition is for hERG II (28%), followed by Ames toxicity
(19%), and hepatotoxicity (15%). For NuBBEDB, the largest
percentage of compounds with a positive result would be in the
AMES toxicity test (25%). Interestingly, the percentage of
hepatotoxicity for FDA is significantly high (50%), much
higher than any other databases (up to 20% of compounds or
lower).

4. CONCLUSIONS
As recently discussed by Jia et al., in silico prediction of
ADME/Tox properties with well-validated web servers and
other chemoinformatic tools is useful for drug development
projects.22 This is particularly true for the early phases. Of
course, it would be desirable to conduct the experimental
profiling of relevant ADME/Tox properties of compound
libraries before selecting compound candidates for further
consideration. However, this process is time-consuming and
expensive. To reduce the number of compounds for such
experimental validation, the research community has been
working during the past several years to develop computational
tools to predict ADME/Tox properties. A number of these
well-validated tools have been made accessible in web servers
such as SwissADME26 and pkCSMpharmacokinetics.38

Although accurate predictions are still challenging for several
of these properties, there has been significant progress as
recently reviewed.22 Of note, the web servers or any other tools
are not intended to replace experimental validation but rather
to focus on the experimental efforts of a reduced number of
compounds. Therefore, the in silico ADME/Tox profiling of
compound databases, including natural product collections, is
valuable.
In this work, the comparative ADME/Tox profiling of

BIOFACQUIM let to the conclusion that compounds in the
Mexican NP database have similar profiles to approved drugs
with respect to several ADME/Tox properties. Specifically, it
was found that BIOFACQUIM has a similar absorption profile
to drugs approved by the FDA based on two descriptors. The
absorption profile of BIOFACQUIM is comparable to that of
NP from NuBBEDB, TCM, and AfroDB databases. BIO-
FACQUIM has a similar distribution profile to compounds in
the FDA set based on “BBB permeability” and “Fraction
unbound” descriptors. It was also concluded that the
metabolism profile of BIOFACQUIM is similar to that of
approved drugs based on the prediction of inhibition of
CYP2C19 and it is very similar to the predicted metabolism
profiles in AfroDB, TCM, and NuBBEDB based on the
prediction of inhibition of CYP1A2, CYP2D6, and CYP3A4,
respectively. BIOFACQUIM has a comparable predicted
excretion profile to that of approved drugs, and it is even
more similar to that of the compounds in TCM. The toxicity
profile of BIOFACQUIM is similar to that of approved drugs
based on the prediction of inhibition of hERG II; it is also T
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similar to that of FDA and TCM compounds based on the
Ames toxicity. The toxicity profile related to inhibition of
hERG I is equal to those in AfroDB, NuBBEDB, and TCM
databases. Hepatotoxicity prediction of BIOFACQUIM is
equal to that of NuBBEDB and TCM. Results suggest that NPs
are not only privileged molecules in activity but also in
ADME/Tox properties.
The in silico profiling of BIOFACQUIM reported in this

work will serve as a guide to prioritize compounds from this
natural product collection for further development. This study
further contributes to the construction and chemoinformatic
characterization of NP databases in Latin America.43
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(9) Sańchez-Cruz, N.; Piloń-Jimeńez, B. A.; Medina-Franco, J. L.
Functional group and diversity analysis of BIOFACQUIM: A Mexican
natural product database. F1000Research 2019, 8, No. 2071.
(10) Gupta, P. K. Disposition. In Illustrated Toxicology; Elsevier,
2018; pp 67−106. ISBN 9780128132135.
(11) Bocci, G.; Carosati, E.; Vayer, P.; Arrault, A.; Lozano, S.;
Cruciani, G. ADME-Space: a new tool for medicinal chemists to
explore ADME properties. Sci. Rep. 2017, 7, No. 6359.
(12) Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.;
Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T
modelling for rational drug design. Q. Rev. Biophys. 2015, 48, 488−
515.
(13) Schneckener, S.; Grimbs, S.; Hey, J.; Menz, S.; Osmers, M.;
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