Skip to main content
. 2020 Jul 8;20:45. doi: 10.1186/s40644-020-00320-3

Table 3.

Predictive performance of subjective findings, radiomics signature and radiomics nomogram models for differentiating lung adenocarcinomas and granulomatous lesions in patients with SCSNs

Training set (n = 150) External validation set (n = 64)
Subjective findings model Radiomics signature Radiomics nomogram Subjective findings model Radiomics signature Radiomics nomogram
AUC (95% CI) 0.762 (0.686–0.828) 0.834 (0.764–0.889) 0.885 (0.823–0.931) 0.619 (0.489–0.738) 0.798 (0.679–0.888) 0.808 (0.690–0.896)
Sensitivity 0.831 (64/77) 0.766 (59/77) 0.727 (56/77) 0.657 (23/35) 0.714 (25/35) 0.714 (25/35)
Specificity 0.603 (44/73) 0.781 (57/73) 0.904 (66/73) 0.621 (18/29) 0.828 (24/29) 0.828 (24/29)
Accuracy 0.720 (108/150) 0.773 (116/150) 0.813 (122/150) 0.641 (41/64) 0.766 (49/64) 0.766 (49/64)
PPV 0.688 (64/93) 0.787 (59/75) 0.889 (56/63) 0.676 (23/34) 0.833 (25/30) 0.833 (25/30)
NPV 0.772 (44/57) 0.760 (57/75) 0.759 (66/87) 0.600 (18/30) 0.706 (24/34) 0.706 (24/34)

Note. CI Confidence interval; AUC Area under curve; NPV Negative predictive value; PPV Positive predictive value. Numbers in the parentheses were used to calculate percentages. SCSNs Sub-centimeter solid nodules