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METHODOLOGY

A two‑step registration‑classification 
approach to automated segmentation 
of multimodal images for high‑throughput 
greenhouse plant phenotyping
Michael Henke, Astrid Junker, Kerstin Neumann, Thomas Altmann and Evgeny Gladilin* 

Abstract 

Background:  Automated segmentation of large amount of image data is one of the major bottlenecks in high-
throughput plant phenotyping. Dynamic optical appearance of developing plants, inhomogeneous scene illumination, 
shadows and reflections in plant and background regions complicate automated segmentation of unimodal plant 
images. To overcome the problem of ambiguous color information in unimodal data, images of different modalities 
can be combined to a virtual multispectral cube. However, due to motion artefacts caused by the relocation of plants 
between photochambers the alignment of multimodal images is often compromised by blurring artifacts.

Results:  Here, we present an approach to automated segmentation of greenhouse plant images which is based on 
co-registration of fluorescence (FLU) and of visible light (VIS) camera images followed by subsequent separation of 
plant and marginal background regions using different species- and camera view-tailored classification models. Our 
experimental results including a direct comparison with manually segmented ground truth data show that images 
of different plant types acquired at different developmental stages from different camera views can be automatically 
segmented with the average accuracy of 93% ( SD = 5% ) using our two-step registration-classification approach.

Conclusion:  Automated segmentation of arbitrary greenhouse images exhibiting highly variable optical plant and 
background appearance represents a challenging task to data classification techniques that rely on detection of 
invariances. To overcome the limitation of unimodal image analysis, a two-step registration-classification approach 
to combined analysis of fluorescent and visible light images was developed. Our experimental results show that this 
algorithmic approach enables accurate segmentation of different FLU/VIS plant images suitable for application in fully 
automated high-throughput manner.

Keywords:  Greenhouse plant phenotyping, Visible light imaging, Fluorescence imaging, Multimodal image 
alignment, Supervised image segmentation, Machine learning
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Background
In the last two decades, high-throughput greenhouse 
phenotyping became the method of choice for quantita-
tive assessment of plant morphology, development and 

function. High-throughput screening platforms such as 
LemnaTec-Scanalyzer3D (LemnaTec GmbH, Aachen, 
Germany) enable, depending on the configuration, the 
acquisition of thousands of fluorescence (FLU), visible 
light (VIS), near-infrared (NIR) images that have to be 
processed and analyzed in an automated manner. The 
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first essential step of plant image analysis, which deter-
mines the quality of all subsequently derived phenotypic 
traits, consists of robust and accurate segmentation (i.e. 
spatial localization) of plant structures. A straightfor-
ward segmentation of optically heterogeneous and noisy 
greenhouse images is, however, hampered by a combina-
tion of several natural and technical factors, including 
variable optical appearance of developing plants, inho-
mogeneous scene illumination, occlusions, shadows and 
reflections in for- and background image regions, see 
Fig. 1. Consequently, same or similar colors may occur in 
plant and non-plant image regions, which makes appli-
cation of simple color-thresholding techniques improper. 
The principal difficulty of accurate segmentation of opti-
cally complex and dynamic greenhouse images was iden-
tified as the major bottleneck of high-throughput plant 
phenotyping [1].

State of the art approaches to segmentation of plant 
images include

•	 Application of saliency approaches based on certain 
assumptions about image structure [2, 3], for exam-
ple, that majority of image pixels belong to plant-free 
background region,

•	 Construction of color-distance maps followed by 
their subsequent thresholding or clustering [4, 5],

•	 Application of supervised and unsupervised classifi-
cation and machine learning models [6, 7],

•	 Co-registration of different image modalities, e.g., 
visible light (VIS) and infrared (IR) images [8], high-
contrast fluorescence (FLU) and low-contrast visible 
light (VIS) or near-infrared (NIR) images [9].

Unfortunately, the prerequisites for saliency approaches 
is not always given. Sometimes, plant structures over-
grow the optical field so that majority of pixels cannot be 
considered as background. Efficient and straightforward 
in algorithmic implementation color-distance meth-
ods become less reliable in presence of shadows and 
illumination changes. In such cases, reference images 
(i.e. background illumination without any plants) may 
substantially deviate from the background regions of 
plant-containing images. Especially, adult plants with 
large and/or many leaves throw large shadows that alter 
original colors and intensity distribution of background 
regions and low-lying leaves.

Supervised machine and, in particular, deep learn-
ing techniques are nowadays successfully applied for 
plant image processing and analysis [10]. However, 
optical appearance of diverse plant types under differ-
ent experimental conditions exhibits large variability 
which requires substantial efforts for generation of reli-
able ground truth data. Especially, advanced deep learn-
ing methods are known to require a large amount of 
representative, manually annotated images that may 
reasonably be generated for a one or few simple model 

Fig. 1  Examples of FLU/VIS images of maize (a, d), wheat (b, e) and arabidopsis (c, f) shoots taken at different phenotyping facilities with different 
camera views (side/top) and spatial resolutions
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species with the help of unskilled contributors [11], but 
can hardly be extended to many other crop plant species 
imaged in different camera views, with different camera 
modalities, at different developmental stages. Promising 
statistical approaches to unsupervised segmentation of 
VIS plant images using were presented in [12, 13]. Fur-
ther investigation are, however, required to assess their 
robustness and efficiency by application to large amount 
of heterogeneous greenhouse plant images.

To overcome the above limitations of unimodal image 
analysis, combination of images of different modali-
ties, for example, high-contrast FLU and low-contrast 
VIS images, was suggested in our previous works [9]. 
Once aligned, the binary mask of segmented FLU image 
can be applied for extraction of target plant regions in 
structurally more complex and difficult VIS images. 
However, due to unavoidable inertial motion of plant 
leaves by relocation of plants from one photochamber 
to another, images of different modalities may exhibit 
relative non-uniform motion which leads to locally 
inexact co-registration and inclusion of marginal back-
ground regions, see Fig.  2. In this work, we present a 

two-step algorithmic approach which combines mul-
timodal image registration with subsequent detection 
and elimination of marginal background regions using 
supervised classification models of optical plant and 
background appearance in extended color spaces. Our 
experimental results show that combination of spatial 
and color information from multimodal image co-reg-
istration and color classification enables an accurate 
and robust segmentation of plant images in context 
of high-throughput greenhouse plant phenotyping. 
Precompiled executables of our multimodal plant 
image registration-classification-segmentation pipe-
line suitable for a straightforward command-line script 
application accompany this work.

Methods
Image data acquisition and pre‑processing
Visible light (VIS) and fluorescence (FLU) top-/side-
view images of developing arabidopsis, wheat and maize 
shoots were acquired from high-throughput measure-
ments over more than two weeks using three different 
LemnaTec-Scanalyzer3D platforms for high-throughput 

Fig. 2  The principle scheme of the registration-classification approach to shoot image segmentation. From left to right: higher contrast FLU images 
are automatically segmented and registered to VIS images. Due to motion artefacts, FLU/VIS co-registration is not exact which results in inclusion 
of marginal background regions. For separation of plant and marginal background regions supervised classification models trained for particular a 
case-scenario including camera view (top/side), plant type (arabidopsis, wheat, maize), developmental stages (juvenile, mid-stage, adult shoots) are 
applied
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phenotypic of small (e.g., arabidopsis), mid-size (e.g., 
wheat), and large (e.g., maize) plants (LemnaTec GmbH, 
Aachen, Germany), see Table 1. For a detailed specifica-
tion of VIS/FLU camera sensors and filters we refer to 
our previous publication [14]. For quantification of accu-
racy of image segmentation algorithms, images were seg-
mented manually using our in-house kmSeg tool, which 
relies on efficient annotation of automatically pre-seg-
mented image regions to plant or non-plant binary cat-
egories using k-means clustering of Eigen-colors [15].

Distance‑based pre‑segmentation
Our previous investigations have shown that multimodal 
image registration is sensitive to structural differences 
between images such as background image gradient, 
shadows and reflections [9]. In order to improve robust-
ness of multimodal image co-registration, VIS and FLU 
images are automatically pre-segmented using the fol-
lowing basic steps:

•	 Computation of the Euclidean distance in the RGB 
color space between the reference (empty back-
ground) and the plant containing image,

•	 Clustering of the distance image into a predefined 
number (N) of clusters using the fast equidistant 
k-means algorithm (in this work N = 25 was used to 
separate plant from noisy background regions),

•	 Calculation of z-scores between color distributions 
of background and plant-containing images for all N 
k-means clusters,

•	 Selection of k-means clusters with z-score values 
of plant-background color distributions exceeding 
a certain threshold value (in this work the z-score 
threshold tsh = 5 was used).

Pre-segmentation performed using this approach ena-
bles elimination of background regions that would 
otherwise irritate registration algorithms. As a result 
of pre-segmentation one obtains a pair of almost ide-
ally segmented FLU and roughly cleaned VIS images 
that exhibit structural features (e.g., shape contours) 
required for detection of FLU/VIS images similarities 
and their automated alignment, see Fig. 3.

FLU/VIS image co‑registration
Pre-segmented FLU and VIS images are automati-
cally aligned using the iterative image co-registration 
scheme as described in [9]. The transformation matrix 
obtained from registration of pre-segmented FLU/VIS 
images is then used to mask the plant regions of VIS 
image corresponding to the automatically segmented 
and registered FLU binary mask, see Fig. 3.

Transformation of RGB images to Eigen‑color space
FLU and VIS images are transformed from RGB to HSV 
(3D), Lab (3D) and CMYK (4D) color spaces and subse-
quently merged to a 10 dimensional (i.e. 3+ 3+ 4 ) color 
space representation. To improve topological separability 
of color clusters, principal component analysis (PCA) of 
10 dimensional color space is performed to obtain ’Eigen-
color’ image representation, see Fig. 4.

Data reduction using k‑means clustering
Pixel-wise description of plant and background image 
structures leads to extremely large data, e.g., a 2592x3872 
RGB image has 3e + 7 data points, which can hardly be 
handled by conventional machine learning approaches. 
To reduce the amount of data, pre-segmented VIS and 
FLU images were subdivided into a small number of 
regions ( N = [10, 30] ) using k-means clustering of pixel 
colors. Consequently, plant and background image 
regions were compactly described by average colors of N 
k-means regions, or shortly AC-KMR, see Fig. 3. Thereby, 
the number of AC-KMR depends on variability of colors 
in image data. Juvenile homogeneously colored plants 
photographed against a uniform background require less 
AC-KMR than more color-rich adult plants and/or noisy 
background. By segmentation of images using plant type, 
age and camera view specific models, the same number 
of AC-KMR as defined in the model is used.

Plant/background color region classification
Binary classification of background and plant regions is 
performed using average colors of N k-means regions 
(AC-KMR). From our experience, none of conventional 
classifiers showed exceptional performance throughout 
all plant species and age categories (as later discussed 

Table 1  An overview of  image data used in  this study including  three different experiments of  three different species, 
each taken in  visible light and  fluorescence, obtained by  three different LemnaTec high-throughput phenotyping 
facilities for large, intermediate size and small plants at the IPK Gatersleben

Plants/views # plants # days # angles # FLU/VIS pairs VIS size FLU size

Arab.T./top 4 20 1 80 2056 × 2454 1234 × 1624

Wheat/side 4 47 3 564 1234 × 1624 1234 × 1624

Maize/side 6 22 4 526 2056 × 2454 1038 × 1390
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in details). Consequently, eight alternative classifica-
tion models were trained to automatically separate AC-
KMR using manually segmented and annotated data. 
Table  2 gives on overview of the eight binary models 
and the corresponding MATLAB (MathWorks, Inc.) 
functions that were used for supervised training and 
classification of plant and background regions. In the 
case of regression models (such as glm, grp, linmod, 
svmreg) that provide a ’fuzzy estimate’ ( FE ∈ [0, 1] ) for 
category association, assignment to either plant (1) or 
background (0) category is performed using the fixed 
threshold 0.5, i.e. if FE ≥ 0.5 then 1, if FE < 0.5 then 0. 
In addition to predictions of eight distinctive classifiers, 
two additional segmentation results including median 
and fusion (i.e. logical OR) images of all eight classifica-
tion models are computed, see Fig. 5.

Small object removal
After application of the above segmentation steps 
images still may contain small artefacts (typically soli-
tary objects) that have to be removed in order to avoid 
potential errors by subsequent calculation of pheno-
typic descriptors. Such small artefacts do not signifi-
cantly affect the projection area, but can distort linear 
dimensions of segmented regions such as plant width, 
height, bounding box, convex hull, etc. Since grow-
ing plants exhibit different projection areas, one can-
not rely on a fixed size threshold to remove such small 
artefacts,—separately segmented leaf tips of small plant 
shoots can be of the same size as small background 
structures. Consequently, a set of classification models 
based on eight classifiers from Table  2 was trained to 
detect small background (i.e. non-plant) structures on 
the basis of the object’s color ratios (R/B, R/G, G/B), 
size and vicinity to the largest image structure assessed 
by the Euclidean distance map using the bwdist MAT-
LAB function. For decision making, the median values 
of object labels (i.e. plant or non-plant category) pre-
dicted by eight classifiers were used.

Model evaluation measures
Accuracy of automated image segmentation was evalu-
ated in terms of confusion matrix [TP FP; FN FP] (TP—
true positive, FP—false positive, FN - false negative, TN 
- true negative) calculated on the basis of manually anno-
tated and algorithmically predicted binary classification 
of k-means color-regions to either plant or background 
categories, and the overall model accuracy

which is closely related to other conventional measures, 
e.g., the Dice similarity coefficient (DSC). However, the 
accuracy of confusion matrix is more sensitive to failures 
in region classification than whole binary mask compari-
son using DSC.

Model training and evaluation scenarios
Binary classification models for plant/background sepa-
ration were trained and evaluated using several different 
scenarios. In particular, all eight classification models 
listed in Table  2 were separately trained for three dif-
ferent plant types (arabidopsis, wheat and maize), two 
different camera views (top/side view), three image 
modalities (FLU, VIS and FLU+VIS) and different plant 
developmental stages including: I—juvenile/small, II—
mid-stage and III—adult/large shoots, as well as their 
combinations, i.e. I +  II, I +  III, II +  III, I +  II +  III, 
resulting in totally 288 case-scenario models. The reason 
for such multiple model training is that optical appear-
ance of plants and background regions significantly varies 
depending on screening facility, camera views, plant type 
and developmental stage. Consequently, it is not a-priori 
clear which of mostly linear models would be capable of 
accurately separating such highly variable and heteroge-
neous data. For evaluation of performance, trained mod-
els were tested on the same (training) data set as well as 
three new samples corresponding to juvenile, mid-stage 
and adult plants.

(1)A =
TP + TN

TP + FP + TN + FN
∈ [0, 1],

(See figure on next page.)
Fig. 3  The pipeline of data processing for the registration-classification based plant multimodal plant image segmentation. From top to bottom: 
color distance maps between reference (empty background) and plant containing FLU and VIS images are computed and subsequently used 
for co-registration of FLU and VIS images. High contrast FLU images are automatically segmented using the fixed z-score threshold for local color 
distance between the reference (background) and plant-containing images. Binary mask of the registered FLU image is applied to detect plant 
structures in the VIS image. Due to motion artefacts regions of the VIS image overlaid by registered FLU mask may contain plant as well as marginal 
background structures. Unsupervised k-means clustering of Eigen-colors is applied to generate a compact representation of pre-segmented VIS 
images by a small number (10–30) of color-region centroids. Pre-trained classification models of plant/background color-regions and small object 
filters are applied to differentiate between plant and non-plant structures
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Experimental results
FLU and VIS images of a totall of 80 arabidopsis, 526 
maize and 564 wheat plants at different developmen-
tal stages were semi-automatically segmented using the 
kmSeg tool [15] into two (i.e. plant or background) cat-
egories as described above.

The registration-classification pipeline was applied to 
segment FLU/VIS image pairs of arabidopsis, wheat and 
maize images stepwise including (i) pre-segmentation 
of FLU/VIS images, (ii) automated co-registration of 
pre-segmented FLU/VIS images and (iii) classification 
of plant and non-plant structures in VIS image regions 

Fig. 4  Example of color space transformation of a RGB visible light image of a maize shoot to 10-dimensional (HSV + Lab + cmyk) and Eigen-color 
spaces. In the figure, only first three out of ten Eigen-color components are shown

Fig. 5  Classification between plant and non-plant (background) regions of pre-segmented image using pre-trained color classification models. 
a Original VIS image of mid-stage arabidopsis shoot in top-view. b Pre-segmented VIS image. c Clustering of (b) into 10 k-means color regions 
visualized with pseudo-colors. d, e Plant regions computed as median (d) or fusion (e) of eight binary classification results. f Plant regions predicted 
by eight color classification models. Plots show assignment of region labels to one of two binary color region categories: plant (1) or non-plant (0). 
The dotted-line indicates the threshold (tsh = 0.5) for assignment of fuzzy label estimates ( FE ∈ [0, 1] ) of some classifiers (glm, gpr, linmod, svmreg) 
to one of two binary categories, i.e. if FE ≥ 0.5 then plant (1), if FE < 0.5 then non-plant (0)
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that were masked by the binary mask of the registered 
FLU image. As a consequence of different spatial reso-
lutions and/or non-uniform leaf motion by relocation 
of plant from one photochamber to another, FLU/VIS 
alignment is not exact which manifests in inclusion of 
marginal background pixels, see Fig. 2. To remove mar-
ginal background regions in VIS images eight distinctive 
color models trained on all 288 case-scenarios including 
arabidopsis, wheat and maize plant/background appear-
ance in different camera views and developmental stages 
were applied. Performance of all 288 models were evalu-
ated in terms of confusion matrix between ground truth 
and predicted plant/background image regions by appli-
cation to (i) the same (training) data set as well as three 
test samples corresponding to (ii) juvenile, (iii) mid- and 
(iv) adult stages of plant development. The results of all 
1152 = 288 ∗ 4 tests including the confusion matrices 
and accuracy values can be found in Additional file  1: 
Table S1. A brief summary of the model performance is 
shown in Fig. 6. As one can see in Fig. 6a, all eight classi-
fication models are capable to reproduce the same train-
ing data they were trained to with an average accuracy of 
more than 90% . Fig.  6b shows the distribution of accu-
racy crossover all 288 classification models, which exhib-
its following cumulative statistics:

Mean = 93%

Median = 94%

SD = 5%

Min = 50%

Max = 100%

The best and worst performers by reproduction of the 
training data are net and svmreg, respectively. The out-
performance of the non-linear neural net over other lin-
ear models by the self-reproduction test is not surprising. 
However, by application to other test samples the net 
model does not appear to be advantageous in compari-
son to linear models, see Fig. 6c. Furthermore, it is evi-
dent that all models that were trained with image data of 
adult plants (III) show significantly poorer performance 
by application to juvenile plant species (I). This fact can 
be traced back to significant differences between color 
signatures of juvenile (typically light green) and adult 
(rather dark green and sometimes even yellow and/or 
red) plant leaves. With exception of svmreg, most clas-
sification models show the best performance crossover 
plant species of different developmental stages when they 
were trained on mixed datasets combining juvenile, mid-
stage and adult plants (I + II + III).

The whole pipeline of registration-classification based 
segmentation (RCS) of multimodal greenhouse plant 
images is provided as an executable command-line tool

rcs.exe <input imgages> <output images> <class model> 
<opts>

suitable for script integration and high-context image 
processing from our homepage https​://ag-ba.ipk-gater​
slebe​n.de/rcs.html. For the given pair of unregistered 
and unsegmented fluorescent and visible light images as 
well as reference FLU/VIS images, the RCS tool performs 
automated registration-classification based segmenta-
tion and writes out registered and segmented FLU/VIS 
images as well as further optional files in output. If users 
do not have reference images, they can generate them on 
their own under consideration of a typical background 
color in the plant containing images, for example,—black 
FLU and light gray VIS reference images of the same size 
as plant containing FLU/VIS images. A detailed descrip-
tion the RCS tool can be found in the user guide available 
with the above file repository.

Discussion
Segmentation of a large amount of multimodal image 
data from greenhouse phenotyping experiments is the 
first challenging step of any image analysis pipeline 
aiming at quantitative plant phenotyping. However, 
straightforward segmentation of some image modalities 
including wide-spread visible light images is hampered 
by a number of natural and technical factors includ-
ing inhomogeneous illumination of photochambers, 
dynamic optical appearance of developing plants, shad-
ows, reflections and occlusion in plant and background 
regions. To overcome the limitations of unimodal image 

Table 2  Overview of  binary classification models 
and  corresponding MATLAB functions trained using 
the  input data X (i.e. 20 dimensional multi-color space 
representation of  manually segmented FLU+VIS plant 
and background regions) and the vector of region labels Y 
(i.e. Y=0 for background, Y=1 for plant image regions)

# Classification model Acronym MATLAB function

1 Naive Bayes model bayes fitcnb(X,Y)

2 Discriminant analysis da fitcdiscr(X,Y)

3 Generalized linear regression glm fitglm(X,Y)

4 Gaussian process regression gpr fitrgp(X,Y)

5 Linear model regression linmod fitlm(X,Y)

6 Binary support vector machine svm fitcsvm(X,Y)

7 Support vector machine regres-
sion

svm fitrsvm(X,Y)

8 Neural network model net train(net,X,Y)

(e.g., patternnet with N hidden 
layers)

net=patternnet(N)

https://ag-ba.ipk-gatersleben.de/rcs.html
https://ag-ba.ipk-gatersleben.de/rcs.html
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analysis, an approach to plant image segmentation based 
on multimodal image registration followed by classifica-
tion of plant and marginal background regions was devel-
oped. Our experimental results using eight conventional 
classifiers and totally 288 case-scenario models consider-
ing different camera views, plant types and developmen-
tal stages demonstrate that plant segmentation with the 
average accuracy of 93% (SD=5% ) crossover all tested 
models can be achieved. More accurate segmentation 
can be performed using suitable case-scenario models 

including FLU, VIS as well as combined FLU/VIS based 
classification of plant and marginal background regions. 
Furthermore, our evaluation studies show that classifiers 
trained on a mixed image data including different plant 
developmental stages and optical appearance outperform 
classification models tailored to a narrow plant pheno-
type. Despite a broad spectrum of optical case-scenarios 
our classification models are based on optical setups of 
our particular three screening platforms that exhibit 
light background regions in contrast to darker plant 

Fig. 6  Summary of evaluation of eight different color classification models from Table 2. a Comparison of average model accuracy by 
reproducing the same training dataset they were trained to crossover different plant species and camera views. b Distribution of accuracy of all 
288 case-scenario models considering for different camera views (top/side), plant types (arabidopsis, wheat, maize) and developmental stages 
by application to test samples. c Cross-evaluation of accuracy of classification models trained with manually annotated images of different plant 
developmental stages, including juvenile (I), mid-stage (II), adult (III) plants, and their combinations (i.e. I + II, I + III, II + III, I + II + III) by application 
to the same training set (0), as well as test samples of juvenile (I), mid-stage (II) and adult (III) plants
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structures. In case of strongly deviating optical condi-
tions and/or plant appearance retraining of classification 
models should be taken into consideration.

Conclusion
Highly variable optical appearance of different plant and 
background structures makes segmentation of green-
house images a non-trivial task. To overcome short-
comings of unimodal image analysis, here we suggest 
a two-step registration-classification approach which 
reduces complexity of whole image segmentation to 
classification of pre-segmented fluorescent and visible 
light plant and marginal background image regions. Our 
experimental results demonstrate that this approach ena-
bles segmentation of different plant types in different 
developmental stages from different camera view with 
sufficiently high accuracy suitable for application in fully 
automated high-throughput manner. A command-line 
tool provided with this work enables quantitative plant 
researchers to efficiently integrate our registration-classi-
fication based image segmentation algorithms in custom 
image processing pipelines.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1300​7-020-00637​-x.

 Additional file 1: Table S1. Summary of evaluation of 288 case-scenario 
models for plant image segmentation against ground truth data. 288 
case-scenarios result from training of eight classification models (i.e. 
bayes, da, glm, gpr, linmod, svm, svmreg, net) for three different plant 
types (arabidopsis, wheat and maize), two different camera views (top/
side view), three image modalities (FLU, VIS and FLU+VIS) and three plant 
developmental stages including: I—juvenile/small, II—mid-stage and 
III—adult/large shoots, as well as their combinations, i.e. I + II, I + III, II + III, 
I + II + III.
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