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Abstract

Environment-wide association studies (EWAS) are an untargeted, agnostic, and hypothesis-
generating approach to exploring environmental factors associated with health outcomes, akin to
genome-wide association studies (GWAS). While design, methodology, and replicability standards
for GWAS are established, EWAS pose many challenges. We systematically reviewed published
literature on EWAS to categorize scope, impact, types of analytical approaches, and open
challenges in designs and methodologies. The Web of Science and PubMed databases were
searched through multiple queries to identify EWAS articles between January 2010 and December
2018, and a systematic review was conducted following the Preferred Reporting Item for
Systematic Reviews and Meta-Analyses (PRISMA) reporting standard. Twenty-three articles met
our inclusion criteria and were included. For each study, we categorized the data sources, the
definitions of study outcomes, the sets of environmental variables, and the data engineering/
analytical approaches, e.g. neighborhood definition, variable standardization, handling of multiple
hypothesis testing, model selection, and validation. We identified limited exploitation of data
sources, high heterogeneity in analytical approaches, and lack of replication. Despite of the
promising utility of EWAS, further development of EWAS will require improved data sources,
standardization of study designs, and rigorous testing of methodologies.
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Introduction

Environment-wide association studies (EWAS) denote an untargeted, agnostic, and
hypothesis-generating exploratory research approach that aims at identifying environmental
factors associated with disease outcomes. The concept of EWAS was first introduced by
Patel et al. (2010), borrowing the idea from genome-wide association studies (GWAS) that
identify genetic factors associated with diseases. The risk of a disease is determined not only
by the genome, but also by the exposome, which is defined as all non-genetic factors that an
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individual experienced throughout an entire lifetime, including internal (e.g. metabolism,
hormones, inflammation), specific external (e.g. environmental pollutants, chemical
contaminants, infectious agents) and general external factors (e.g. social capital, urban-rural
environment, climate) (Wild, 2012). EWAS focus on the assessment of specific and general
external environmental factors within the exposome (Supplemental Figure 1). Unlike genetic
factors which are stable and unmodifiable, environmental factors have large spatiotemporal
variabilities and can be modified at different levels (e.g. neighborhood, individual).
Therefore, putative environmental factors identified by EWAS can be used not only for
disease risk prediction, but for disease prevention or intervention as well.

Large numbers of GWAS have been conducted in the past decades, leading to well-
established design, methodology, and replicability standards (Cantor et al., 2010; Gage et al.,
2016; Korte and Farlow, 2013; Power et al., 2017; Visscher et al., 2017). The GWAS Catalog
(https://lwww.ebi.ac.uk/gwas/) is a publicly available repository that curates findings from
over 3,700 publications (as of December 2018). In contrast, there is little homogeneity
among EWAS, even in the name. The original acronym EWAS (Patel et al., 2010) has been
later joined by neighborhood wide association studies (NWAS) (Lynch et al., 2017), and
neighborhood environment wide association studies (NEWAS) (Mooney et al., 2017).
Unlike GWAS, the EWAS includes an additional time varying component (environmental
measures change over time) and locus granularity (the size of the environment around an
individual) that pose modelling challenges (Gomez et al., 2015; Lovasi et al., 2011). Other
EWAS-specific issues include heterogeneity in data sources (multiple databases, e.g.
different providers for census or satellite data), and in variable space (both numeric and
categorical variables with sparsity and multi-modality).

In this systematic review, we aimed to describe the body of literature in EWAS in terms of
research scope, impact, data sources, and analytical approaches. Specifically, we focused on
1) measurement domains included in EWAS, 2) data engineering processes, and 3) statistical
inference and validation. Understanding the challenges in EWAS design and methodologies
can be helpful toward the establishment of study and replicability standards like those for
GWAS.

The literature search was undertaken in January 2019 and considered articles published
between January 1, 2010 and December 31, 2018. The article databases used were PubMed
and Web of Sciences; Google Scholar was used for cross-checks. We used a multiple-query
search strategy to identify as many EWAS-like studies as possible, given the name
heterogeneity. In addition to queries looking at “environment wide association” and
“neighborhood wide association” studies, we added a number of other relevant keywords.
The final queries were chosen after several search passages by qualitatively evaluating the
number of results and their relevance. For instance, the candidate queries “(association OR
prediction OR predictors OR machine learning OR statistical model OR modelling OR
computational OR model OR analysis) AND (exposome OR exposure-wide OR
environment-wide OR environmental OR social OR ecological OR sociodemographic OR
socio-demographic OR social-ecological OR community OR exposure)” yielded 924,730
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items in PubMed and was not retained. Table 1 lists the queries employed and the number of
articles identified by each query. After finalizing the query, it was also run in Google
Scholar. All the bibliography of included studies was manually checked for additional
studies.

Results from the two databases and from the cross-checks were combined after removing
duplicated papers. All identified titles and abstracts were then imported electronically into
the tool “abstrackr” (Wallace et al., 2012). Articles with a title containing “environment-
wide association study” or “neighborhood-wide association study” were passed on to the
full-text screening phase by default. Abstract contents of articles with no clear information
in the title were further screened independently by two authors (YZ, ZC), with a third
author’s vote and a discussion to reach consensus in case of disagreement. Articles were
chosen stringently according to the following criteria: (1) exploratory association analysis
using an agnostic, untargeted, hypothesis-free approach with defined outcomes; (2) multiple
environmental or social-ecological variables assessed; (3) observational studies using
primary or secondary data. Reviews, protocols, meta-analyses and research studies solely
focused on developing predictive models, simulations, visualization tools, or methodology
discussions were excluded. In addition, we acknowledge that the exposome is a vast concept
as it is defined as all non-genetic factors that an individual experienced throughout an entire
lifetime (Wild, 2012), and in this review, we only focused on environmental exposures
commonly studied in the field of environmental epidemiology. Studies focusing on nutrient-
wide components (Merritt et al., 2015a; Merritt et al., 2015b; Tzoulaki et al., 2012),
metabolomics (Nicholson et al., 2008), or adductomics which belong to the fields of
nutritional epidemiology and molecular epidemiology were not included, given their specific
methodology and measurement concerns. We further screened articles which cited the
included studies to ensure the comprehensiveness of the search since many terms have been
used to describe EWAS. The full set of inclusion and exclusion criteria is listed in
Supplemental Table 1.

The article selection strategy was structured using the PECO domain framework (i.e.
Population, Exposure, Comparison, Outcome, Study design). To assess the quality of each
included study, the criteria and study-specific flaws were defined by the research team prior
to evaluation. Owing to the nature of studies included in this review, multiple environmental
factors in each article, either measured at the individual level or at the population level (and
linked to the individual using geolocation and dates) were included as the exposure.
Diseases or conditions measured using validated tools were considered as the outcome.
Demographic information and other applicable topic-specific factors were considered as the
main covariates, which could have effects on the associations between environmental factors
and the defined outcome. For each included study, we collected information on sample size,
number of environmental factors included, and number of identified risk/protective factors
that are deemed relevant by statistical testing.

In each study, the risk of bias was evaluated against eight major domains and categorized as
low or high. Studies with three or fewer domains in high risk were considered as having
moderate risk of bias. The major domains where risks of bias were examined include: (1)
exposure (measurement and data source), (2) outcome (measurement and data source), (3)
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confounders, (4) sampling (selection bias), (5) analysis (corrections for multiple
comparisons), (6) validations (internal and external), (7) handle of missing data, and (8)
selective reporting within studies. Detailed criteria for each domain were described in
Supplemental Material 1.

The Preferred Reporting Item for Systematic Reviews and Meta-Analyses (PRISMA)
checklist was used (Moher et al., 2009). However, it is worth noting that since EWAS are
explorative of multiple exposures rather than focusing on a particular exposure-outcome
association, a number of PRISMA checks were not applicable (Supplemental Table 2).

Search results

The PRISMA flow chart of search results were shown in Figure 1. We retrieved 3,506
records from the initial search and 3,019 of them remained after removing the duplicates.
From 3,019 distinct articles originating from the pooled database queries, after title and
abstract screening, 20 articles were retained for full-text reading. Five articles were further
excluded after full-text screening. We further identified and screened 249 articles which
cited the 15 eligible studies. Eighteen articles entered the stage of full-text screening and 10
of them were excluded. Among the 15 articles excluded after the full-text screening, three
articles developed new methodologies: one focused on methods to visualize results from
EWAS (Patel and Manrai, 2014), one developed a new method to identify and prioritize
associations between multiple environmental factors and health outcomes (Bell and
Edwards, 2015), and the other compared multiple analysis methods in EWAS using
simulated data (Agier et al., 2016). Nine articles performed targeted analysis using pre-
selected variables (Agay-Shay et al., 2015; Gao et al., 2015; Gao et al., 2018; Jia et al.,
2014; Kelishadi et al., 2013; Kim et al., 2017; Kolpak and Wang, 2017; Koohsari et al.,
2018; Lim et al., 2017). One article focused on correlations across all the exposures during
pregnancy (Robinson et al., 2015). One article investigated genome-environment interactions
using pre-identified factors from GWAS and EWAS (Patel et al., 2013a). One article carried
out an outcome-wide association study to screen which environmental sources could be
potentially used to derive biomarkers (Pino et al., 2017). Finally, a total of 23 articles were
included in this systematic review.

Descriptive characteristics

The articles exhibited substantial variety in the study design, environmental factors included,
and methodologies employed. Studies were divided into two broad categories based on the
sampling level of environmental factors: (1) studies with top-down approaches which
included environmental factors measured at the individual-level (e.g. biomarkers measured
in blood or urine samples); and (2) studies with bottom-up approaches, which included
neighborhood-level environmental factors (e.g. deprivation score, neighborhood crime rate,
air pollutants, walkability). Among the 23 EWAS included in this systematic review, only
two studies used bottom-up approaches (Lynch et al., 2017; Mooney et al., 2017), and all the
other studies employed top-down approaches.
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The descriptive characteristics of all included studies are summarized in Table 3. Only one
study used a longitudinal cohort design (Hovi et al., 2016), two studies used case-control
designs (Balazard et al., 2016; Lapidus et al., 2013), and all the other included studies were
cross-sectional. Participants in most eligible studies were over 18 years old, except two
studies that recruited children (Balazard et al., 2016; Lapidus et al., 2013). The total
numbers of participants in the EWAS included in this systematic review ranged from 322 to
77,086, and the number of environmental factors included ranged from 8 to 14,663. Out of
the 23 included studies, 15 stated that a hypothesis-generating or data-driven approach was
used (Balazard et al., 2016; Hall et al., 2014; Lapidus et al., 2013; Lind et al., 2013; Lynch et
al., 2017; Patel et al., 2010; Patel et al., 2018; Patel et al., 2012; Patel et al., 2017; Patel et
al., 2013b; Patel et al., 2014; Wulaningsih et al., 2017; Zhong et al., 2016; Zhuang et al.,
2018a; Zhuang et al., 2018b).

The environmental factors included can be categorized into multiple domains: (1)
environmental factors measured in biospecimens such as urine or blood, e.g. heavy metals,
bacteria, pesticides; (2) dietary factors measured by questionnaires/interviews, e.g. nutrients,
intake of total calories; (3) physiological factors measured by direct examinations or
biospecimens, e.g. blood pressure, metabolic and biochemistry profiles; (4) lifestyle and
behavioral factors assessed by questionnaires/interviews, e.g. physical activity, alcohol use,
income, social support; (5) occupational health hazards assessed by questionnaire, e.g.
dust/gas or chemical fumes/physical exposure; and (6) neighborhood-level factors: a) built
environment, e.g. urban form, walkability, percentage of land area in parks, and b) social
factors, e.g. population density, percentage of college graduates, crime rates. The National
Health and Nutrition Examination Survey (NHANES, https://www.cdc.gov/nchs/nhanes/
index.htm) was used as the main data source in 10 studies (McGinnis et al., 2016; Patel et
al., 2010; Patel et al., 2012; Patel et al., 2015; Patel et al., 2017; Patel et al., 2013b; Patel et
al., 2014; Wulaningsih et al., 2017; Zhuang et al., 2018a; Zhuang et al., 2018b), and 9
studies obtained data from other sources (Balazard et al., 2016; Chung et al., 2019; Hall et
al., 2014; Lapidus et al., 2013; Lind et al., 2013; Lynch et al., 2017; Mooney et al., 2017;
Patel et al., 2018; Zhong et al., 2016). The other 4 studies involved primary data collections
based on interviews or questionnaires (Hovi et al., 2016; Jiménez-Cruz et al., 2013; Lenters
etal., 2015; Zhou et al., 2013).

A variety of outcomes were examined in these studies, including childhood type 1 diabetes
(Balazard et al., 2016), type 2 diabetes (Hall et al., 2014; Patel et al., 2010), metabolic
syndrome (Lind et al., 2013), serum lipid levels (Patel et al., 2012), preterm birth (Patel et
al., 2014), reproductive function (Chung et al., 2019; Lenters et al., 2015), hematocrit
(Zhong et al., 2016), blood pressure (McGinnis et al., 2016), leukocyte telomere length
(Patel et al., 2017), obesity (Jiménez-Cruz et al., 2013; Wulaningsih et al., 2017), physical
activity (Mooney et al., 2017; Zhou et al., 2013), household income (Patel et al., 2015),
prostate cancer (Lynch et al., 2017), peripheral arterial diseases (PADs) (Zhuang et al.,
2018b), cardiovascular diseases (CVDs) (Zhuang et al., 2018a), respiratory or
gastrointestinal tract infection (RTI or GTI) (Hovi et al., 2016), HIN1 virus (Lapidus et al.,
2013), and human immunodeficiency viruses (HIV) (Patel et al., 2018). In 19 out of the 21
EWAS using top-down approaches, outcomes and environmental exposures were assessed
using the same data source. The other 2 studies used multiple data sources (National Death
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Index [NDI]) to determine all-cause mortality (Patel et al., 2013b) and lifestyle and
environmental exposures (Balazard et al., 2016). Different from most top-down EWAS, the 2
bottom-up EWAS included in this review used data from multiple sources to assess
neighborhood-level environmental exposures. However, outcome and individual-level
covariates in these 2 bottom-up EWAS were determined based on data from a single source.
Specifically, Mooney et al. (2017) collated data from ten different sources covering multiple
subdomains of the built and social environment, such as housing, walkability, and crime
rates, etc., whilst Lynch et al. (2017) linked state cancer registry data with the US census
data. In addition, the number of significant risk or protective factors identified in the
included EWAS ranged from 1 to 24.

Assessment of bias

Supplemental Table 3 lists the risk of bias determined for each study by domain. No study
included in this systematic review was deemed to be at low risk of bias in all domains.
Overall, nine studies were judged to be of moderate risk (with number of domains in high
risk < 3) (Chung et al., 2019; Lapidus et al., 2013; McGinnis et al., 2016; Patel et al., 2010;
Patel et al., 2018; Patel et al., 2012; Patel et al., 2013b; Wulaningsih et al., 2017; Zhuang et
al., 2018b). All studies were at a low risk of bias in confounder assessment. However, no
study considered different sets of confounders for different exposures. Domains most
commonly with high risk of bias include external validation (22/23), handling of missing
data (19/23), internal validation (12/23), selective reporting within studies (8/23), and
sampling (7/23).

Specifically, among the 7 studies with a high risk of bias in sampling, 5 studies (Balazard et
al., 2016; Hovi et al., 2016; Jiménez-Cruz et al., 2013; Lenters et al., 2015; Zhou et al.,
2013) used convenience sampling, and the other 2 studies (Hall et al., 2014; Zhong et al.,
2016) didn’t provide clear descriptions on the sampling strategy used. Data engineering
processes and statistical models used were similar across studies. Most studies excluded
environmental factors with a large proportion of values (i.e. >90%) below the limit of
detection (LOD), removed outliers, and performed transformations for continuous variables
with skewed distributions. Lind et al. (2013) excluded variables with >5% missing values,
while Lynch et al. (2017) set a cutoff of 10%. However, 4 studies imputed missing data
using multiple imputation by chained equations (MICE) (Lapidus et al., 2013), single
conditional imputation (Lenters et al., 2015), multivariate sequential regression (Mooney et
al., 2017), or a multiple imputation technique under the assumption of “missing-at-random”
(Chung et al., 2019). The most common model used was generalized linear regression, with
two exceptions: the study examining all-cause mortality conducted by Patel et al. (2013b)
used Cox proportional hazards regression, and the study examining prostate cancer
conducted by Lynch et al. (2017) used generalized estimation equation models. Nineteen of
the 23 EWAS controlled for multiple testing using a strict Bonferroni correction or the
Benjamini-Hochberg procedure. Eleven studies included internal validation by dividing the
data into training and testing sets using different approaches, such as random split (Patel et
al., 2018; Zhuang et al., 2018a; Zhuang et al., 2018b), splitting by calendar year (McGinnis
et al., 2016; Patel et al., 2010; Patel et al., 2012; Patel et al., 2015; Patel et al., 2013b;
Waulaningsih et al., 2017), and cross-validation (Lind et al., 2013; Zhong et al., 2016).
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Notably, external validation was performed in only one study (Hall et al., 2014). In addition,
different approaches for variable selection or importance ranking were employed. For
example, among the 21 top-down EWAS, one study used a random forest model to identify
important variables with potential interaction effects (Zhuang et al., 2018a), and another
study conducted a random effects meta-analysis by combining results from both training and
testing datasets (McGinnis et al., 2016). The 2 bottom-up EWAS studies explored additional
and more machine learning oriented methods: Mooney et al. (2017) performed multivariable
regression using the least absolute shrinkage and selection operator (LASSO) as well as the
random forest, and Lynch et al. (2017) employed a Bayesian hierarchical logistic regression
model. As an extra step in bottom-up EWAS, neighborhoods were defined depending on the
data availability, using network buffers or administrative boundaries such as county and
census tract. Mooney et al. (2017) defined neighborhoods as 0.25 kilometers network buffers
which are approximate to 5-minute walks, while Lynch et al. (2017) defined neighborhoods
as census tracts. Lastly, 15 studies reported results of all environmental factors included,
regardless of statistical significance.

Discussion

EWAS is an emerging approach that functions in parallel with GWAS to identify
environmental factors associated with diseases in a high-dimensional, agnostic manner, and
generates new hypotheses. We performed a systematic review of articles related to EWAS
published from 2010 to 2018 to understand the current status of EWAS, and to pinpoint
possible shortcomings in the study design, data engineering, and analytical approaches.
Twenty-three articles met our inclusion criteria and were included.

Studies showed consistencies in the general study design. All studies were observational,
and the majority were cross-sectional. The choice of outcomes was diverse but akin to what
is usually seen in GWAS. The study populations were ample both in terms of sample size
and geographic areas of catchment, although most studies used the NHANES data. In
addition, all but two EWAS used individual-level environmental variables, directly
retrievable from the study population data bases. The choice of environmental factors (i.e.
domains and variables to be considered) was dictated by the availability of variables rather
than by a standardized approach. In terms of methodologies, all included studies carried out
procedures for data cleaning and harmonization (although with substantial variations in the
choice of normalization procedures) and employed corrections for multiple hypothesis-
testing. Generalized linear regression methods were used in most studies, with different
choices in regard to the consideration of mixed effects or types of spatial correlation. Some
articles also explored a number of machine learning techniques. Validation was not
performed in all studies, and among those with validations performed, only one conducted
an external validation. Table 3 shows the parallel analytic issues in GWAS and EWAS.

It is worth mentioning that, nine included studies focused on outcomes related to
cardiometabolic conditions, including type 2 diabetes (Hall et al., 2014; Patel et al., 2010),
metabolic syndrome (Lind et al., 2013), serum lipid levels (Patel et al., 2012), blood pressure
(McGinnis et al., 2016), obesity (Jiménez-Cruz et al., 2013; Wulaningsih et al., 2017),
peripheral arterial diseases (PADs) (Zhuang et al., 2018b) and cardiovascular diseases
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(CVDs) (Zhuang et al., 2018a). Consistent results were observed for B-carotene (i.e., showed
favorable effect on cardiometabolic health in 5 out of the 9 studies), followed by vitamin C
and D (2 out of 9), B-cryptoxanthin (2 out of 9), and physical activity (2 out of 9). Heavy
metals, DDE, and PCBs were identified as risk factors in 6 studies. However, due to the
heterogeneity of study population as well as exposure and outcome measurements, many
findings among studies focusing on the same outcomes were incomparable. For example,
although two studies examined type 2 diabetes, Patel et al. (2010) explored associations with
biomarkers measured in biospecimens while Hall et al. (2014) mainly studied environmental
and behavioral factors assessed by questionnaires. Two studies examined physical activity,
with one focused on individual-level factors (Zhou et al., 2013), and the other focused on
neighborhood-level factors (Mooney et al., 2017). Two studies examined obesity, with one
used questionnaire-based measures (Jiménez-Cruz et al., 2013) and the other mainly
analyzed biomarkers (Wulaningsih et al., 2017).

Measurements and domains

Although the EWAS concept was developed analogously to GWAS, there are distinct
differences between genomes and exposomes. The single nucleotide polymorphisms (SNPs)
that are used as independent variables in a GWAS are homogeneous categories (i.e. A, C, G,
T nucleotides), embedded in 23 chromosome pairs, and correlations between SNPs can be
modelled using linkage disequilibrium (often used to impute missing values). GWAS also
has available theory that models population-level structure and outliers, e.g. principal
component analysis of a SNP matrix identifies well the coarse-grain allelic variation and
geographic relationships among human populations. Conversely, there is no fixed number or
structure for the domains of environmental factors, which are highly heterogeneous
(categorical or numeric with often highly skewed distributions). The correlations between
factors can be difficult to ascertain. There is no theory to model population-structure;
nonetheless, a spatial correlation is naturally expected for EWAS using the bottom-up
approach.

Compared with genetic factors that are usually stable over time, environmental factors have
large spatial and temporal heterogeneities. Dynamic activity patterns, residential mobility,
vulnerability and many other factors interact and contribute to the variations of biologically
effective exposure to the environment. The exposure measurement is sensitive to how the
exposure window is defined in both the top-down and bottom-up approaches. For the former,
the challenges lie in the varying lengths of half-lives associated with different biomarkers
and the limited number of times biospecimens collected from study participants over time.
Only recent exposure can be assessed using biomarkers with short half-lives, while historical
exposure can be examined using biomarkers with long half-lives. For studies using the
bottom-up approaches, challenges include the low spatiotemporal resolutions of exposure
data and difficulties in obtaining data on residential histories and activity patterns at the
population level. Most of the EWAS included in this review were conducted in cross-
sectional settings, assuming the onset of a disease took place at the same time when an
individual is diagnosed, which may not always be the case. Recent developments in passive
samplers, wrist band sampler, and personal real time sensors may be used in the future to
address this challenge (Anderson et al., 2017; Turner et al., 2017). Results from EWAS
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should not be used alone to make any causal inference given the limitations of observational
association studies. Instead, the associations identified from EWAS should be further
confirmed by future studies which include the determination of biologic plausibility.

In addition, different exposures may be influenced by different confounders for a given
outcome. However, all of the EWAS included in this review used common sets of
confounders for all exposures. Future EWAS should conduct differential adjustment by
groups of exposures with potentially similar properties and causal relationships.

Lack of consensus on the inclusion and quality control of environmental factors is another
major challenge in EWAS. Although EWAS is an agnostic and hypothesis-free approach,
current EWAS are still limited by the variables included which are mainly driven by the
availability of data and researchers’ prior hypotheses. Increasing efforts are being made
recently to address this challenge. In 2019, the National Institute of Environmental Health
Sciences expanded the Children’s Health Exposure Analysis Resource (CHEAR, https://
chearprogram.org) to a new program called Human Health Exposure Analysis Resource
(HHEAR). HHEAR is intended to facilitate the standardization of data across environmental
researches by providing targeted and non-targeted measurement on both biological and
environmental samples. This should enable researchers to investigate and understand the
intricate interactions between multiple environmental factors in a life-course perspective,
and thus is promising to address many measurement challenges in individual-level EWAS.
However, HHEAR is US-based and only accepts a limited number of samples for successful
applicants. Sharing of the HHEAR measurement protocols are needed to enhance
reproducibility. For the bottom-up EWAS, although numerous resources are available (e.g.
Census Bureau, American Community Survey, Esri), there is no standard or consensus.
Given the large heterogeneities and different spatiotemporal scales associated with
neighborhood-level data, efforts are needed to establish an infrastructure similar to HHEAR.
Further ontology developments for exposome factors are also needed.

Data engineering

The data engineering processes of the top-down EWAS include the exclusions of variables
with large proportions of missing values, handling of out-of-range or below detection values,
and transformation/standardization of variables. Specifically, in the top-down EWAS,
meeting the LOD is usually a challenge for biomarkers with extremely low levels in the
human body, such as bisphenol-A (a long-term low level exposure) and its substitutes. The
types of detection limit, such as instrument detection limit, method detection limit, practical
quantification limit, and limit of quantification, vary among different data sources. Even
under the same type of detection limit, differences in LOD always exist according to
definitions, noises, and categories of compounds. To deal with variables with too many
missing values or values below LOD, threshold should be selected meticulously. Often,
mathematical transformations need to be considered to account for skewed distribution of
continuous variables (e.g. logarithmic, square root, Box-Cox), and normalization or
standardization (e.g. quantile or z-scores) to obtain dimensionless quantities. Response rate
is a big challenge in both the top-down and bottom-up EWAS: participants may refuse to
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answer certain questions or to be examined, and the geocoding success rate might not be
high.

For the bottom-up EWAS, there are additional data warehousing and integration steps that
make the data engineering more complex than the top-down EWAS. First, multiple external
data sources usually need to be compiled to assess neighborhood measures covering
different domains. Data from different sources are likely to have different spatiotemporal
scales. In addition, spatiotemporal linkages are needed to determine individuals’ exposure to
neighborhood environmental factors. The selections of spatiotemporal scales are usually not
only based on the etiologic evidence but also heavily dependent on spatiotemporal
resolutions of specific data sources. For example, although there might be evidence
suggesting large spatiotemporal heterogeneities and acute etiologic responses to ultrafine
particles (Weichenthal, 2012), daily small-area level estimates cannot be derived using data
which are only available as aggregated annual estimates at the county-level. Furthermore,
even when exposure data with high spatiotemporal resolutions are available, the selection of
spatiotemporal scales to perform the linkages are usually subjective. For example, studies
assessing air pollution exposure and adverse pregnancy outcomes usually generate trimester-
specific estimates even when daily air pollution data are available (Hu et al., 2014), while
recent studies show that weekly estimates may be more informative in identifying
susceptible exposure windows (Hu et al., 2017). Different spatiotemporal scales may lead to
different associations (e.g. the modifiable areal unit problem) (Jelinski and Wu, 1996), and
future studies with more objective or data-driven feature engineering methods are needed to
address these challenges.

Statistical inference and validations

The top-down EWAS may involve generally smaller sample sizes and smaller variable
numbers as compared to the bottom-up EWAS, due to the higher costs associated to measure
environmental exposures among individuals. Therefore, the top-down EWAS are more
similar to GWAS in terms of sample size, whilst the bottom-up EWAS are more similar to
GWAS in terms of variable space size. Generalized linear models are commonly used in
EWAS, like in GWAS, with opportune correction for multiple hypothesis testing in
univariate analyses. However, there is a poor consensus on the specific choice of the model
hierarchy (if any), with several options possible from random effects to spatial linear
regression.

Internal validation —easy to perform- is rarely used in GWAS, while external validation of
EWAS would correspond to the GWAS replication. External validations in the top-down
EWAS can be easily carried out by utilizing different study cohorts that measure the same
environmental factors and outcomes. However, for the bottom-up EWAS, the set-up might
be more complicated. Lynch et al. (2017) used the cancer registry data, which already
included all individuals with cancer diagnoses in a specific region. To perform external
validations in this case, one option could be to use data from other regions; however, both
populations and environment change across different geographic areas, and exposure-disease
associations may vary by space when spatial stochastic process is in presence (Blangiardo et
al., 2013), making external validations on different areas unfeasible. Similar problems can

Environ Res. Author manuscript; available in PMC 2020 July 09.
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occur by using different temporal intervals. Another option could be to use a reasonable
geographic sub-unit to be sampled within the main neighborhood unit and keep some of the

sub-units apart.

Conclusion

We conclude that substantial efforts are still needed to establish analytics standards that can
assure replicability and reproducibility of EWAS findings. In the future, EWAS and GWAS

might also be used jointly to guide gene-environment interactions studies (Patel et al.,
2013a), although a major challenge will be the complexity of computation due to the
extremely large number of potential gene-environment combinations (not only pairs).

Nonetheless, current EWAS provide a useful conceptual framework for the exploratory
evaluation of associations between environmental factors and health outcomes, toward the

generation of new hypotheses that can be tested using conventional study designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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