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Abundances of transcripts, proteins, and 
metabolites in the cell cycle of budding yeast 
reveal coordinate control of lipid metabolism

ABSTRACT  Establishing the pattern of abundance of molecules of interest during cell divi-
sion has been a long-standing goal of cell cycle studies. Here, for the first time in any system, 
we present experiment-matched datasets of the levels of RNAs, proteins, metabolites, and 
lipids from unarrested, growing, and synchronously dividing yeast cells. Overall, transcript 
and protein levels were correlated, but specific processes that appeared to change at the 
RNA level (e.g., ribosome biogenesis) did not do so at the protein level, and vice versa. We 
also found no significant changes in codon usage or the ribosome content during the cell 
cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and thiamine 
biosynthesis enzymes. Although the levels of several metabolites changed in the cell cycle, by 
far the most significant changes were in the lipid repertoire, with phospholipids and triglyc-
erides peaking strongly late in the cell cycle. Our findings provide an integrated view of the 
abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic 
control of lipid metabolism.

INTRODUCTION
Exemplified by the discovery of cyclin proteins (Evans et al., 1983), 
identifying biomolecules whose abundance changes in the cell cy-
cle has been a critical objective of cell cycle studies for decades. 
Recognizing such molecular landmarks in the cell cycle is a valuable, 
and often necessary, step for deciphering how and why cell cycle 
pathways are integrated.
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Over the past 20 years, cell cycle-dependent changes in mRNA 
levels during the cell cycle of Saccharomyces cerevisiae have been 
comprehensively defined not only from several arrest-and-release 
synchronization approaches (Cho et al., 1998; Spellman et al., 
1998; de Lichtenberg et al., 2005; Pramila et al., 2006; Granovskaia 
et al., 2010) but also from elutriation (Spellman et al., 1998; 
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Blank et al., 2017). Unlike transcript profiling, cell cycle-dependent 
proteomic and metabolomic changes have been more limited and 
challenging to interpret due to different or poor synchronization, 
lack of matched transcriptomic datasets, and divergent results 
among the various studies. For example, there has only been one 
mass spectrometry (MS)-based proteomic analysis of the budding 
yeast cell cycle, sampling cultures at four time-points after they 
were released from arrest (Flory et al., 2006). Remarkably few pro-
teins had altered levels during the time course of that experiment, 
and there was no correlation with the available transcriptomic 
datasets (Flory et al., 2006). Hence, at least in S. cerevisiae, it is 
not clear to what extent protein abundances are dynamic in the 
cell cycle and how tightly they are linked to transcriptional changes, 
if at all.

The picture is not much clearer in other experimental systems. In 
fission yeast, two recent studies used highly similar arrest-and-
release synchronization and protein labeling (stable isotope labeling 
by amino acids in the cell culture; Mann, 2006) methods, followed 
by MS, to probe cell cycle-dependent changes in the proteome. In 
one study, only a single protein changed in abundance more than 
twofold (Carpy et al., 2014), while in the other report, ∼150 proteins 
did (Swaffer et al., 2016). Neither study had experiment-matched 
transcriptomic datasets. Previously, hundreds of transcripts were re-
ported to be periodic in the cell cycle of fission yeast (Rustici et al., 
2004; Oliva et al., 2005).

In human cells, several reports sampled the proteome in the 
cell cycle with MS, but there is little consensus among them 
(Dephoure et al., 2008; Olsen et al., 2010; Lane et al., 2013; 
Ly et al., 2014; Becher et al., 2018; Dai et al., 2018; Schillinger 
et al., 2018). The fraction of proteins identified as periodic ranged 
from ∼5% (Ly et al., 2014) to >65% (Schillinger et al., 2018). 
Synchronization was mostly achieved by release from chemical 
arrest, but two studies also used elutriation (Ly et al., 2014; Dai 
et al., 2018). In the only report where an experiment-matched 
transcriptomic dataset was generated (Ly et al., 2014), the cor-
relation with transcript abundance was positive (ρ = 0.63, based 
on the Spearman rank correlation coefficient). Some of the differ-
ences among the above studies may arise from the use of differ-
ent cell lines, such as HeLa (Dephoure et al., 2008; Olsen et al., 
2010; Lane et al., 2013; Becher et al., 2018), K562 (Dai et al., 
2018), SW480 (Schillinger et al., 2018), or NB4 (Ly et al., 2014). 
However, even for the same cell line (HeLa), synchronization 
(release from thymidine block and nocodazole arrest) and point 
in the cell cycle (0.5 h after nocodazole arrest), the relative 
change in abundance of the 3243 proteins identified in common 
between the two studies (Olsen et al., 2010; Becher et al., 2018), 
were poorly correlated (ρ = 0.245, based on Spearman’s rank 
correlation coefficient; see Materials and Methods).

In S. cerevisiae, metabolites have been measured in the cell 
cycle after arrest-and-release synchronization in minimal medium 
with ethanol as a carbon source, focusing on exogenous control of 
cell cycle progression and downstream effects on metabolism 
(Ewald et al., 2016). At the G1/S transition, it is generally thought 
that cyclin-dependent kinase activity triggers lipolysis (Kurat et al., 
2009) and mobilizes storage carbohydrates (Ewald et al., 2016; Zhao 
et al., 2016) to provide resources for cell division. In other systems, 
there is evidence of cell cycle-dependent changes on metabolite 
levels for the green alga Chlamydomonas reinhardtii (Juppner et al., 
2017), fly (Sanchez-Alvarez et al., 2015), and human HeLa cells 
(Atilla-Gokcumen et al., 2014; Scaglia et al., 2014; Ahn et al., 2017). 
Despite these advances, there has been no experiment-matched 
sampling of the transcriptome or proteome in any of these studies, 

making it difficult to integrate these datasets with gene expression, 
at the mRNA or protein levels.

Here, for the first time in any system, we generated compre-
hensive datasets for RNAs, proteins, metabolites, and lipids from 
the same samples of S. cerevisiae cells progressing synchro-
nously in the cell cycle. Importantly, these samples were from 
elutriated, unarrested cells, maintaining as much as possible the 
normal coupling between cell growth and division. We found 
that while there is a broad correlation between the relative 
abundances of mRNAs and their corresponding proteins, cell 
cycle-dependent changes in transcriptional patterns are signifi-
cantly dampened at the proteome level. The cellular lipid profile 
is highly cell cycle regulated, with triglycerides and phospholip-
ids peaking late in the cell cycle, together with protein levels of 
ergosterol biosynthetic enzymes, highlighting the importance 
of integrating multiple “omic” datasets to identify cell cycle-
dependent cellular processes.

RESULTS
Samples for the multi-omic cell cycle analysis
To apply genomewide methods for the identification of cell cycle-
dependent changes in the abundance of molecules of interest, 
one must first obtain highly synchronous cell cultures. Preferably, 
synchronization must be achieved in a way that minimally perturbs 
cellular physiology and the coordination between cell growth and 
division (Mitchison, 1971; Aramayo and Polymenis, 2017). When 
cells are chemically or genetically arrested in the cell cycle to 
induce synchrony, known arrest-related artifacts can bias the 
results (Mitchison, 1971; Ly et al., 2015; Aramayo and Polymenis, 
2017). An alternative synchronization method is elutriation, a 
physical process that fractionates an asynchronous cell population 
by cell size and sedimentation density properties of the cells, with 
minimal perturbation of cellular functions (Lindahl, 1948; Creanor 
and Mitchison, 1979; Banfalvi, 2008). Hence, we used centrifugal 
elutriation to obtain our synchronous cell cultures (see Materials 
and Methods, and Figure 1A). Elutriation separates cells primarily 
based on size, and size is used as a normalizing reference across 
different elutriation experiments. We isolated 101 different 
elutriated cultures, which were combined into 24 pools, based on 
the size at which they were harvested. Hence, we generated a cell 
size series, spanning a range from 40 to 75 fL, sampled at approxi-
mately every 5-fL intervals. These 24 pools were processed as 
independent samples in all analytical downstream pipelines. For 
statistical analysis (e.g., with the bootstrap ANOVA), the 24 cell 
size pools were grouped in eight groups for each of the ∼5-fL 
increments in the cell size series (see Figure 1A). The same 24 
distinct pools were aliquoted as needed (see Materials and 
Methods) to generate the input samples for measurements of 
RNA (with RNAseq), proteins (with liquid chromatography tandem 
mass spectrometry [LC-MS/MS]), and metabolites with gas chro-
matography–time-of-flight mass spectrometry (GC-TOF MS for 
primary metabolites, hydrophilic interaction chromatography 
[HILIC]-QTOF MS/MS for biogenic amines, and Charged Surface 
Hybrid [CSH]-QTOF MS/MS for lipids).

To gauge the synchrony of our samples by microscopy, we 
used budding as a morphological landmark, which roughly 
coincides with the initiation of DNA replication in S. cerevisiae 
(Pringle and Hartwell, 1981). The percentage of budded cells 
across the cell size series (Figure 1B) rose steadily from ∼0% in 
the smallest cells (at 40 fL), to > 80% at the largest cell size (75 fL). 
The cell size at which half the cells were budded (a.k.a. “critical 
size,” a proxy for the commitment step START) in our cell size 
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FIGURE 1:  Overview of the experimental design to query cell cycle-dependent changes in the 
levels of RNAs, proteins, and metabolites. (A) Generation of sample-matched, multi-omic 
datasets from synchronous cultures of cells of different size during the cell cycle. (B) Serving as a 
morphological marker of cell cycle progression, the percentage of budded cells (y-axis) as a 
function of cell size (x-axis) is shown for each cell size pool. Cell size corresponds to the mean 
cell size of the population, and in this case it is the weighted average of all the mean cell sizes of 
all the elutriated samples that constituted each of the 24 pools. (C) The levels of mitotic (CLB2) 
or G1 (CLN1,2) cyclin mRNAs, which are known to be periodic in the cell cycle, are shown along 
with those of a nonperiodic transcript (ACT1; encoding actin). Cell size is shown on the x-axis (in 
fL), while the Log2-transformed TPM values for each transcript are shown on the y-axis. All 24 
values, one for each pool, were plotted in these graphs. Loess curves and confidence bands 
indicating the standard errors on the curve at a 0.95 level were drawn using the default settings 
of the panel.smoother function of the latticeExtra R language package.

series was ∼62 fL (Figure 1B). This value is the same as the critical 
size these cells display in typical time-series experiments (Hoose 
et al., 2012). We also measured the DNA content of the cells with 
flow cytometry (Supplemental Figure S1). These results suggest 
that the synchrony is excellent for most of the cell cycle, except 
perhaps in the last one to two pools, when the cells have grown 
substantially in size and they are more heterogeneous. From the 
RNAseq data that we will describe later (Figure 2), mRNAs that 
are known to increase in abundance at the G1/S transition (G1 
cyclins; CLN1,2; peaking at 55 fL), or later in G2 phase (cyclin 
CLB2; peaking at 70 fL), peaked as expected in the cell size series 
(Figure 1C). Hence, based on cytological (Figure 1B and Supple-
mental Figure S1) and molecular (cyclin mRNAs, Figure 1C) mark-
ers of cell cycle progression, the synchrony of our samples was of 
high quality.

Overview of the data sets
One type of extract was analyzed for each 
class of the following biomolecules: RNA, 
primary metabolites, biogenic amines, and 
lipids (see Materials and Methods and 
Supplemental Table S1). For proteomic 
analysis, we used soluble protein extracts 
(designated as “sol” in the datasets; see 
Supplemental Table S1) and material from 
the same extract that was recovered in an 
insoluble pellet (designated as “pel” in the 
datasets, see Supplemental Table S1). The 
pellet was subsequently solubilized with 
detergents (see Materials and Methods) 
and analyzed in parallel to the soluble 
sample by LC-MS/MS. For label-free rela-
tive quantification of proteins, we used 
both spectral counts (designated as “psm” 
in the datasets; see Supplemental Table 
S1) and peak areas (designated as “pa” in 
the datasets; see Supplemental Table S1). 
For RNAs, the signal we used for quantifi-
cation was read counts, either raw or after 
normalization as transcripts per kilobase 
million (TPM) (see Materials and Methods 
and Supplemental Table S1). For the me-
tabolites, the signal was the peak heights 
from MS (designated as “ph” in the 
datasets; see Supplemental Table S1). The 
raw values for all datasets are in Supple-
mental File S1.

For the quantification of proteins and 
metabolites, each dataset was first nor-
malized for input. Hence, for proteins or 
metabolites, comparisons across the 
24 samples were scaled based on the sum 
of the signals detected in each of the 
24 samples. For RNA, we used TPM-nor-
malized values and raw reads (see Supple-
mental Table S1). All input datasets that 
entered the downstream computational 
analyses are in Supplemental File S2. For 
each dataset, we used a bootstrap-based 
ANOVA (see Materials and Methods; the 
output files are named as “anova” in the 
datasets; see Supplemental Table S1). 
Also, for RNA, we used the DESeq2 pipe-

line ((Love et al., 2014); see Materials and Methods; the output 
file is designated as “deseq2;” see Supplemental Table S1). All 
output datasets are in Supplemental File S3. Only biomolecules 
that changed ≥2-fold in our cell size series and had an adjusted 
p value or FDR <0.05 were considered as significantly changing 
in the cell cycle.

For display purposes, in all the heatmaps and most plots, we 
show Log2-transformed expressed ratio values. These are the ratios 
of the levels that we measured for each biomolecule in each cell 
cycle point, reflecting the magnitude of the ratio of abundance rela-
tive to the average of that biomolecule across all the cell cycle 
points we sampled. This approach was originally used to describe 
microarray cell cycle experiments in yeast (Spellman et al., 1998) 
and has been the standard in displaying and analyzing differential 
expression in the cell cycle.
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RNAs in the cell cycle
The RNAseq data were analyzed (see Materials and Methods, 
Figure 2, and Supplemental Table S1) to identify RNAs that change 
in abundance in the cell cycle. The names of all the RNAs in each 
set are shown in Supplemental File S4/Sheet: rna_sets. The num-
ber of identified RNAs varied, depending on the computational 
method. Based on the DESeq2 approach, ∼40% of the transcripts 
(n = 2456) were significantly different between any two points in 
the cell cycle. The ANOVA-based approach identified 652 RNAs, 
whose levels changed significantly in the cell size series (Figure 2). 
In addition to the expected clusters of RNAs associated with DNA 
replication (cluster 2) and mitotic cell cycle progression (cluster 4), 
there was a large cluster of transcripts enriched for processes 
related to ribosome biogenesis (cluster 1, Figure 2; see also 
Supplemental File S4), peaking in the G1 phase. These transcripts 
also appeared periodic in past studies that relied on elutriation as 
a synchronization method to identify cell cycle-regulated RNAs 
(Spellman et al., 1998; Blank et al., 2017), but not in studies that 
used arrest-and-release methods (Spellman et al., 1998). An 
increase in the levels of transcripts involved in ribosome biogene-
sis before commitment to division has also been described in 
transcriptomic profiles of S. pombe (Oliva et al., 2005). Despite 
these changes at the transcript level, whether the ribosome con-
tent of the cell changes during the cell cycle is not known. We will 
describe results that do not support any cell cycle-dependent 
changes in assembled ribosomes later.

Early in the cell cycle (clusters 1 and 3, Figure 2), we noticed that 
there were some tRNAs whose levels were higher. Note that tRNAs 
were not examined in the two prior studies that queried the 
transcriptome of elutriated S. cerevisiae cells because those studies 
focused on polyA-tailed selected transcripts (Spellman et al., 1998; 
Blank et al., 2017). It has been argued that polyA selection biases 
the transcriptome quantification (Weinberg et al., 2016). Hence, in 
this study, we relied only on rRNA subtraction to prepare the 
RNAseq libraries (see Materials and Methods), which does not 
remove tRNAs and other noncoding RNAs. We also note that 
tRNAs are notoriously difficult to measure by RNAseq due to factors 
such as their high level of modification, sequence similarity between 
different tRNAs, and the difficulty to discriminate between cleaved 
and mature tRNAs. The tRNAs whose levels appeared to change in 
the cell cycle are shown in Supplemental Figure S2. These results 
are difficult to reconcile with the extreme stability of mature tRNAs 
(from 9 h to several days, exceeding the duration of multiple cell 

cycles; see Hopper, 2013), unless these tRNAs are targets of quality 
control mechanisms (Hopper, 2013). In any case, as we show later 
(Supplemental Figure S8), we found very little evidence to support a 
significant role for altered codon usage in the cell cycle.

Last, we also compared the identified cell cycle genes from the 
two elutriation datasets published previously (Spellman et al., 1998; 
Blank et al., 2017) and in this study (Supplemental Figure S3 and 
File S7). The overlap in the identified cell cycle transcripts appears 
low (e.g., the Spellman dataset overlaps ≈20% with either of the 
other two datasets). However, different methods in sample prepara-
tion (total RNA in this study vs. polyA-selected mRNAs in the other 
two) and in the computational analyses (ANOVA in this study vs. 
Fourier transformation in the other two) were used, which could ac-
count at least in part for the differences.

Cell cycle-dependent changes in the proteome
From the soluble and insoluble extracts (see Materials and Methods), 
we identified 3571 S. cerevisiae proteins at one or more cell cycle 
points. From the soluble extracts, 2236 proteins were identified in 
all eight cell size groups in the cell cycle, while from the insoluble 
ones that number increased to 2449 proteins. Although this repre-
sents a reasonably thorough sampling of the yeast proteome, we 
did not find some low abundance proteins (e.g., cyclins). This was 
not unexpected, since a recent, aggregate analysis of all available 
datasets of protein abundances in yeast (measured with tandem 
affinity purification (TAP), followed by immunoblot analysis-, MS-, 
and GFP tag-based methods), placed proteins of the gene ontology 
process “mitotic cell cycle regulation” as the least abundant group 
(Ho et al., 2018). The extent to which mRNA levels can explain 
protein levels is debated (Lu et al., 2007; Vogel and Marcotte, 2012; 
Csardi et al., 2015; Lahtvee et al., 2017). For most species, RNA 
levels explain between one-third to two-thirds of the variation in 
protein abundances (Vogel and Marcotte, 2012). To examine the 
broad correlation between transcript and protein levels, we looked 
at the association of count data from our transcriptomic (reads) and 
proteomic (spectral counts) datasets (Supplemental Figure S4). 
Across all the points in our cell size series, the Spearman rank coef-
ficients (ρ) for the transcriptome-proteome correlations ranged from 
0.52 to 0.63 (Supplemental Figure S4). When we compared the 
relative abundance of the proteins in our datasets, against the con-
sensus abundances calculated by (Ho et al., 2018), the correlation 
was higher (ρ > 0.75 in every case; see Supplemental Figure S5 and 
File S8). Hence, both in terms of the number of proteins we identified 

FIGURE 2:  Transcripts changing in abundance in the cell cycle. Heatmap of the levels of 652 differentially expressed 
RNAs with significantly different levels (p < 0.05; Log2(FC) ≥ 1) between any two points in the cell cycle, based on 
bootstrap ANOVA. The levels of each RNA were the average of each triplicate for the cell size indicated, which was 
then divided by the average value of the entire cell size series for that RNA. These expressed ratios were then Log2-
transformed. The Log2(expressed ratios) values were hierarchically clustered and displayed with the pheatmap R 
language package, using the default unsupervised algorithms of the package. The different rows of the heatmap 
correspond to the different cell sizes (40–75 fL, top to bottom, in 5-fL intervals). The cell cycle phases approximately 
corresponding to these sizes are shown to the right of the heatmap. The names of all RNAs, values, and clustering 
classifications are in Supplemental File S4/Sheet: rnas_anova_heatmap. The gene ontology enrichment analysis for each 
cluster was done on the PANTHER platform, and the detailed output is in Supplemental File S4/Sheet: rnas_clusters.
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and their relative abundance, the quality of our proteomic datasets 
was high and consistent with past studies.

To identify proteins that changed in abundance in the cell cycle, 
we examined separately each of the four proteomic datasets: solu-
ble and insoluble extracts, each quantified by spectral counts and 
by peak areas (see Supplemental Table S1 and Materials and 
Methods). The overlap between the proteins in each dataset that 
appeared to change in abundance in the cell cycle was minimal (see 
Supplemental Figure S6). Based on ANOVA analysis, we identified 
333 proteins whose levels changed significantly in the cell size se-
ries, in at least one of the four proteomic datasets (shown in the 
heatmap in Figure 3B). We will describe additional proteins whose 
levels change significantly in the cell cycle, but due to irregular pat-
terns and missing values, they were not identified as such by the 
ANOVA-based method we used.

Our analysis provided numerous examples of physiologically rel-
evant, cell cycle-dependent changes in protein abundance. Among 
these were several whose levels are well known to be periodic at 
both the protein and the RNA levels. These include proteins in-
volved in DNA replication-related processes, such as both isoforms 
(Rnr1p and Rnr3p) of the large subunit of ribonucleoside-diphos-
phate reductase, peaking as cells enter S phase (Figure 3A, top). 
However, other groups of proteins that we found to change in abun-
dance in the cell cycle were not so at the RNA level. For example, 
several enzymes of ergosterol biosynthesis (Erg1,11,3,5,7p) peaked 
late in the cell cycle (Figure 3A, bottom). Of those, only the levels of 
the mRNA for Erg3p (C-5 sterol desaturase) changed in the cell 
cycle (see Supplemental File S4/Sheet: rnas_anova_heatmap). The 
coordinate up-regulation in the levels of enzymes involved in 

ergosterol biosynthesis is consistent with the mitotic increase in lipid 
levels that we will describe later.

Despite the transcriptional up-regulation in G1 of transcripts 
involved in ribosome biogenesis (see Figure 2), we did not observe 
such broad changes at the proteomic level. In earlier reports, the 
synthesis of ribosomal components was not cell cycle-dependent 
(Shulman et al., 1973; Elliott et al., 1979; Warner, 1999). To our 
knowledge, however, it is not known if the ribosome content in the 
cell, or the composition of ribosomal proteins in assembled ribo-
somes, changes in the cell cycle. Hence, we asked if the total 
amount of ribosomal proteins or their proportion in assembled ribo-
somes varies significantly in the cell cycle. To this end, we isolated 
assembled ribosomes through sucrose ultracentrifugation from 
wild-type cells (Figure 4A; see Materials and Methods). Ribosomal 
protein abundance was measured with SWATH-MS (see Materials 
and Methods). Note that for this experiment, extracts were not 
made from pools of different elutriated cultures, but from the same 
early G1 elutriated cells at different points as they progressed in the 
cell cycle (see Materials and Methods). The sum of all ribosomal 
protein abundances in assembled ribosomes did not change signifi-
cantly in the cell cycle (Figure 4B). Since our samples were prepared 
from the same number of cells, and ribosomal proteins accounted 
for ∼60% of the intensities detected, one could reasonably assume 
that ribosome abundance does not change significantly in the cell 
cycle, but it is also possible that our isolation somehow has skewed 
the results. There were also no significant differences in the relative 
abundance of the individual ribosomal proteins in the cell cycle 
(Figure 4C and Supplemental S7). We note that the relative levels of 
each protein in the ribosomes of each sample are independent of 

FIGURE 3:  Proteins with cell cycle-dependent abundance. (A) Levels of selected proteins whose levels changed 
significantly (p < 0.05; Log2(FC) ≥ 1) between any two points in the cell cycle, based on bootstrap ANOVA, in the cell 
cycle: Bottom, enzymes involved in ergosterol biosynthesis. Top, enzymes involved in DNA metabolism (Pol32p: DNA 
polymerase δ; Prs1,2p: PRPP synthase; Rnr1,3p: ribonucleoside-diphosphate reductase). The corresponding 
Log2(expressed ratios) values from all 24 data points are on the y-axis, and cell size values are on the x-axis. Loess 
curves and confidence bands indicating the standard errors on the curve at a 0.95 level were drawn using the default 
settings of the panel.smoother function of the latticeExtra R language package. (B) Heatmap displaying the relative 
abundance of the 333 proteins in one or more of the four anova sets shown in Supplemental Figure S6. In cases where 
the same protein was in the intersection of more than one datasets, we chose for display the values from the dataset 
from which the changes in the protein abundance in the cell cycle was the most significant (i.e., the lowest p value) and 
greater in magnitude (i.e., the highest Log2(FC)). The heatmap was generated as in Figure 2. All the relevant data are in 
Supplemental File S4/Sheet: proteins_anova_heatmap.
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any putative differences in the amounts of assembled ribosomes 
between samples. Hence, we conclude that gross ribosome compo-
sition is the same during the cell cycle. These results do not support, 
but also do not unambiguously exclude, the possibility that individ-
ual, specialized ribosomes may be formed during the cell cycle. 
However, at least based on these population-averaged measure-
ments, the composition of assembled ribosomes seems unaffected 
in the cell cycle.

Last, we interrogated our proteomic data for evidence of differ-
ences in codon usage during the cell cycle. It has been proposed 
that optimal codon usage is more prevalent in mRNAs expressed 
in the G1 phase of the cell cycle, contributing to the abundance of 
proteins that peak in G1 (Frenkel-Morgenstern et al., 2012). 
Altered tRNA abundances during stress conditions in S. cerevisiae 
may also regulate protein synthesis (Torrent et al., 2018). To avoid 
confounding effects from differential transcription of RNAs encod-
ing the proteins that we identified to change in abundance in the 
cell cycle (Figure 3B), we focused on the proteins whose corre-
sponding mRNAs were not changing in the cell cycle (Figure 2). 
Moreover, to minimize effects from regulated proteolysis, we 
excluded from the analysis proteins for which there is evidence 
for ubiquitylation and regulated proteolysis (Swaney et al., 2013). 
For the vast majority of codons in the remaining proteins, there 
were no significant changes between their actual and expected 
frequencies in the cell cycle, based on gene-specific codon usage 
(Tumu et al., 2012). Only four codons (AGC, UAU, AGG, AAC) 
were used with statistically significant differences in the cell cycle, 
but the magnitude of those differences was minimal nonetheless 
(Supplemental Figure S8). Overall, despite hints at the transcrip-
tional level (Figure 2) for up-regulation of processes associated 
with protein synthesis in the G1 phase, at least from these popula-
tion-based experiments, our data argue against any significant cell 
cycle-dependent changes in the ribosome content (Figure 4B and 

Supplemental File S5), composition (Figure 4C), or codon usage 
(Supplemental Figure S8), suggesting that at the proteome level 
those changes in RNA levels have been dampened extensively.

Thiamine biosynthesis and thiamine diphosphate 
(TDP)-dependent enzymes in the cell cycle
To identify other proteins whose levels could change in the cell 
cycle but were not identified as such by the computational 
methods we used, we looked at proteins with the largest change 
in their levels, regardless of missing values or statistical cutoffs. 
Remarkably, a group of enzymes involved in thiamine biosynthesis 
peaked coordinately in abundance late in the cell cycle when the 
cells reached a cell size of ∼65 fL (Figure 5A). These enzymes 
participate in TDP synthesis in the cytoplasm. Thi7p showed 
the smallest difference (slightly over twofold) in abundance during 
the cell cycle from our MS experiments and could provide a good 
measure to validate our results. The THI7 transcript was not identi-
fied in the core cell cycle-regulated transcripts by Spellman et al 
(1998), which did not include in their analysis their own elutriation 
data. However, THI7 was identified as cell cycle-regulated in all 
three elutriation datasets (this study, (Spellman et al., 1998), (Blank 
et al., 2017); and Supplemental Figure S3), suggesting that THI7 
expression is cell cycle-regulated at the RNA level, at least in 
experimental approaches that maintain the coordination of cell 
growth with cell division. To further test this prediction, early G1 
cells carrying the THI7-TAP allele (the only available THI gene in 
the TAP-tagged strain collection encoding any of the proteins 
shown in Figure 5A) were obtained by elutriation, and the levels of 
the corresponding proteins were evaluated by immunoblotting at 
regular intervals as the cultures progressed in the cell cycle (Figure 
5B). We confirmed by immunoblotting that the abundance of 
Thi7p was elevated late in the cell cycle (see Figure 5B, compared 
with the levels of the control protein Pgk1p). These results are 

FIGURE 4:  Ribosomal protein abundance in ribosomes does not change in the cell cycle. (A) Elutriated, early G1 cells 
were cultured, and sampled at regular intervals in the cell cycle, in three biological replicates at each 5 fL range, from 40 
to 75 fL. Protein extracts from the same number of cells were then fractionated by sucrose ultracentrifugation, to isolate 
ribosomes on mRNAs, which were then analyzed by SWATH-MS (see Materials and Methods). (B) The peak areas 
corresponding to each ribosomal protein (RP) detected were summed and averaged across the triplicate for each cell 
size interval. The Log2(expressed ratios) values for the Sum of RP levels are shown on the y-axis, while cell size is on the 
x-axis. (C) Correlation matrix of the relative abundance of individual ribosomal proteins in assembled ribosomes on 
mRNAs. The Spearman correlation coefficients (ρ) shown in each case were calculated with the rcorr function of the 
Hmisc R language package. The cell cycle profiles for each ribosomal protein are shown in Supplemental Figure S7.
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consistent with the notion that there might be a coordinate, 
mitotic up-regulation of thiamine biosynthesis enzymes.

Next, we asked if any TDP-dependent enzymes also change in 
abundance in the cell cycle and if strains lacking these proteins have 
cell cycle-related phenotypes. TDP is a cofactor for several enzymes, 
including transketolase (Tkl1,2p), α-ketoglutarate dehydrogenase 
(Kgd1p), E1 subunit of pyruvate dehydrogenase (Pda1p), pyruvate 
decarboxylase (Pdc1,5,6p), and phenylpyruvate decarboxylase 
(Aro10p). Only the levels of Tkl2p, Pdc5p, and Aro10p appeared 
to be elevated late in the cell cycle (Figure 5C) at the same time 
as the levels of thiamine biosynthesis enzymes were also raised 
(Figure 5A).

Cell size phenotypes are often used as a proxy for disrupted 
cell cycle progression with an increased cell size phenotype typi-
cally accompanying mitotic defects. Of all deletion strains lacking 
a protein that requires TDP as a cofactor, only the loss of Tkl2p 
increased cell size significantly (Figure 5D). We found that both 
birth size and the mean size of tkl2Δ cells were larger (Figure 5D). 
Note that the tkl2Δ deletion strain was not in the panels that were 
examined in genomewide screens of cell size mutants (Jorgensen 
et al., 2002; Zhang et al., 2002). The mitotic up-regulation in the 
levels of thiamine biosynthesis enzymes (Figure 5A) and Tkl2p 
itself (Figure 5C) are suggestive of possible mitotic roles for Tkl2p, 
which might depend on the available TDP pools in the cell. In the 

Discussion, we speculate on such putative roles based on the 
published reports.

Cell cycle-dependent changes in metabolites and lipids
From the same elutriated pools we used to measure RNAs and pro-
teins (see Figure 1), we also measured metabolites and lipids. The 
assays were performed at the West Coast Metabolomics Center at 
University of California, Davis, a National Institutes of Health (NIH) 
Regional Comprehensive Metabolomics Resource Core. Each class 
of metabolites was measured with distinct MS-based assays (see 
Materials and Methods). From these assays, thousands of com-
pounds were detected, but most could not be assigned confidently 
to known metabolites, and they were not considered further. In-
stead, we focused on the 406 primary metabolites, biogenic amines, 
and complex lipids that were identified across the cell size series. 
As with our analysis of RNAs and proteins, we used ANOVA (see 
Supplemental Table S1 and Figure 6) to identify compounds whose 
levels change in the cell cycle. Previous reports showed that storage 
carbohydrates are mobilized at the G1/S transition (Ewald et al., 
2016; Zhao et al., 2016). In agreement with these studies, we also 
found that trehalose levels rise in G1 to their highest levels when cell 
size reaches 50 fL, but drop significantly at the G1/S transition 
(Figure 6). The levels of other sugars (glucose, fructose, mannose, 
and glucose-6-phosphate; see Figure 6) were also higher in G1, 

FIGURE 5:  Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle. (A) Abundances of the indicated 
proteins of thiamine biosynthesis from LC-MS/MS, across the cell size series (x-axis, in fL). The corresponding 
Log2(expressed ratios) values from all 24 data points are on the y-axis. Loess curves and confidence bands indicating 
the standard errors on the curve at a 0.95 level were drawn using the default settings of the panel.smoother function of 
the latticeExtra R language package. (B) The abundance of Thi7-TAP by immunoblotting from synchronous, elutriated 
cells, progressing in the cell cycle and sampled at regular intervals, as indicated (%B is the percentage of budded cells; 
fL is the cell size). Pgk1p levels are also shown from the same samples, to indicate loading. For the two samples 
indicated with an asterisk in the Thi7-TAP series, there were no size data due to instrument malfunction. At the bottom, 
the band intensities were quantified with ImageJ software, and the Log2-transformed expressed ratios of Thi7-TAP are 
shown, after they were normalized against Pgk1p. (C) Abundances of the indicated TDP-dependent proteins are 
determined and displayed as in A. (D) The birth and mean size of tkl2 cells and experiment-matched wild-type (TKL2) 
cultures from exponentially dividing cells in rich, undefined medium (YPD). At least 12 independent cultures were 
measured in each case. Significant differences and the associated p values were indicated by the nonparametric 
Wilcoxon rank sum test, performed with the wilcox.test function of the R stats package.
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FIGURE 6:  Lipid levels change significantly 
in the cell cycle. (A) From 406 known 
metabolites identified from all classes 
(primary, biogenic amines, complex lipids), 
the levels of 64 with significantly different 
levels (p < 0.05; Log2(FC) ≥ 1) between any 
two points in the cell cycle, based on 
bootstrap ANOVA, are shown in the 
heatmap. The levels of each metabolite were 
the average of each triplicate for the cell size 
indicated, which was then divided by the 
average value of the entire cell size series for 
that metabolite. These expressed ratios were 
then Log2-transformed. The Log2(expressed 
ratios) values were hierarchically clustered 
and displayed with the pheatmap R language 
package. The different columns of the 
heatmap correspond to the different cell 
sizes (40–75 fL, left to right, in 5-fL intervals).

consistent with an up-regulation of glycoly-
sis before DNA replication. By far, however, 
the class of metabolites that changed the 
most in abundance in the cell cycle was 
complex lipids, which peaked late in the cell 
cycle (Figure 6). These included phospho-
lipids (phosphatidyl-inositol, -ethanolamine, 
and -serine) and triglycerides (Figure 6). 
The higher triglyceride levels are also con-
sistent with the elevated levels of neutral 
lipid droplets late in the G2/M phase, as 
reported previously (Blank et al., 2017). 
Overall, the coordinate increase in the 
levels of ergosterol biosynthesis enzymes 
we identified from the proteomic analysis 
(Figure 3A) and the increase in lipids (Figure 
6) strongly suggest that lipid metabolism 
is significantly up-regulated late in the cell 
cycle. In the Discussion, we will expand on 
the significance of these results.

DISCUSSION
The sample-matched datasets for RNAs, 
proteins, metabolites, and lipids we gener-
ated from budding yeast cells progressing 
synchronously in the cell cycle provide a 
comprehensive view of these biomolecules 
in dividing cells. We discuss our approach 
to obtain the analytical samples and our 
findings in the context of the relation be-
tween the transcriptome and the proteome 
and the integration of metabolite and lipid 
measurements with other “omic” datasets.

A primary goal and unique aspect of 
this study are that we took a measure of 
the different biomolecules from the same, 
experiment-matched samples. Further-
more, to maintain the normal coupling be-
tween cell growth and cell division as much 
as possible, we used centrifugal elutriation 
to obtain synchronous cultures, instead 
of arrest-and-release methods. However, 
elutriation merely selects based on cell size 



Volume 31  May 1, 2020	 Multi-omic analysis of the cell cycle  |  1077 

a small fraction of cells from an asynchronous, larger population. 
Hence, compared with arrest-and-release methods, elutriation 
suffers from low yields of synchronous cells. To overcome this 
problem, we generated our samples by pooling from different 
elutriations cells of the same size. All the cells we collected from 
the elutriator were early G1 daughter cells, which were then 
allowed to progress in the cell cycle before we harvested them 
once they reached a particular cell size. We then used cell size as 
a metric to arrange these pools along a hypothetical cell cycle, 
generating a size series (Figure 1). This is different from starting 
with one elutriated sample, typically of small cells in early G1, and 
then taking aliquots at various times as they progress in the cell 
cycle, generating a time series.

But practical necessities for large quantities of cells aside, how 
does a size-based series compare to a time-based one? We argue 
that it compares favorably for the following reasons: first, no two, 
time series-based elutriations are the same, and cell size always 
has to be used to account for experimental variation properly. A 
typical metric is the critical size for START, defined as the size at 
which half the cells are budded. We note that the critical size of our 
reconstructed cell cycle profile was ∼62 fL (Figure 1B), the same as 
the critical size of the same strain and medium in time-series ex-
periments (Hoose et al., 2012). Second, based on DNA content 
analysis (Supplemental Figure S1), at least until the cells have 
grown substantially to ∼65 fL, the synchrony appears very tight. 
Only at 70–75 fL, the samples appear more heterogeneous, with 
some cells going through the M/G1 transition, indicated by the 
rise of cells with G1 DNA content. But this is also a feature of time-
based elutriations, or even arrest-and-release methods, where 
there is an inevitable loss of synchrony the further one moves 
along the cell cycle from the starting point (Mitchison, 1971). Third, 
every molecular marker we looked at (cyclin mRNAs, see Figure 
1C; proteins of DNA metabolism, see Figure 3A) peaks as ex-
pected in our size-based series. Fourth, when comparing the cell 
cycle abundances of the same protein (Thi7p) from a size-based 
(Figure 5A) versus a time-based series (Figure 5B), the profiles are 
nearly identical, even though the ploidy of the strains was not. For 
these reasons, our size-based approach recapitulates the expected 
properties of synchronous, elutriated samples.

In yeast, the latest meta-analyses from all available studies 
estimated that between 37 and 56% of the variance in protein abun-
dance is explained by mRNA abundance (Ho et al., 2018). These 
estimates are within the range of previous ones from multiple 
species (Vogel and Marcotte, 2012). Based on the absolute quanti-
fication of protein and mRNA abundances (Lahtvee et al., 2017), the 
overall correlation between mRNA and protein abundances was 
also in that range (R2 = 0.45, based on Pearson’s correlation 
coefficient). The level of correlation between the transcriptome and 
the proteome we observed appears to be somewhat higher (ρ = 
0.52–0.63, based on Spearman’s coefficient), probably because our 
experiments were done from synchronous cells, and because cell 
cycle transitions are associated with transcriptional waves (Spellman 
et al., 1998). A critical role for transcription in shaping the proteome 
takes place as cells transition in different environments, and during 
such transitions changes in protein levels were much more highly 
correlated with the changes in mRNA levels (R2 > 0.9) (Lahtvee et al., 
2017). Hence, the relatively high correlation we observed between 
the transcriptome and the proteome in the cell cycle is not surpris-
ing, and it is probably an underestimate, since some extremely 
unstable cell cycle regulators whose levels rise as a result of 
transcription (e.g., cyclins, see Figure 1C) were absent from our 
proteomic datasets because of their low abundance.

Despite the correlation between the transcriptome and the 
proteome we discussed above, there were clear groups of tran-
scripts and proteins whose abundance was incongruent. Ribosomal 
biosynthesis, reflected on the levels of individual ribosomal proteins 
or assembled ribosomes, was not periodic at the proteomic level 
(Figure 4 and Supplemental Figure S7), despite a large G1 transcrip-
tional wave of RNAs involved in this process (Figure 2). We noted 
that a similar phenomenon was recently reported for the integrated 
stress response, a well-characterized transcriptional response in 
yeast involving ∼900 transcripts (Gasch et al., 2000), which was not 
seen at all at the protein level (Ho et al., 2018). The observation 
that the ribosome content of the cell is constant in the cell cycle 
(Figure 4) suggests that changes in translational efficiency of some 
mRNAs described previously (Blank et al., 2017) are likely due to 
transcript-specific mechanisms, rather than global changes in the 
steady-state ribosome content (Lodish, 1974).

The mitotic peak in the levels of TDP biosynthesis enzymes was 
surprising (Figure 5). The physiological significance of such a change 
in the levels of these enzymes is unclear. Through some uncharac-
terized roles, the TDP-dependent transketolase activity is necessary 
for meiotic progression in mouse oocytes (Kim et al., 2012). In 
bacteria, transketolase participates in chromosomal topology, and 
Escherichia coli cells lacking transketolase are UV sensitive (Hardy 
and Cozzarelli, 2005). However, we found that yeast tkl2Δ cells are 
not sensitive to UV or other DNA-damaging agents (not shown). 
Overall, despite the intriguing observations that late in the cell 
cycle, levels of the TDP-dependent Tkl2p transketolase were 
higher (Figure 5C) and loss of Tkl2p increased cell size (Figure 5D), 
the molecular mechanism connecting these observations remains to 
be determined.

The coordinate up-regulation of ergosterol biosynthetic en-
zymes late in the yeast cell cycle (Figure 3), not evident at the RNA 
level (Figure 2), was unexpected. To our knowledge, there is no 
prior report of such a response. It should be noted that the lack of 
cell cycle-dependent changes at the levels of mRNAs encoding 
the enzymes of ergosterol biosynthetis was seen not only in our 
dataset but also in the other datasets aggregated in the Cyclebase 
3.0 database for yeast and other organisms (Santos et al., 2015). 
Of the enzymes we show in Figure 3A, only ERG3 had a rank score 
of 624, while all others were not periodic (scores > 800) (Santos 
et al., 2015). Note that we also found ERG3 mRNA levels to signifi-
cantly change in the cell cycle (see Supplemental File S4/Sheet: 
rnas_anova_heatmap).

The mitotic rise in the levels of sterol biosynthetic enzymes is 
significant in the context of our metabolite measurements, show-
ing that lipid levels (especially phospholipids and triglycerides) 
increased at the same time (Figure 6). Our observations are 
consistent with several other reports linking lipid metabolism 
with cell cycle progression and mitotic entry in yeast (Anastasia 
et al., 2012; McCusker and Kellogg, 2012). Levels of triglycerides 
increase in wild‐type cells synchronized in mitosis (Blank et al., 
2017), storage of triglycerides in lipid droplets is thought to fuel 
mitotic exit (Yang et al., 2016), and lipid-exchange proteins 
integrate lipid signaling with cell cycle progression (Huang et al., 
2018). Note that there have not been analytical measurements of 
distinct lipids in the cell cycle in yeast. The data we show here are 
not only consistent with but also significantly expand the prior 
studies mentioned above. It is also important to stress that an 
increase in lipids late in the cell cycle cannot simply be due to a 
need for cell surface material. We had shown previously that 
increased lipogenesis does not increase cell size (Blank et al., 
2017). Hence, the increase in the abundance of lipids likely 
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reflects changes in the composition of membranes or other more 
specialized, cell cycle-dependent process, not necessarily a sim-
plistic need for more cell surface building blocks.

One also needs to consider the dramatic changes in cellular 
morphology. Especially during mitosis, when the cell adopts the 
characteristic hourglass structure. The lipid content must accom-
modate dynamic changes in membrane curvature. For example, 
during cytokinesis, it is thought that lipids that confer negative 
curvature must be deposited on the outer leaflet of the bilayer 
(Furse and Shearman, 2018). In yeast and human cells, inhibition 
of de novo fatty acid biosynthesis arrests cells in mitosis 
(Hasslacher et al., 1993; Schneiter et al., 1996; Al-Feel et al., 
2003; Scaglia et al., 2014). In human cells, cholesterol synthesis 
may affect multiple points in the cell cycle. In an earlier report, 
inhibition of cholesterol synthesis arrested human cells in mitosis 
(Suarez et al., 2002), while in a later report the cells arrested in 
G1 (Singh et al., 2013). Cholesterol’s role in mitosis appears to 
be complex, not only affecting the distribution of phospholipids 
in the plasma membrane but also governing the formation of a 
vesicular network at the midbody during cytokinesis (Kettle 
et al., 2015). Interestingly, ergosterol may have a cell cycle 
regulatory role in yeast, distinct from its bulk, structural role in 
membrane integrity (Dahl et al., 1987), but that role remains 
unclear (Gaber et al., 1989).

Last, our results argue for posttranscriptional mechanisms lead-
ing to mitotic up-regulation of sterol biosynthesis. As to how the 
differential abundance of the ergosterol biosynthetic enzymes 
might come about, we note that all the enzymes we show in Figure 
3A, including Erg3p, have been shown to be ubiquitinylated 
(Peng et al., 2003; Swaney et al., 2013), raising the possibility of 
regulated proteolysis. Another possibility is translational control. In 
our previous analysis of translational control in the cell cycle by 
ribosome profiling, a confounding problem was the poor overlap 
of the different computational pipelines we used to analyze the 
data (Aramayo and Polymenis, 2017; Blank et al., 2017). Proteomic 
data provide an independent metric that allows us to revisit the 
datasets of translationally controlled transcripts in the cell cycle. 
We found that for 38 transcripts (from Dataset 5 in Blank et al., 
2017) identified by the babel pipeline (Olshen et al., 2013) and 45 
transcripts (from Dataset 7 in Blank et al., 2017) identified by the 
anota pipeline (Larsson et al., 2011), the corresponding protein 
levels are indeed significantly periodic in the cell cycle (Supple-
mental File S4/Sheet: proteins_anova_heatmap). These results 
(see Supplemental File S9) validate the translational control of 
transcripts we had not followed up, but were identified by both 
computational approaches (e.g., NQM1, MSC1, with the protein 
levels peaking as predicted late in the cell cycle) and point to new 
ones, ERG5 among them. Hence, multiple levels of control, such 
as transcription (for ERG3), translation (for ERG5), and protein 
degradation (possibly for all Erg proteins) may contribute to the 
mitotic up-regulation of ergosterol biosynthesis. Furthermore, in-
tegrating our proteomic and ribosome profiling datasets increased 
the confidence for fivefold more transcripts that are likely under 
translational control in the cell cycle, providing an example of the 
synergy among different studies and datasets.

Our data also underscore the value of having metabolite mea-
surements along with other omic datasets to strengthen the efforts 
of identifying physiologically relevant cellular responses. In future 
work, employing targeted metabolic profiling and flux analysis in 
the cell cycle will increase our understanding of how the transcrip-
tome and proteome shape dynamic changes in metabolism and 
how resources are allocated during cell division.

MATERIALS AND METHODS
See Table 1 for reagents and tools. Where known, the Research 
Resource Identifiers (RRIDs) are shown.

Strains and media
All the strains used in this study are shown in the Table 1. Unless 
noted otherwise, the cells were cultivated in the standard, rich, 
undefined medium YPD (1%wt/vol yeast extract, 2%wt/vol peptone, 
2%wt/vol dextrose) at 30°C (Kaiser et al., 1994).

Elutriation
To collect enough cells for the downstream measurements of RNA, 
proteins, and metabolites, we followed the same strategy we de-
scribed previously (Blank et al., 2017). Briefly, elutriated wild-type, 
G1 cells (diploid BY4743 background) were allowed to progress in 
the cell cycle until they reached the desired cell size. At that point, 
they were quenched (with 100 µg/ml cycloheximide and 0.1% 
sodium azide), frozen away, and later pooled with cells of similar 
size (Figure 1A). Overall, we had to collect 101 individual samples 
to generate the 24 pools shown in Figure 1A.

For other elutriation experiments (e.g., see Figures 4 and 5), 
only an early G1 elutriated fraction was collected, from which 
samples were taken at regular intervals as the cells progressed in the 
cell cycle.

Cell size and DNA content measurements
The methods to measure DNA content and the cell size (birth 
or mean size) of asynchronous cultures and estimate the critical size 
of asynchronous cultures have been described in detail previously 
(Guo et al., 2004; Truong et al., 2013; Soma et al., 2014; Maitra 
et al., 2019).

Proteomic samples
We used ∼1E+09 cells from each of the 24 pools of the cell size 
series (see Figure 1) to prepare extracts for LC-MS/MS. For each 
sample, the cells were resuspended in 0.75 ml of lysis solution 
(10 mM Tris, pH 7.8, 10 mM NaCl). Glass beads were added to the 
top of liquid level, the samples were placed in a Mini Beadbeater 
(Biospec), and the cells were broken by “bead-beating” twice at the 
maximum speed for 90 s each time, placed on ice for 60 s between. 
The extract from each sample was collected by punching a hole 
with a 21-gauge syringe needle at the bottom of the tube. Last, the 
soluble material from the lysates were clarified by centrifugation at 
14,000 × g at 4°C for 10 min. Insoluble pellets were resuspended in 
500 μl of lysis buffer and both clarified supernatants and pellets 
were stored at –80°C until processing for MS.

For mass spectral analysis, clarified extracts were thawed and 
protease inhibitors were immediately added. Each supernatant 
sample (50 μl) was mixed with 50 µl trifluoroethanol (TFE) and 
reduced with 5 mM tris(2-carboxyethyl)phosphine (TCEP) at 56°C 
for 45 min, cooled for 5 min at room temperature, and alkylated with 
25 mM iodoacetamide in the dark at room temperature for 30 min. 
Samples were diluted 10-fold with digestion buffer (50 mM Tris, 
pH 8.0, 2 mM calcium chloride) and digested with trypsin (added at 
1:50 ratio) at 37°C for 5 h. Digestion was stopped with 100 µl of 10% 
formic acid and sample volumes were reduced to 100–250 μl in a 
SpeedVac. Following filtration with an Amicon Ultra-15 Centrifugal 
Filter Unit, the peptides were desalted using C18 Spin Tips, accord-
ing to the manufacturer’s instructions. The volume of the samples 
was then reduced to 5–10 μl in a SpeedVac. Last, the samples were 
resuspended in 100 μl of a 95% water, 5% acetonitrile, 0.1% formic 
acid solution and subjected to LC-MS/MS analysis.
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Designation Source Identifier/Catalog# Additional information

S. cerevisiae strain (Giaever et al., 2002); http://
www.euroscarf.de/index 
.php?name= News

RRID:SCR_003093 BY4743 MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/
ura3Δ0

S. cerevisiae strain (Giaever et al., 2002); http://
www.euroscarf.de/index 
.php?name= News

RRID:SCR_003093 BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0

S. cerevisiae strain (Giaever et al., 2002); http://
www.euroscarf.de/index 
.php?name= News

RRID:SCR_003093 BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

S. cerevisiae strain Dharmacon YSC1178-202232418 THI7-TAP::HIS3MX6, BY4741 otherwise

S. cerevisiae strain Dharmacon YSC6272-201919629 13256 tkl2Δ::KanMX, BY4742 otherwise

Chemical, reagent Sigma-Aldrich Y1625 Yeast extract

Chemical, reagent Sigma-Aldrich P5905 Peptone

Chemical, reagent Sigma-Aldrich D9434 Dextrose

Chemical, reagent Calbiochem 239763-M Cycloheximide

Chemical, reagent Sigma-Aldrich S2002 Sodium azide

Chemical, reagent Sigma-Aldrich 252859 Tris(hydroxymethyl)aminomethane

Chemical, reagent Roche TRIS-RO Tris base

Chemical, reagent Sigma-Aldrich S7653 Sodium chloride

Chemical, reagent Sigma-Aldrich 792780 Ethanol

Chemical, reagent Sigma-Aldrich S2889 Sodium acetate

Chemical, reagent Sigma-Aldrich D5758 DEPC

Chemical, reagent Ambion AM9720 Acid-phenol:chloroform, pH 4.5 (with IAA, 125:24:1)

Chemical, reagent USP 1374248 Magnesium chloride hexahydrate

Chemical, reagent Sigma-Aldrich D0632 DTT

Chemical, reagent Sigma-Aldrich T8787 Triton X-100

Chemical, reagent ThermoFisher AM2238 Turbo DNase I

Chemical, reagent Scientific Industries SI-BG05 Glass beads

Consumable Beckman Coulter 349622 13 × 51 mm polycarbonate centrifuge tubes

Chemical, reagent Sigma-Aldrich S0389 Sucrose

Chemical, reagent Sigma-Aldrich P4417 PBS

Chemical, reagent ThermoFisher Scientific 84850 C18 Spin Tips

Chemical, reagent Millipore Z720003 C18 Ziptips

Chemical, reagent Sigma-Aldrich 436143 SDS

Chemical, reagent Sigma-Aldrich 207861 Ammonium carbonate

Chemical, reagent Sigma-Aldrich 650501 Acetone

Chemical, reagent Sigma-Aldrich D6750 Sodium deoxycholate

Chemical, reagent ThermoFisher Scientific 77720 TCEP, Bond-Breaker TCEP Solution

Chemical, reagent Sigma-Aldrich I6125 Iodoacetamide

Chemical, reagent Pierce 90058 Trypsin protease, MS-grade

Chemical, reagent Sigma-Aldrich F0507 Formic acid

Chemical, reagent Sigma-Aldrich C7715 Amicon Ultra-15 Centrifugal Filter Units

Chemical, reagent Sigma-Aldrich 499609 Calcium chloride

Chemical, reagent Sigma-Aldrich T63002 TFE

Chemical, reagent Sigma-Aldrich H3375 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, 
N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic 
acid) (HEPES)

TABLE 1:  Reagents and tools.� (Continues)

http://www.euroscarf.de/index.php?name= News
http://www.euroscarf.de/index.php?name= News
http://www.euroscarf.de/index.php?name= News
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http://www.euroscarf.de/index.php?name= News
http://www.euroscarf.de/index.php?name= News
http://www.euroscarf.de/index.php?name= News
http://www.euroscarf.de/index.php?name= News
http://www.euroscarf.de/index.php?name= News
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Designation Source Identifier/Catalog# Additional information

Chemical, reagent Sigma-Aldrich 78830 Phenylmethanesulfonyl fluoride

Chemical, reagent Sigma-Aldrich 431788 EDTA

Chemical, reagent ThermoFisher D1306 4′,6-Diamidino-2-Phenylindole, Dihydrochloride

Chemical, reagent Epicentre MRZY1324 Ribo-Zero Magnetic Gold Kit (Yeast), for rRNA sub-
traction

Chemical, reagent Epicentre SSV21124 SciptSeq v2 RNA-Seq Library Preparation Kit

Antibody Sigma-Aldrich P1291 PAP soluble complex

Antibody abcam ab38007 Anti-Pgk1p antibody, rabbit polyclonal

Chemical, reagent ThermoFisher XP04125 Novex WedgeWell 4-12% Tris-Glycine gels

Software, algorithm https://www.metaboanalyst.ca/ RRID:SCR_015539 MetaboAnalyst, web server for statistical, functional 
and integrative analysis of metabolomics data

Software, algorithm Beckman Coulter 383550 AccuComp Z2, software to monitor number and size 
of cells with Z2 cell counter

Software, algorithm https://www.nikoninstruments 
.com/Products/Software

RRID:SCR_014329 NIS-Elements, microscope imaging software suite 
used with Nikon products

Software, algorithm https://imagej.net/ RRID:SCR_003070 ImageJ, image processing software

Software, algorithm http://www.rstudio.com/ RRID:SCR_000432 RStudio, software for the R statistical computing 
environment

Software, algorithm http://www.yeastgenome 
.org/

RRID:SCR_004694 SGD, Saccharomyces Genome Database

Software, algorithm https://www.r-project.org v3.5.2 
RRID:SCR_001905

R, Statistical Computing Environment

Software, algorithm http://www.geneontology 
.org/

RRID:SCR_002811 Gene ontology, enrichment analysis

Software, algorithm https://biognosys.com/shop/
spectronaut

Spectronaut, Biognosys software for the targeted 
analysis of DIA measurements from various MS 
platforms

TABLE 1:  Reagents and tools. Continued.

The insoluble pellets from the same extracts described above 
were processed based on a method reported previously (Lin 
et al., 2013). The pellets were resuspended in 50 μl of 2%wt/vol 
SDS, 50 mM ammonium carbonate and heated at 95°C for 
10 min. Following clarification, each supernatant was transferred 
to a fresh tube, mixed with 6 vol of cold acetone (–20°C), and 
incubated at 4°C for 4 h to form a precipitate. Precipitate was 
recovered by centrifugation at 13,000 × g for 15 min, the super-
natant was carefully removed by aspiration, and the pellets were 
washed twice with 0.4 ml of cold acetone. After each wash, the 
samples were centrifuged at 14,000 × g for 1 min and the super-
natant was carefully aspirated. Pellets were solubilized in 500 μl 
of 1% wt/vol sodium deoxycholate, 50 mM ammonium carbon-
ate with two rounds of sonication (10 min each) in a water bath 
sonicator with 5 min on ice in between. Each sample (50 µl) 
was reduced and alkylated with TCEP and iodoacetamide as 
described above. Unreacted iodoacetamide was quenched with 
12 mM dithiothreitol (DTT). The samples were brought to 80 µl 
with digestion buffer and digested with trypsin (added at 1:50 
ratio) at 37°C for 5 h. Digestion was stopped with 1% formic acid 
and samples were centrifuged at 14,000 × g for 10 min to pellet 
the precipitated sodium deoxycholate. Peptides were desalted 
with C18 Spin Tips and resuspended for LC-MS/MS as described 
above.

LC-MS/MS
Mass spectra were acquired on a Thermo Orbitrap Fusion. 
Supernatant samples (5 µl) or pellet samples (2 µl) of peptides 
were separated using reverse phase chromatography on a 
Dionex Ultimate 3000 RSLCnano UHPLC system (Thermo Fisher 
Scientific) with a C18 trap to Acclaim C18 PepMap RSLC column 
(Dionex; Thermo Fisher Scientific) configuration. Peptides were 
eluted using a 3–45% acetonitrile gradient over 70 min and 
directly injected into the mass spectrometer using nano-electro-
spray. Data-dependent tandem MS was performed using a top 
speed high-energy collision-induced dissociation (HCD) method 
with full precursor ion scans (MS1) collected at 120,000 m/z 
resolution and a cycle time of 3 s. Monoisotopic precursor selec-
tion and charge-state screening were enabled, with ions of 
charge >  +1 selected with dynamic exclusion of 30 s for ions 
selected once within a 30-s window. Selected precursor ions 
underwent HCD at 31% energy stepped ±4%. All MS2 scans 
were centroid and done in rapid mode. Raw files were processed 
using Proteome Discoverer 2.2 and the label-free quantification 
workflow.

RNA samples and libraries
We used the same approach we had described previously (Blank 
et al., 2017) to collect cells from elutriated cultures of wild type 

https://www.nikoninstruments.com/Products/Software
https://www.nikoninstruments.com/Products/Software
http://www.yeastgenome.org/
http://www.yeastgenome.org/
http://www.geneontology.org/
http://www.geneontology.org/
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(BY4743 strain background). For each of the 24 samples, from 
∼3E+07 cells total RNA was prepared with the hot phenol 
method. Briefly, the frozen pellets were resuspended in 0.4 ml 
TES buffer (10 mM Tris, pH = 7.5, 10 mM EDTA, 0.5% SDS), in 
Diethyl pyrocarbonate (DEPC)-treated water, and ∼0.05-ml glass 
beads were added. Then, 0.4 ml of acid phenol:chloroform was 
added to each pellet, and the samples were incubated at 65°C 
for 30 min and vortexed briefly every 5 min during that time. The 
samples were centrifuged at 14,000 × g for 5 min, and 0.3 ml of 
the top, aqueous layer were placed in a 2-ml screw-cap tube 
containing 1 ml cold ethanol with 40 μl of a 3M sodium acetate 
solution. The samples were incubated at 4°C overnight and then 
centrifuged at 14,000 × g for 20 min. The pellets were washed 
with 80% ethanol and centrifuged at 14,000 × g for 5 min. The 
pellets were air-dried and resuspended in 25 μl of DEPC-treated 
water. For the RNAseq libraries, we also used the same approach 
we had described (Blank et al., 2017), except that we did not 
select for polyA-tailed RNAs. Instead, from total RNA, we 
depleted rRNA using the Ribo-Zero Magnetic Gold Kit (Yeast) 
according to the manufacturer’s instructions. All libraries were 
sequenced on an Illumina HiSeq4000, with multiplexing, at the 
Texas A&M AgriLife Genomics and Bioinformatics Facility. Raw 
sequencing data (fastq files) have been deposited (GEO: 
GSE135476).

The reads were aligned to the S. cerevisiae reference genome 
(version R64-1-1) using the Rsubread R language package (Liao 
et al., 2019). First, an index was built using the command: 
buildindex(basename = “R64”, reference = “Saccharomyces_cerevi-
siae.R64-1-1.dna.toplevel.fa”, gappedIndex = TRUE). Then, for 
each of the 24 libraries, the paired-end reads were aligned with the 
command: align(index = ‘R64’, readfile1 = ‘….fastq.gz’, readfile2 = 
‘….fastq.gz’, type = “rna”). For each library, we obtained > 10 mil-
lion uniquely mapped reads, and the output BAM files were then 
used in the featureCounts function of the Rsubread package, with 
the following command: featureCounts(files = “…subread.BAM”, 
ispairedEnd = TRUE, requireBothEndsMapped = TRUE, annotext = 
“Saccharomyces_cerevisiae.R64-1-1.95.gtf”, countChimericFrag-
ments = FALSE, isGTFAnnotationFile = TRUE). All the read counts 
are in Supplemental File S1/Sheet: “rna_reads.”

For differential RNA levels between any two points in the cell 
cycle using the DESeq2 R language package (Love et al., 2014), 
the raw read data (Supplemental File S2/Sheet: rna_deseq2_i) were 
used as input. For this statistical analysis, the 24 cell size pools were 
grouped in eight groups for each of the ∼ 5-fL increments in the cell 
size series (see Figure 1A). Additional analyses with ANOVA-based 
methods were performed as for the other biomolecules, and they 
are described below.

Metabolite samples and analysis
The untargeted, primary metabolite, biogenic amine, and complex 
lipid analyses were done at the NIH-funded West Coast Metabolo-
mics Center at the University of California at Davis, according to 
their MS protocols. GC-TOF MS was used for Primary metabolites. 
For biogenic amines, separation and detections was achieved by 
HILIC, followed by Quadrupole time-of-flight (QTOF) MS/MS. Last, 
for complex lipids, CSH C18 separation was followed with QTOF 
MS/MS for lipids. Extract preparation was also done at the same 
facility from 1E+07 cells in each sample from the same ones used for 
proteomic and RNA profiling (Figure 1). The cells were provided to 
the Metabolomics facility as frozen (at –80°C) pellets. Detected spe-
cies that could not be assigned to any compound were excluded 
from the analysis.

ANOVA-based computational approaches to identify 
differentially expressed biomolecules
For RNA samples, we used the TPM normalized values. For all other 
biomolecules, the input values we used were scale-normalized for 
input values per sample. All the input and output datasets are shown 
in Supplemental Table S1. To identify significant differences in the 
levels of biomolecules between any two points in the cell cycle we 
used the robust bootstrap ANOVA, via the t1waybt function, 
and the posthoc tests via the mcppb20 function, of the WRS2 R 
language package (Wilcox, 2011). The function is shown in Supple-
mental File S6, using as an example the Supplemental File S2/sol_
pa_anova spreadsheet. For this statistical analysis, the 24 cell size 
pools were grouped in eight groups for each of the ∼5-fL increments 
in the cell size series (see Figure 1A).

SWATH-MS
The samples used to measure ribosomal protein abundances 
were from elutriated, diploid wild-type BY4743 cells (see Table 1). 
Once the cells reached the desired cell size, they were quenched 
with 100 µg/ml cycloheximide and 0.1% sodium azide. Cells were 
harvested from three independently elutriated cultures (5E+07 
cells in each sample). The cells were resuspended in a buffer con-
taining 20 mM Tris·Cl (pH 7.4), 150 mM NaCl, 5 mM MgCl2, 1 mM 
DTT, 100 μg/ml cycloheximide, 1% vol/vol Triton X-100, and 25 U/
ml Turbo DNase I to a volume of 0.35 ml. Then, 0.2 ml of 0.5-mm 
glass beads were added to each sample and vortexed at 
maximum speed for 15 s eight times, placing on ice for 15 s in 
between. The lysates were clarified by centrifuging at 5000 rpm 
for 5 min at 4°C and again for 5 min at 13,000 rpm at 4°C. The 
supernatant was transferred to a 13 × 51 mm polycarbonate 
ultracentrifuge tube and underlaid with 0.90 ml of 1 M sucrose, 
and the ribosomes were pelleted by centrifugation in a TLA100.3 
rotor (Beckman) at 100,000 rpm at 4°C for 1 h. The protein pellets 
from three biological replicates for various time points during 
the cell cycle (40, 45, 50, 55, 60, 65, 70, and 75 fL) were then 
resuspended in phosphate-buffered saline (PBS), subjected to a 
Filter-Aided Sample Preparation protocol tryptic digestion 
(Wisniewski et al., 2009), desalted using C-18 Ziptips, and 
analyzed by data-independent acquisition (DIA)/SWATH-MS, as 
described previously (Schilling et al., 2017).

Briefly, samples were analyzed by reverse-phase HPLC-ESI-
MS/MS using an Eksigent Ultra Plus nano-LC 2D HPLC system 
(Dublin, CA) with a cHiPLC system (Eksigent), which was directly 
connected to a quadrupole time-of-flight (QqTOF) TripleTOF 
6600 mass spectrometer (SCIEX, Concord, Canada) (Christensen 
et al., 2018). After injection, peptide mixtures were loaded onto 
a C18 precolumn chip (200 µm × 0.4 mm ChromXP C18-CL chip, 
3 µm, 120 Å, SCIEX) and washed at 2 µl/min for 10 min with the 
loading solvent (H2O/0.1% formic acid) for desalting. Subse-
quently, peptides were transferred to the 75 µm × 15 cm ChromXP 
C18-CL chip, 3 µm, 120 Å, (SCIEX) and eluted at a flow rate of 
300 nl/min with a 3 h gradient using aqueous and acetonitrile 
solvent buffers.

For quantification, all peptide samples were analyzed by data-
independent acquisition (Gillet et al., 2012), using 64 variable-width 
isolation windows (Collins et al., 2017; Schilling et al., 2017). The 
variable window width is adjusted according to the complexity of 
the typical MS1 ion current observed within a certain m/z range 
using a DIA “variable window method” algorithm (more narrow 
windows were chosen in “busy” m/z ranges, wide windows in m/z 
ranges with few eluting precursor ions). DIA acquisitions produce 
complex MS/MS spectra, which are a composite of all the analytes 
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within each selected Q1 m/z window. The DIA cycle time of 3.2 s 
included a 250-ms precursor ion scan followed by 45 ms accumula-
tion time for each of the 64 variable SWATH segments.

The DIA/SWATH data was processed with the Spectronaut soft-
ware platform (Biognosys) for relative quantification comparing 
peptide peak areas among different time points during the cell 
cycle. For the DIA/SWATH MS2 data sets, quantification was based 
on XICs of 6-10 MS/MS fragment ions, typically y- and b-ions, 
matching to specific peptides present in the spectral libraries. 
Significantly changed proteins were accepted at a 5% FDR (q 
value < 0.05).

Immunoblot analysis
For protein surveillance, protein extracts were made as described 
previously (Amberg et al., 2006) and run on 4–12% Tris-Glycine 
SDS–PAGE gels. To detect TAP-tagged proteins with the Peroxidase 
Anti-Peroxidase (PAP) reagent, we used immunoblots from extracts 
of the indicated strains as we described previously (Blank et al., 
2017). Loading was evaluated with an anti-Pgk1p antibody.

Comparison of the relative protein abundances in Becher 
et al. (2018) and Olsen et al. (2010)
For the datasets generated in human HeLa cells 0.5 h after 
nocodazole arrest, the data were from Table S3 in Becher et al. 
(2018) and Supplemental Table_S1 in Olsen et al. (2010). In the 
former study, the authors reported the Log2-transformed ratios of 
the measured abundance over the median abundance of asynchro-
nous cultures. For the Olsen et al. (2010) proteins, the data were 
the isotopic ratios reported. In both cases, these values represented 
the corresponding protein abundances in that sample among 
all the proteins identified in each sample in each study. To compare 
the rank order of the 3243 proteins identified in common in the 
two studies, the Spearman’s rank correlation rho (ρ) was estimated 
(ρ = 0.245).

ACKNOWLEDGMENTS
We are grateful to the reviewers for many excellent suggestions. We 
also thank Mikhail Savitski (EMBL-Heidelberg) for pointing us to the 
human proteomic cell cycle datasets for the proper comparisons. 
This work was supported by NIH grants R01GM123139 to M.P. 
and grants from the NIH (R01 HD085901, R01 DK110520, R35 
GM122480) and Welch Foundation (F-1515) to E.M.M., with addi-
tional MS research support from the Army Research Laboratory 
(Cooperative Agreement # W911NF-17-2-0091). We also acknowl-
edge the support from the NCRR shared instrumentation grant 
1S10 OD016281 (Buck Institute) and from NIH grant 1U24DK097154 
(UC Davis “West Coast Metabolomics Center”).

REFERENCES
Ahn E, Kumar P, Mukha D, Tzur A, Shlomi T (2017). Temporal fluxomics 

reveals oscillations in TCA cycle flux throughout the mammalian cell 
cycle. Mol Syst Biol 13, 953.

Al-Feel W, DeMar JC, Wakil SJ (2003). A Saccharomyces cerevisiae mutant 
strain defective in acetyl-CoA carboxylase arrests at the G2/M phase of 
the cell cycle. Proc Natl Acad Sci USA 100, 3095–3100.

Amberg DC, Burke DJ, Strathern JN (2006). Yeast protein extracts. CSH 
Protoc 2006, pdb. prot4152.

Anastasia SD, Nguyen DL, Thai V, Meloy M, MacDonough T, Kellogg DR 
(2012). A link between mitotic entry and membrane growth suggests a 
novel model for cell size control. J Cell Biol 197, 89–104.

Aramayo R, Polymenis M (2017). Ribosome profiling the cell cycle: lessons 
and challenges. Curr Genet 63, 959–964.

Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, 
Coughlin ML, Garcia-Manyes S, Eggert US (2014). Dividing cells 
regulate their lipid composition and localization. Cell 156, 428–439.

Banfalvi G (2008). Cell cycle synchronization of animal cells and nuclei by 
centrifugal elutriation. Nat Protoc 3, 663–673.

Becher I, Andres-Pons A, Romanov N, Stein F, Schramm M, Baudin F, 
Helm D, Kurzawa N, Mateus A, Mackmull MT, et al. (2018). Pervasive 
protein thermal stability variation during the cell cycle. Cell 173, 
1495–1507.e1418.

Blank HM, Perez R, He C, Maitra N, Metz R, Hill J, Lin Y, Johnson CD, 
Bankaitis VA, Kennedy BK, et al. (2017). Translational control of lipogenic 
enzymes in the cell cycle of synchronous, growing yeast cells. EMBO J 
36, 487–502.

Carpy A, Krug K, Graf S, Koch A, Popic S, Hauf S, Macek B (2014). Absolute 
proteome and phosphoproteome dynamics during the cell cycle of 
Schizosaccharomyces pombe (Fission Yeast). Mol Cell Proteomics 13, 
1925–1936.

Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, 
Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW 
(1998). A genome-wide transcriptional analysis of the mitotic cell cycle. 
Mol Cell 2, 65–73.

Christensen DG, Meyer JG, Baumgartner JT, D’Souza AK, Nelson WC, 
Payne SH, Kuhn ML, Schilling B, Wolfe AJ (2018). Identification of novel 
protein lysine acetyltransferases in Escherichia coli. mBio 9.

Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan 
DW, Gibson BW, Gingras AC, Held JM, et al. (2017). Multi-laboratory 
assessment of reproducibility, qualitative and quantitative performance 
of SWATH-mass spectrometry. Nat Commun 8, 291.

Creanor J, Mitchison J (1979). Reduction of perturbations in leucine incor-
poration in synchronous cultures of Schizosaccharomyces pombe made 
by elutriation. J Gen Microbiol 112, 385–388.

Csardi G, Franks A, Choi DS, Airoldi EM, Drummond DA (2015). Accounting 
for experimental noise reveals that mRNA levels, amplified by post-
transcriptional processes, largely determine steady-state protein levels 
in yeast. PLoS Genet 11, e1005206.

Dahl C, Biemann HP, Dahl J (1987). A protein kinase antigenically 
related to pp60v-src possibly involved in yeast cell cycle control: 
positive in vivo regulation by sterol. Proc Natl Acad Sci USA 84, 
4012–4016.

Dai L, Zhao T, Bisteau X, Sun W, Prabhu N, Lim YT, Sobota RM, Kaldis P, 
Nordlund P (2018). Modulation of protein-interaction states through the 
cell cycle. Cell 173, 1481–1494.e1413.

de Lichtenberg U, Wernersson R, Jensen TS, Nielsen HB, Fausboll 
A, Schmidt P, Hansen FB, Knudsen S, Brunak S (2005). New 
weakly expressed cell cycle-regulated genes in yeast. Yeast 22, 
1191–1201.

Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, 
Gygi SP (2008). A quantitative atlas of mitotic phosphorylation. Proc Natl 
Acad Sci USA 105, 10762–10767.

Elliott SG, Warner JR, McLaughlin CS (1979). Synthesis of ribosomal 
proteins during the cell cycle of the yeast Saccharomyces cerevisiae. 
J Bacteriol 137, 1048–1050.

Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983). Cyclin: a 
protein specified by maternal mRNA in sea urchin eggs that is destroyed 
at each cleavage division. Cell 33, 389–396.

Ewald JC, Kuehne A, Zamboni N, Skotheim JM (2016). The yeast cyclin-
dependent kinase routes carbon fluxes to fuel cell cycle progression. 
Mol Cell 62, 532–545.

Flory MR, Lee H, Bonneau R, Mallick P, Serikawa K, Morris DR, Aebersold R 
(2006). Quantitative proteomic analysis of the budding yeast cell cycle 
using acid-cleavable isotope-coded affinity tag reagents. Proteomics 6, 
6146–6157.

Frenkel-Morgenstern M, Danon T, Christian T, Igarashi T, Cohen L, 
Hou YM, Jensen LJ (2012). Genes adopt non-optimal codon usage 
to generate cell cycle-dependent oscillations in protein levels. Mol 
Syst Biol 8, 572.

Furse S, Shearman GC (2018). Do lipids shape the eukaryotic cell cycle? 
Biochim Biophys Acta Mol Cell Biol Lipids 1863, 9–19.

Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M (1989). The yeast 
gene ERG6 is required for normal membrane function but is not 
essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 
9, 3447–3456.

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, 
Botstein D, Brown PO (2000). Genomic expression programs in the 
response of yeast cells to environmental changes. Mol Biol Cell 11, 
4241–4257.

Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-
Danila A, Anderson K, Andre B, et al. (2002). Functional profiling of the 
Saccharomyces cerevisiae genome. Nature 418, 387–391.



Volume 31  May 1, 2020	 Multi-omic analysis of the cell cycle  |  1083 

Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, 
Aebersold R (2012). Targeted data extraction of the MS/MS spec-
tra generated by data-independent acquisition: a new concept for 
consistent and accurate proteome analysis. Mol Cell Proteomics 11, 
O111.016717.

Granovskaia MV, Jensen LJ, Ritchie ME, Toedling J, Ning Y, Bork P, Huber 
W, Steinmetz LM (2010). High-resolution transcription atlas of the mitotic 
cell cycle in budding yeast. Genome Biol 11, R24.

Guo J, Bryan BA, Polymenis M (2004). Nutrient-specific effects in the 
coordination of cell growth with cell division in continuous cultures of 
Saccharomyces cerevisiae. Arch Microbiol 182, 326–330.

Hardy CD, Cozzarelli NR (2005). A genetic selection for supercoiling 
mutants of Escherichia coli reveals proteins implicated in chromosome 
structure. Mol Microbiol 57, 1636–1652.

Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993). Acetyl-CoA 
carboxylase from yeast is an essential enzyme and is regulated by 
factors that control phospholipid metabolism. J Biol Chem 268, 
10946–10952.

Ho B, Baryshnikova A, Brown GW (2018). Unification of protein abundance 
datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell 
Systems 6, 192–205.e193.

Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, Robles JP, 
Taylor D, Hoover EM, Hailu B, McEnery KA, et al. (2012). A systematic 
analysis of cell cycle regulators in yeast reveals that most factors act 
independently of cell size to control initiation of division. PLoS Genet 8, 
e1002590.

Hopper AK (2013). Transfer RNA post-transcriptional processing, turnover, 
and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genet-
ics 194, 43–67.

Huang J, Mousley CJ, Dacquay L, Maitra N, Drin G, He C, Ridgway ND, 
Tripathi A, Kennedy M, Kennedy BK, et al. (2018). A Lipid transfer 
protein signaling axis exerts dual control of cell-cycle and membrane 
trafficking systems. Dev Cell 44, 378–391.e375.

Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002). Systematic 
identification of pathways that couple cell growth and division in yeast. 
Science 297, 395–400.

Juppner J, Mubeen U, Leisse A, Caldana C, Brust H, Steup M, 
Herrmann M, Steinhauser D, Giavalisco P (2017). Dynamics of lipids 
and metabolites during the cell cycle of Chlamydomonas reinhardtii. 
Plant J 92, 331–343.

Kaiser C, Michaelis S, Mitchell A. (1994). Methods in Yeast Genetics: A Cold 
Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold 
Spring Harbor Laboratory Press.

Kettle E, Page SL, Morgan GP, Malladi CS, Wong CL, Boadle RA, Marsh 
BJ, Robinson PJ, Chircop M (2015). A cholesterol-dependent endo-
cytic mechanism generates midbody tubules during cytokinesis. Traffic 
(Copenhagen, Denmark) 16, 1174–1192.

Kim Y, Kim EY, Seo YM, Yoon TK, Lee WS, Lee KA (2012). Function of the 
pentose phosphate pathway and its key enzyme, transketolase, in the 
regulation of the meiotic cell cycle in oocytes. Clin Exp Reprod Med 39, 
58–67.

Kurat CF, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, 
Kohlwein SD (2009). Cdk1/Cdc28-dependent activation of the major 
triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. 
Mol Cell 33, 53–63.

Lahtvee P.-J, Sánchez BJ, Smialowska A, Kasvandik S, Elsemman IE, 
Gatto F, Nielsen J (2017). Absolute quantification of protein and 
mRNA abundances demonstrate variability in gene-specific translation 
efficiency in yeast. Cell Systems 4, 495–504. e495.

Lane KR, Yu Y, Lackey PE, Chen X, Marzluff WF, Cook JG (2013). Cell cycle-
regulated protein abundance changes in synchronously proliferating 
HeLa cells include regulation of pre-mRNA splicing proteins. PLoS One 
8, e58456.

Larsson O, Sonenberg N, Nadon R (2011). anota: Analysis of differential 
translation in genome-wide studies. Bioinformatics 27, 1440–1441.

Liao Y, Smyth GK, Shi W (2019). The R package Rsubread is easier, faster, 
cheaper and better for alignment and quantification of RNA sequencing 
reads. Nucleic Acids Res 47, e47.

Lin Y, Liu H, Liu Z, Liu Y, He Q, Chen P, Wang X, Liang S (2013). Develop-
ment and evaluation of an entirely solution-based combinative sample 
preparation method for membrane proteomics. Anal Biochem 432, 
41–48.

Lindahl PE (1948). Principle of a counter-streaming centrifuge for the sepa-
ration of particles of different sizes. Nature 161, 648.

Lodish HF (1974). Model for the regulation of mRNA translation applied to 
haemoglobin synthesis. Nature 251, 385–388.

Love MI, Huber W, Anders S (2014). Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biol 15, 550.

Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007). Absolute protein expres-
sion profiling estimates the relative contributions of transcriptional and 
translational regulation. Nat Biotechnol 25, 117–124.

Ly T, Ahmad Y, Shlien A, Soroka D, Mills A, Emanuele MJ, Stratton 
MR, Lamond AI (2014). A proteomic chronology of gene expression 
through the cell cycle in human myeloid leukemia cells. Elife 3, 
e01630.

Ly T, Endo A, Lamond AI (2015). Proteomic analysis of the response to cell 
cycle arrests in human myeloid leukemia cells. eLife 4, e04534.

Maitra N, Anandhakumar J, Blank HM, Kaplan CD, Polymenis M (2019). 
Perturbations of transcription and gene expression-associated processes 
alter distribution of cell size values in Saccharomyces cerevisiae. G3 9, 
239–250.

Mann M (2006). Functional and quantitative proteomics using SILAC. Nat 
Rev Mol Cell Biol 7, 952–958.

McCusker D, Kellogg DR (2012). Plasma membrane growth during the cell 
cycle: unsolved mysteries and recent progress. Curr Opin Cell Biol 24, 
845–851.

Mitchison JM (1971). Synchronous cultures. In: The Biology of the Cell 
Cycle, New York: Cambridge University Press, 25–57.

Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, 
Leatherwood J (2005). The cell cycle-regulated genes of Schizosaccha-
romyces pombe. PLoS Biol 3, e225.

Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, 
Gnad F, Cox J, Jensen TS, Nigg EA, et al. (2010). Quantitative phos-
phoproteomics reveals widespread full phosphorylation site occupancy 
during mitosis. Sci Signal 3, ra3.

Olshen AB, Hsieh AC, Stumpf CR, Olshen RA, Ruggero D, Taylor BS (2013). 
Assessing gene-level translational control from ribosome profiling. 
Bioinformatics 29, 2995–3002.

Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs 
J, Finley D, Gygi SP (2003). A proteomics approach to understanding 
protein ubiquitination. Nature Biotechnol 21, 921–926.

Pramila T, Wu W, Miles S, Noble WS, Breeden LL (2006). The Forkhead 
transcription factor Hcm1 regulates chromosome segregation genes 
and fills the S-phase gap in the transcriptional circuitry of the cell cycle. 
Genes Dev 20, 2266–2278.

Pringle JR, Hartwell LH (1981). The Saccharomyces cerevisiae cell cycle. 
In: The Molecular and Cellular Biology of the Yeast Saccharomyces, 
Vol. 1, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 
97–142.

Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma 
A, Nurse P, Bahler J (2004). Periodic gene expression program of the 
fission yeast cell cycle. Nat Genet 36, 809–817.

Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJ, Bakal C (2015). Cell 
cycle progression is an essential regulatory component of phospholipid 
metabolism and membrane homeostasis. Open Biol 5, 150093.

Santos A, Wernersson R, Jensen LJ (2015). Cyclebase 3.0: a multi-organism 
database on cell-cycle regulation and phenotypes. Nucleic Acids Res 
43, D1140–D1144.

Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M (2014). De novo 
fatty acid synthesis at the mitotic exit is required to complete cellular 
division. Cell Cycle 13, 859–868.

Schilling B, Gibson BW, Hunter CL (2017). Generation of high-quality 
SWATH((R)) acquisition data for label-free quantitative proteomics 
studies using TripleTOF((R)) mass spectrometers. Methods Mol Biol 
1550, 223–233.

Schillinger J, Severin K, Kaschani F, Kaiser M, Ehrmann M (2018). HTRA1-
dependent cell cycle proteomics. J Proteome Res 17, 2679–2694.

Schneiter R, Hitomi M, Ivessa AS, Fasch EV, Kohlwein SD, Tartakoff AM 
(1996). A yeast acetyl coenzyme A carboxylase mutant links very-long-
chain fatty acid synthesis to the structure and function of the nuclear 
membrane-pore complex. Mol Cell Biol 16, 7161–7172.

Shulman RW, Hartwell LH, Warner JR (1973). Synthesis of ribosomal proteins 
during the yeast cell cycle. J Mol Biol 73, 513–525.

Singh P, Saxena R, Srinivas G, Pande G, Chattopadhyay A (2013). Choles-
terol biosynthesis and homeostasis in regulation of the cell cycle. PLoS 
One 8, e58833.

Soma S, Yang K, Morales MI, Polymenis M (2014). Multiple metabolic 
requirements for size homeostasis and initiation of division in Saccharo-
myces cerevisiae. Microb Cell 1, 256–266.

Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown 
PO, Botstein D, Futcher B (1998). Comprehensive identification of 



1084  |  H. M. Blank et al.	 Molecular Biology of the Cell

cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by 
microarray hybridization. Mol Biol Cell 9, 3273–3297.

Suarez Y, Fernandez C, Ledo B, Ferruelo AJ, Martin M, Vega MA, Gomez-
Coronado D, Lasuncion MA (2002). Differential effects of ergosterol 
and cholesterol on Cdk1 activation and SRE-driven transcription. Eur J 
Biochem 269, 1761–1771.

Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P (2016). CDK 
substrate phosphorylation and ordering the cell cycle. Cell 167, 
1750–1761.e1716.

Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villen J 
(2013). Global analysis of phosphorylation and ubiquitylation cross-talk 
in protein degradation. Nat Methods 10, 676–682.

Torrent M, Chalancon G, de Groot NS, Wuster A, Madan Babu M (2018). 
Cells alter their tRNA abundance to selectively regulate protein 
synthesis during stress conditions. Sci Signal 11.

Truong SK, McCormick RF, Polymenis M (2013). Genetic determinants 
of cell size at birth and their impact on cell cycle progression in 
Saccharomyces cerevisiae. G3 3, 1525–1530.

Tumu S, Patil A, Towns W, Dyavaiah M, Begley TJ (2012). The gene-specific 
codon counting database: a genome-based catalog of one-, two-, 
three-, four- and five-codon combinations present in Saccharomyces 
cerevisiae genes. Database (Oxford) 2012, bas002.

Vogel C, Marcotte EM (2012). Insights into the regulation of protein 
abundance from proteomic and transcriptomic analyses. Nat Rev 
Genet 13, 227–232.

Warner JR (1999). The economics of ribosome biosynthesis in yeast. Trends 
Biochem Sci 24, 437–440.

Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP 
(2016). Improved ribosome-footprint and mrna measurements provide 
insights into dynamics and regulation of yeast translation. Cell Rep 14, 
1787–1799.

Wilcox RR (2011). Introduction to robust estimation and hypothesis testing, 
New York: Academic Press.

Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009). Universal sample 
preparation method for proteome analysis. Nat Methods 6, 359–362.

Yang PL, Hsu TH, Wang CW, Chen RH (2016). Lipid droplets maintain lipid 
homeostasis during anaphase for efficient cell separation in budding 
yeast. Mol Biol Cell 27, 2368–2380.

Zhang J, Schneider C, Ottmers L, Rodriguez R, Day A, Markwardt J, 
Schneider BL (2002). Genomic scale mutant hunt identifies cell size 
homeostasis genes in S. cerevisiae. Curr Biol 12, 1992–2001.

Zhao G, Chen Y, Carey L, Futcher B (2016). Cyclin-dependent kinase 
co-ordinates carbohydrate metabolism and cell cycle in S. cerevisiae. 
Mol Cell 62, 546–557.




