Table 3.
Forecasting Errors* across Regions and Patient Groups Using Linear Relevance Vector Machine Regression with Measurement Features Augmented with Convolutional Neural Network Features
| Diagnosis | Global Mean | Temporal | Superior | Nasal | Inferior |
|---|---|---|---|---|---|
| Healthy | |||||
| MAE | 1.10 (0.60) | 0.97 (0.91) | 3.28 (2.13) | 1.26 (1.44) | 1.72 (1.01) |
| MRE | 1.22 (0.69) | 1.76 (1.68) | 2.91 (2.05) | 1.90 (2.26) | 1.42 (0.85) |
| Suspects | |||||
| MAE | 1.79 (173) | 2.18 (2.60) | 2.77 (2.35) | 2.39 (2.11) | 2.88 (2.36) |
| MRE | 2.19 (2.11) | 3.55 (3.92) | 2.83 (2.52) | 3.75 (3.49) | 2.85 (2.34) |
| Glaucoma | |||||
| MAE | 1.87 (1.85) | 3.01 (2.83) | 2.59 (2.31) | 2.83 (2.29) | 3.33 (2.54) |
| MRE | 2.73 (2.81) | 5.34 (4.26) | 3.14 (2.57) | 4.34 (3.50) | 4.42 (3.71) |
| All | |||||
| MAE | 1.81 (1.77) | 2.44 (2.68) | 2.69 (2.33) | 2.56 (2.20) | 3.06 (2.45) |
| MRE | 2.44 (2.47) | 4.36 (4.57) | 2.98 (2.59) | 4.01 (3.58) | 3.58 (3.30) |
MAE = mean absolute error; MRE = mean relative error.
Data are mean (standard deviation).
MAE in micrometers and MRE in percent.