Skip to main content
. 2020 Jul 6;8:e9470. doi: 10.7717/peerj.9470

Table 1. CNN-based architecture details.

The details of the architecture of CNN_3, CNN_4, and CNN_LSTM are described. Both CNN_3 and CNN_4 are CNN-based architecture, but they are different in the number of layers and the filter in each layer. The CNN_LSTM is a hybrid CNN with bi-directional LSTM.

Name Architectures
Layers Details
CNN_3 conv2D layer 1 70 filters of size (9,4)
dropout layer 1 p = 0.2
conv2D layer 2 100 filters of size (7,1)
maxpool layer 1 pool size (2,1)
dropout layer 2 p = 0.2
conv2D layer 3 150 filters of size (7,1)
maxpool layer 2 pool size (2,1)
dropout layer 3 p = 0.2
dense layer 1 512 neurons
dropout layer 4 p = 0.2
softmax layer 2 outputs
CNN_4 conv2D layer 1 70 filters of size (3,4)
dropout layer 1 p = 0.2
conv2D layer 2 100 filters of size (3,1)
dropout layer 2 p = 0.2
conv2D layer 3 100 filters of size (3,1)
maxpool layer 1 pool size (2,1)
dropout layer 3 p = 0.2
conv2D layer 4 200 filters of size (3,1)
maxpool layer 2 pool size (2,1)
dropout layer 4 p = 0.2
dense layer 1 512 neurons
dropout layer 5 p = 0.2
softmax layer 2 outputs
CNN_LSTM conv1D layer 1 320 filters of length 26
maxpool layer 1 pool size (13)
dropout layer 1 p = 0.2
bidirectional LSTM layer 1 320 output dimension
dropout layer 2 p = 0.5
Dense layer 1 925 neurons
softmax layer 2 outputs