Table 1. CNN-based architecture details.
The details of the architecture of CNN_3, CNN_4, and CNN_LSTM are described. Both CNN_3 and CNN_4 are CNN-based architecture, but they are different in the number of layers and the filter in each layer. The CNN_LSTM is a hybrid CNN with bi-directional LSTM.
| Name | Architectures | |
|---|---|---|
| Layers | Details | |
| CNN_3 | conv2D layer 1 | 70 filters of size (9,4) |
| dropout layer 1 | p = 0.2 | |
| conv2D layer 2 | 100 filters of size (7,1) | |
| maxpool layer 1 | pool size (2,1) | |
| dropout layer 2 | p = 0.2 | |
| conv2D layer 3 | 150 filters of size (7,1) | |
| maxpool layer 2 | pool size (2,1) | |
| dropout layer 3 | p = 0.2 | |
| dense layer 1 | 512 neurons | |
| dropout layer 4 | p = 0.2 | |
| softmax layer | 2 outputs | |
| CNN_4 | conv2D layer 1 | 70 filters of size (3,4) |
| dropout layer 1 | p = 0.2 | |
| conv2D layer 2 | 100 filters of size (3,1) | |
| dropout layer 2 | p = 0.2 | |
| conv2D layer 3 | 100 filters of size (3,1) | |
| maxpool layer 1 | pool size (2,1) | |
| dropout layer 3 | p = 0.2 | |
| conv2D layer 4 | 200 filters of size (3,1) | |
| maxpool layer 2 | pool size (2,1) | |
| dropout layer 4 | p = 0.2 | |
| dense layer 1 | 512 neurons | |
| dropout layer 5 | p = 0.2 | |
| softmax layer | 2 outputs | |
| CNN_LSTM | conv1D layer 1 | 320 filters of length 26 |
| maxpool layer 1 | pool size (13) | |
| dropout layer 1 | p = 0.2 | |
| bidirectional LSTM layer 1 | 320 output dimension | |
| dropout layer 2 | p = 0.5 | |
| Dense layer 1 | 925 neurons | |
| softmax layer | 2 outputs | |