Table 3. The performance of five predictive models.
The average AUPRC, precision, recall, AUROC, and the average training time of the five predictive models from 5-fold cross-validation are described. For the donor sites, the HSplice tool was used as a benchmark.
| Site | Model | AUPRC | Precision | Recall | AUROC | Runtime(Colab) | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| mean | SD | mean | SD | mean | SD | mean | SD | |||
| Donor | CNN_3 | 0.986 | 0.0005 | 0.936 | 0.0013 | 0.979 | 0.0009 | 0.989 | 0.0003 | 12 m |
| CNN_4 | 0.986 | 0.0002 | 0.930 | 0.0015 | 0.982 | 0.0010 | 0.989 | 0.0001 | 12 m | |
| CNN_LSTM | 0.983 | 0.0004 | 0.932 | 0.0003 | 0.975 | 0.0013 | 0.986 | 0.0002 | 25 m | |
| SVM | 0.923 | 0.0007 | 0.937 | 0.0007 | 0.968 | 0.0012 | 0.952 | 0.0006 | 2 hra | |
| RF | 0.913 | 0.0004 | 0.939 | 0.0006 | 0.942 | 0.0007 | 0.940 | 0.0002 | 11 s | |
| HSplice | 0.968 | 0.928 | 0.936 | 0.975 | N/A | |||||
| Acceptor | CNN_3 | 0.979 | 0.0003 | 0.910 | 0.0028 | 0.968 | 0.0027 | 0.982 | 0.0004 | 12 m |
| CNN_4 | 0.979 | 0.0008 | 0.905 | 0.0030 | 0.973 | 0.0012 | 0.982 | 0.0006 | 12 m | |
| CNN_LSTM | 0.975 | 0.0008 | 0.914 | 0.0020 | 0.960 | 0.0013 | 0.979 | 0.0006 | 25 m | |
| SVM | 0.893 | 0.0017 | 0.915 | 0.0018 | 0.948 | 0.0013 | 0.930 | 0.0013 | 2.30 hra | |
| RF | 0.866 | 0.0009 | 0.910 | 0.0011 | 0.893 | 0.0020 | 0.902 | 0.0010 | 11 s | |
Notes.
The SVM-based model was run on a local laptop without GPU (Intel Core i5-3230M CPU 2.60 GHz, x64-based Windows OS, 8 GB of RAM, 256 GB SSD).
Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.