Skip to main content
. 2020 Jul 6;8:e9470. doi: 10.7717/peerj.9470

Table 3. The performance of five predictive models.

The average AUPRC, precision, recall, AUROC, and the average training time of the five predictive models from 5-fold cross-validation are described. For the donor sites, the HSplice tool was used as a benchmark.

Site Model AUPRC Precision Recall AUROC Runtime(Colab)
mean SD mean SD mean SD mean SD
Donor CNN_3 0.986 0.0005 0.936 0.0013 0.979 0.0009 0.989 0.0003 12 m
CNN_4 0.986 0.0002 0.930 0.0015 0.982 0.0010 0.989 0.0001 12 m
CNN_LSTM 0.983 0.0004 0.932 0.0003 0.975 0.0013 0.986 0.0002 25 m
SVM 0.923 0.0007 0.937 0.0007 0.968 0.0012 0.952 0.0006 2 hra
RF 0.913 0.0004 0.939 0.0006 0.942 0.0007 0.940 0.0002 11 s
HSplice 0.968 0.928 0.936 0.975 N/A
Acceptor CNN_3 0.979 0.0003 0.910 0.0028 0.968 0.0027 0.982 0.0004 12 m
CNN_4 0.979 0.0008 0.905 0.0030 0.973 0.0012 0.982 0.0006 12 m
CNN_LSTM 0.975 0.0008 0.914 0.0020 0.960 0.0013 0.979 0.0006 25 m
SVM 0.893 0.0017 0.915 0.0018 0.948 0.0013 0.930 0.0013 2.30 hra
RF 0.866 0.0009 0.910 0.0011 0.893 0.0020 0.902 0.0010 11 s

Notes.

a

The SVM-based model was run on a local laptop without GPU (Intel Core i5-3230M CPU 2.60 GHz, x64-based Windows OS, 8 GB of RAM, 256 GB SSD).

Bold styling emphasizes the highest values regarding the evaluation metrics used in the study.