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With the advent of deep learning (DL), the appli-
cation of artificial intelligence (AI) and big data
in healthcare has started transforming the way we
approach medicine including clinical trials.1,2 The
randomized controlled trial (RCT) has been tradition-
ally accepted as the most robust method of assessing
the risks and benefits of any intervention.3 However,
the undertaking of an RCT is not always feasible due
to the rarity of the disease, or time and costs that
would impinge on the healthcare system.

AI is an academic discipline founded in 1956.4
Machine learning (ML) is a subfield of AI that can
learn complex relationships or patterns from data
and make accurate decisions.5 DL or deep artificial
networks are a relatively new subfield of ML that
takes advantage of powerful computational process-
ing capacity provided by Graphic Processing Units
and exponentially increasing datasets from medical
records, images, multi-omics, and other “Big Data”.6
By feeding an enormous amount of data in train-
ing, a DL algorithm allows the model to alter its
internal parameters between each neuronal layer to
increase its performance. Applications of AI, DL in
particular, have been successful in ophthalmic imaging
research,7–10 and the application of AI in RCTs may
become reality in the near future.

Common pitfalls of unsuccessful RCTs include
poor patient selection, inadequate randomization
with residual confounders, insufficient sample size,
and poor selection of end points.11 With well-curated
large datasets that incorporate clinical and multimodal
imaging, AI models can be trained to select the poten-
tial study participants without relying on costly manual
review to predict the natural history of each study
participants with advanced statistical methods, and to
assess study end points in a data-driven method. Given

these advantages, the application of AI has potentials
for more efficient execution and greater statistical
power than what would be expected from traditional
RCTs.

First, ML models can drastically improve the
patient selection process, thus lowering the burden of
individual screening and need for large sample sizes.
Recruiting the patients who meet precise selection
criteria is crucial to avoid potential confounders or
misclassifications. ML can combine multimodal data,
such as imaging, laboratory, and other complex -omics
data, to screen and select patients who match complex
inclusion criteria, which can improve the recruitment
efficiency. This is one of the areas in which the Ameri-
can Academy of Ophthalmology’s Intelligent Research
in Sight (IRIS) data will be utilized for RCT recruit-
ment (personal communication, Flora Lum, MD).

In addition to the efficient selection process, having
a sufficient sample size to enable detection of statisti-
cally significant differences between groups is critical.
Many RCTs require a large sample size because the
effect of the treatment in question is small.12 AI has the
potential in selecting “the ideal”patients for RCTs, who
are “fast progressors” of the disease based on the AI’s
predictive algorithm. Thus, the expected effect size will
be large and required sample size will be small resulting
in a much shorter duration of RCTs. Selecting the “fast
progressors” alone will limit the generalizability of the
trial results; however, it may expedite the development
of novel therapies, in particular for rare diseases.

Second, AI-generated end points have the poten-
tial to minimize measurement errors and analyze the
data without human-imposed biases. Furthermore,
algorithms may enable more sensitive quantification
of key study end points than how they are tradi-
tionally measured. For example, central macular
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thickness from optical coherence tomography (OCT)
has been an important outcome in many RCTs but
its reproducibility and correlation has been shown
to vary among different methods of measurements
(e.g. central subfield mean thickness vs. center point
thickness) and different OCT devices.13,14 More impor-
tantly, no standard method of quantifying paracentral
or extrafoveal macular edema exists, even though this
is an important end point in many noncenters involv-
ing retinal diseases, such as macular telangiectasia
or branch retinal vein occlusions. Many studies have
performed manual measurements of retinal thickness
in one or several OCT slides, which may limit overall
analyses. In contrast, an AI-generated algorithm has
been shown to quantify the total amount of intrareti-
nal cysts from entire OCT volumes in a fully automated
fashion.8

Furthermore, AI models could generate new
functional end points using structural data (e.g. OCT
angiography from OCT and microperimetry from
OCT) unlocking the potential of already archived
data.9,15 To illustrate, microperimetry (MAIA; Center-
vue) requires substantial test time and patient cooper-
ation, thus limiting its use in clinical trials. In addition,
microperimetry only tests 10° diameter area with 37
sensitivity points in the macula, which may not be
sensitive or specific enough for clinical questions. By
registering structural OCT and microperimetry test
points together, AI was shown to predict microperime-
try results from structural OCT with a mean absolute
error of 3.36 dB.9 More notably, DL models were able
to generate continuous microperimetry predictions
throughout the macula using structural OCT images.
Therefore, applications of algorithms that can predict
functional endpoints from structural end points may
result in increased speed of evaluations and quality
and/or quantity of end points.

Third, AI algorithms have the potential to enable
direct measurement of treatment effects by taking
a data-driven approach. Rather than expert-derived
imaging markers being manually extracted from the
imaging data, ML models could be applied directly
to the outcome imaging data. Akin to Monte-Carlo
permutation methods,16 the labels for the clinical
imaging from the control and treatment arms could be
randomly shuffled, and ML models would attempt to
be trained to predict whether the images came from
the treatment or the control arm. If, in the unshuf-
fled, original state, an ML model can be trained to
accurately predict whether the images came from the
treatment or the control arm statistically above the
random shuffled states, then AI algorithms could
directly measure a treatment effect in a data-driven
fashion.

Finally, AI may allow the use of a synthetic control
arm in the future. A frequent challenge in RCT is a
sufficient enrollment of patients who meet the inclu-
sion and exclusion criteria. Randomization is an
essential aspect of a clinical trial in which a significant
portion of participants are assigned to a control group.
With sufficient data to train AI models to predict the
natural history of each participant, substitution of
the control arm by virtual controls may be possible
cutting the recruitment goal by a significant amount.
As a proof of concept, DL models have been able
to predict what Humphrey visual field (HVF) would
appear in up to 5.5 years from a single baseline HVF
while ingesting clinical metadata.17 The algorithm
will need to be validated in independent populations
but provides preliminary data that AI models could
be used to predict disease progressions in synthetic
controls. The prediction models would ingest the sum
total of clinical, genetic, and imaging data to generate
future progression of disease for each trial partici-
pant. Because of the data-driven method, unknown
confounders may still be present among groups similar
to RCTs. As an added benefit, this may increase the
participation rate of the subjects who are reluctant
about participating in trials because of the possibility
of being in the placebo arm. The first step would
be to incorporate a synthetic control arm without
replacing the traditional placebo arm, so that the
prediction of the synthetic arm could be evaluated
prospectively without affecting the results of the RCT.
In addition, a careful design and evaluation method
for the prediction arm will be necessary to ensure that
the same mistakes made of historical control arms
from retrospective data are not recapitulated.

To allow fast development of AI algorithms, large-
scale collaboration will be the first step to enable the
storage of well-curated datasets, such as previous RCT
data including multimodal imaging. Partnerships with
pharma and imaging companies will accelerate this
process. Development of standard minimum imaging
protocols or testing methods with different manufac-
turers will be critical so routine clinical data can be
used for novel research questions. Small steps, such as
creating an “AI arm” alongside the usual study and
control arms in future RCTs, to explore the potential
will help validate the approach even when the main
trial itself fails to meet the primary end point.

Many limitations still exist with this class of ML
algorithms. The quality of algorithms is heavily depen-
dent on the availability of large, well-labeled data,
which may not be free from measurement error. The
algorithms that bypass manual labels will be impor-
tant by using more objective training targets. The
“black-box” nature is another limitation. Methods
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that explore the source of an AI decision tree, such as
class activation maps18 and occlusion testing,7,19 will
be key in integrating AI into RCTs.

Novel technologies have not been easily adopted
in medicine traditionally, and AI will not replace
RCTs. However, AI has the potential to improve and
complement RCTs significantly in the future. The
synergy among clinicians, researchers, and industries
in collaborative efforts to share and collect standard-
ized data, and allow AI algorithms to play major
roles in RCTs may require paradigm shifts. However,
these efforts will expedite the development of AI in
ophthalmology, which will ultimately increase the
quality of care that we provide for our individual
patients.
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