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Purpose: The purpose of this study was to develop a 3D deep learning system from
spectral domainoptical coherence tomography (SD-OCT)macular cubes todifferentiate
between referable and nonreferable cases for glaucoma applied to real-world datasets
to understand how this would affect the performance.

Methods: There were 2805 Cirrus optical coherence tomography (OCT) macula
volumes (Macula protocol 512× 128) of 1095 eyes from 586 patients at a single site that
were used to train a fully 3D convolutional neural network (CNN). Referable glaucoma
included true glaucoma, pre-perimetric glaucoma, and high-risk suspects, based on
qualitative fundus photographs, visual fields, OCT reports, and clinical examinations,
including intraocular pressure (IOP) and treatment history as the binary (two class)
ground truth. The curated real-world dataset did not include eyes with retinal disease
or nonglaucomatous optic neuropathies. The cubes were first homogenized using layer
segmentation with the Orion Software (Voxeleron) to achieve standardization. The
algorithm was tested on two separate external validation sets from different glaucoma
studies, comprised of Cirrus macular cube scans of 505 and 336 eyes, respectively.

Results: The area under the receiver operating characteristic (AUROC) curve for the
development dataset for distinguishing referable glaucoma was 0.88 for our CNN using
homogenization, 0.82 without homogenization, and 0.81 for a CNN architecture from
theexisting literature. For theexternal validationdatasets,whichhaddifferentglaucoma
definitions, the AUCs were 0.78 and 0.95, respectively. The performance of the model
across myopia severity distribution has been assessed in the dataset from the United
States andwas found to have an AUC of 0.85, 0.92, and 0.95 in the severe, moderate, and
mild myopia, respectively.

Conclusions: A 3D deep learning algorithm trained on macular OCT volumes without
retinal disease to detect referable glaucoma performs better with retinal segmentation
preprocessing and performs reasonably well across all levels of myopia.

Translational Relevance: Interpretation of OCT macula volumes based on normative
data color distributions is highly influenced by population demographics and charac-
teristics, such as refractive error, as well as the size of the normative database. Referable
glaucoma, in this study, was chosen to include cases that should be seen by a specialist.
This study is uniquebecause it usesmultimodal patient data for theglaucomadefinition,
and includes all severities ofmyopia aswell as validates the algorithmwith international
data to understand generalizability potential.
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Introduction

Glaucoma is a chronic, optic neuropathy charac-
terized by visual field defects and progressive vision
loss.1,2 Optical coherence tomography (OCT) based
thickness measurements of retinal nerve fiber layer
(RNFL) and the ganglion cell with inner plexiform
layer (GCIPL) are commonly used scanning proto-
cols by both ophthalmologists and optometrists in the
screening, diagnosis, and monitoring of glaucoma.3
Improved segmentation algorithms built into spectral
domain OCT (SD-OCT) facilitate the assessment
of macular parameters for glaucoma evaluation, the
region of the retina with the highest concentration
of retinal ganglion cells (RGCs).4 Some studies have
shown a stronger relationship between GCIPL thick-
ness and progression of structural glaucomatous loss
compared to peripapillary RNFL thickness.5 There-
fore, measurements of the macular GCIPL may reflect
axonal loss earlier.5 However, these GCIPL parameters
are extracted from a segmented slice and compared to
a normative database. Thus, many false positives can
occur in high myopes or due to other scan artifacts
during real-world scan acquisition (compared to clini-
cal trials).6,7 TheCirrus normative database is relatively
small to be representative of the entire range of healthy
population, and, thus, the authors hypothesize that
deep learning applied to the macular cube in larger
datasets of referable and nonreferable disease may
create a better algorithm than normative data. In
addition, a more accurate ground truth diagnosis of
glaucoma using multimodal longitudinal clinical data
may help reduce human diagnosis label variation from
just interpreting the processedOCT report summary as
to which cases to refer.

Even though 3D OCT images are readily available,
clinicians often do not have time to view every slice
in either the macula or the optic nerve. For example,
only 512 samplings along a 3.4 mm circle of the 40,000
samplings (1.28%) are used in the current RNFL thick-
ness analysis.7 The Ganglion Cell Analysis (GCA)
algorithmuses the data obtained by theCirrusMacular
Cube 512 × 128 scan protocol (a total of 65,536
sampled points) within a 14.13 mm2 elliptical annulus
area with the fovea at the center in over 1024 samplings
to detect and measure macular GCIPL thickness.8 The
measurements are compared to a normative database
and color coded into four categories (white, green,
yellow, and red) for rapid clinical use.7 Due to this
relatively small sampling and the wide natural variance
of RNFL and GCIPL parameters, especially from
axial length and high myopia, results obtained by
SD-OCT may be incorrectly flagged as abnormal

but are not necessarily due to the occurrence of
real disease.9,10 In addition, early signs of pathologic
damage may go unnoticed, because the majority of the
3D dataset is not summarized in the report. Moreover,
subtle pathologic changes are difficult to detect using
predefined sectors because all the data in each sector
is summarized by a single index, which is not a sensi-
tive method to assess early disease damage.9 One
of the important benefits of 3D volumes is the 3D
spatial contextual information available, which can be
a tremendous help in disease characterization that are
ambiguous in an individual 2D B-scan11 and, thus,
algorithms may find important patterns that humans
may not see. Whereas the normative database for the
present Cirrus SD-OCT algorithm consists of 284
healthy individuals,7 deep learning algorithms applied
to the entire cube scan can learn over thousands (or
even millions of cubes if available) to overcome poor
representation of a small normative database.

One of the problems in diagnosing glaucoma is that
there is no single test with a high sensitivity and high
specificity to confirm the diagnosis; thus, a referable
definition may be more appropriate, particularly for
reducing false positives. Machine learning techniques
are used to automatically recognize complex patterns
in a given dataset (unsupervised learning), or creat-
ing a classifier predicting group membership of new
cases (supervised learning), where a group label,
such as a disease, is available for each case.12 To
ensure good performance of the machine learning
techniques in a given dataset, all possible sources of
bias should be removed orminimized.Miguel Caixinha
and Sandrina Nunes introduced conventional machine
learning (CML) techniques and reviewed applications
of CML for diagnosis and monitoring of multimodal
ocular disease.12 According to their study,12 by assess-
ing patients based on the summation of all the major
risk factors, and based on multimodal investigations,
predictive models will be beneficial in diagnosis and
treatment. In a study by Bowd et al.,13 combining OCT
and visual field measurements using machine learning
classifiers resulted in a trend of increased area under
the receiver operating characteristic (AUROC) curves
for discriminating between healthy and glaucomatous
eyes, compared to using each measurement technique
alone. Therefore, a more accurate ground truth diagno-
sis of glaucoma using multimodal longitudinal data,
including fundus photograph, visual field, including
intraocular pressure (IOP), and treatment data may
help reduce human diagnosis label variation from just
interpreting the processed OCT report summary.

Recent research has looked at various machine
learning approaches as applied to images, grouped
into two categories: classical machine learning and
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deep learning methods. Classical machine learning
typically involved extracting handcrafted features from
segmented OCT volumes and relying on established
classifiers, such as support vector machines and
random forests for final arbitration.14 Deep learn-
ing methods, such as convolutional neural networks
(CNNs), directly operate onOCT volumes without any
human-designed disease markers and can be consid-
ered feature-agnostic.14,15

Most of the recent studies15–17 have looked into
optic nerve head OCT scans to detect glaucoma in well
curated datasets, which exclude the challenging cases,
such as glaucoma suspects, cases with high refractive
error, or low signal strength. In this work, we include
raw OCT macula scans from real-world scenarios for
CNN training, and attempt to differentiate between
high-risk cases, which require referral and evaluation
by a glaucoma specialist and low-risk cases (split across
referable vs. nonreferable disease) that can be observed
without frequent testing.

Methods

This study adhered to the tenets of the Declara-
tion of Helsinki, and the protocols were approved by
the institutional review board of Stanford School of
Medicine (USA), Chinese University of Hong Kong
(CUHK) (Hong Kong), and Narayana Nethralaya
Foundation, Bangalore (India). Informed consent was
waived based on the study’s retrospective design,
anonymized dataset of OCT images, minimal risk, and
confidentiality protections.

Training and Primary Validation Set

The 3D OCT cube (volume) of macula images
(Cirrus HD-OCT; Carl Zeiss Meditec, Dublin, CA,
USA) of 1957 eyes evaluated at the Byers Eye
Institute, Stanford School of Medicine, from March
2010 to December 2017 were exported for the study.
Scanning with the Cirrus (Carl Zeiss Meditec) OCT
was performed using the 512 × 128 scan pattern
(Macular Cube protocol) where a 6 × 6 mm area on
the retina was scanned with 128 horizontal lines, each
consisting of 512 A-scans per line.

Next, the dataset was cleaned to remove any cases
of nonglaucomatous optic nerve head pathologies,
such as nonglaucomatous optic neuropathy/optic nerve
head hypoplasia and optic nerve pit, and other retinal
pathologies, such as retinal detachment, age-related
macular degeneration, myopic macular degeneration,
macular hole, diabetic retinopathy, and arterial and

venous obstruction. A total of 749 eyes were excluded
during screening due to the presence of these associ-
ated pathologies based on chart review.

The number of eyes after exclusion was 1208.
Following this, 93 eyes were excluded due to quality
assessment and 20 eyes were excluded after arbitration
as described below. Therefore, in total, 1095 eyes of 586
patients were obtained for training and primary valida-
tion from Stanford. Additionally, we reviewed the clini-
cal history and testing of each scan to categorize those
who are true glaucoma, preperimetric glaucoma, high-
risk suspects, low-risk suspects, or normal, as per crite-
ria on Table 1. To become more clinically relevant, we
combined referables as definite true glaucoma cases,
preperimetric glaucoma cases plus high-risk glaucoma
suspects together, and nonreferables as true normal and
low-risk suspects.

Included subjects performed visual field (VF) by
static, automated, white-on-white threshold perimetry
using the Humphrey Field Analyzer III (Carl Zeiss
Meditec).

The inclusion criteria were (1) age equal to or older
than 18 years old; (2) reliable VF tests (acceptable
results defined below); and (3) availability of SD-OCT
macula scans (acceptable results defined below).

A reliable VF report is defined as (a) fixation losses
<33%; (b) false positive rate <25%; (c) false negative
rate <25%; and (d) no appearance of lid or lens rim
artifacts, and no appearance of cloverleaf patterns.

SD-OCT scans with signal strength (SS) <3, or
any artifact within a 14.13mm2 elliptical annulus area
centered on the fovea, were excluded from the study.
Artifacts included blink, motion, registration, and
mirroring. SS of three was chosen because the quali-
tative maps were used and not the quantitative cutoff
values.

Cases were labeled according to the criteria
mentioned in Table 1 by a glaucoma fellowship
trained ophthalmologist with >2 years’ experience
(S.S.M.) based on fundus image, VF, OCT RNFL
and GCIPL parameters, and IOP lowering treatment
(based on chart review). In cases where labeling needed
arbitration, a senior glaucoma specialist with >10
years’ experience (R.T.C.) reviewed the cases and his
diagnoses were considered final. Twenty conflicting
cases out of 36 were eliminated based on insuffi-
cient data on chart review. To compute intergrader
agreement for diagnosis, a third glaucoma fellowship-
trained specialist (D.C.) adjudicated the labeling of
randomly selected 50 high- and low-risk cases. Follow-
ing this, Cohen’s k value was calculated. Intergrader
agreement calculations resulted in a Light’s k (arith-
metic mean of Cohen’s k) of 0.415 considered to
represent moderate agreement.18
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Table 1. Criteria for Classification of Input Data

Labels Criteria
No. of
Eyes

No. of
Patients Classification

True glaucoma • Clinical glaucomatous disc changes (as per ISGEO
classification34) AND
• 2 repeatable VF defects as per Anderson’s criteria35

(reliably measured data were used (i.e., with a
fixation loss <20%, false-positive errors <15%, and
false-negative errors <33%) OR total cupping of the
optic nerve and unable to perform VF evaluation AND
• On treatment for glaucoma or has undergone
surgery/SLT-ALT AND
• OCT glaucomatous defects on deviation maps +
not all green on OCT RNFL and/or OCT GCIPL maps)

514 287 REFERABLE

Preperimetric
glaucoma

• Clinical glaucomatous disc changes (as per ISGEO
definition)34 AND
• No VF defects AND
• On treatment for glaucoma or has undergone
surgery/SLT-ALT AND
• OCT glaucomatous defects on deviation maps+
(not all green OCT RNFL and/or OCT GCIPL)

41 26 REFERABLE

High-risk
suspects

• Disc changes suspicious for glaucoma (ISGEO disc
definition34 for suspect) AND
•Without any VF defects OR VF defect not fulfilling
Anderson’s criteria35 AND
• on prophylactic therapy or follow up advise less
than 1 year AND
• Not all green OCT RNFL and/or OCT GCIPL

112 68 REFERABLE

Low-risk
suspects

• Disc changes suspicious for glaucoma (as per
ISGEO34 classification for suspects) AND
• No VF defects AND
• Not on treatment /advised no review or review
after 1 year or more AND
• Not all green OCT RNFL and or OCT GCIPL

108 66 NONREFERABLE

True normal • No VF defects AND
• No disc changes for glaucoma (few cases have high
cup disc ratio >0.6 but no other glaucomatous disc
changes) AND
• No treatment/no review AND
• All green OCT RNFL and OCT GCIPL

320 183 NONREFERABLE

Apatient can have eyes in two different categories. International Society of Geographical and Epidemiological Ophthalmol-
ogy (ISGEO); Selective Laser Trabeculoplasty (SLT); Argon Laser Trabeculoplasty (ALT).

The final training and primary validation dataset
consisted of 2805 scans from 586 patients and were
placed into one of two categories:

• REFERABLE: requiring referral for evaluation by
a glaucoma specialist and including:
◦ True glaucoma (TG)

◦ Preperimetric glaucoma (PPG)
◦ High-risk suspects
• NONREFERABLE: not requiring referral for
further evaluation by a glaucoma specialist and
including:
◦ True normals (TNs)
◦ Low-risk suspects
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In total, there were 667 eyes of 381 patients
labeled as REFERABLE cases comprised of 514
eyes from 287 patients with a diagnosis of glaucoma
(TG), 41 eyes from 26 patients with a diagnosis of
PPG, 112 eyes from 68 patients with a diagnosis of
being high-risk glaucoma suspects, and a total of
428 eyes of 249 patients labeled as NONREFER-
ABLE cases comprised of 320 eyes from 183 defini-
tive normal patients (TNs), and 108 eyes from 66 low-
risk glaucoma suspects were included from Byers Eye
Institute at Stanford. In the case of multiple visits of
a given patient, we used all of the visits for training
(1710 additional scans in total), but only tested on
that patient’s first visit. When performing the training,
however, as we will discuss below, a single patient never
had images in both the training and testing sets for a
given run. The reason for testing only on a patient’s
first visit is to focus our attention on catching referable
glaucoma as early as possible, where it is the most clini-
cally relevant.

External Validation/Test Sets

Once internal validation was achieved, two datasets
were used for external validation. Cirrus SD-OCT
macular cubes of 505 eyes of 264 patients fromCUHK
(Hong Kong) and 336 eyes of 199 patients from
Nayayana Nethralaya (India) were used for external
validation. All the volumes contained in the external
datasets were also obtained from the Cirrus SD-OCT
machine (Carl Zeiss Meditec) according to the 512 ×
128 Macula cube scanning protocol.

The first dataset was composed of OCT 3D cube
images of macula from CUHK and the second dataset
was composed of OCT 3D cube images of macula from
Narayana Nethralaya Foundation, India.

Regarding the glaucoma definitions, for the exter-
nal validation dataset from Hong Kong, two glaucoma
specialists worked separately to label all the eyes into
“True Glaucoma” or “True Normal” combined with
VF tests. In this dataset, true glaucoma was defined
as those cases with RNFL defects on thickness or
deviation maps that correlated in position with the
VF defects. Most of the images were labeled as “True
Glaucoma” or “True Normal” when the two graders
arrived at the same categorization separately. The few
cases with disagreement were reviewed by a senior
glaucoma specialist to make the final decision. This
dataset consisted of 305 “True Glaucoma” cases and
200 “True Normal” cases.

For the external evaluation set from India, an experi-
enced glaucoma specialist labeled the cases into “True
Glaucoma” and “True Normal.” The definitions used
to label cases in this dataset were similar to those used

to label cases in the Stanford (US) dataset (Table 1).
This dataset consisted of 163 “True Glaucoma” cases
and 173 “True Normal” cases. Further comparisons
of these datasets are available in Table 2. All exter-
nal datasets were screened for exclusion of other optic
nerve head, macula, or retinal pathologies.

Development of Deep Learning System

For the CNN, we explored a number of architec-
tures before settling on gNet3D (Fig. 1). We tried both
deeper, more complex networks as well as shallower,
simpler ones and eventually chose the latter. The
gNet3D consists of just three convolutional layers
and two fully connected layers with dropout regular-
ization.19 We used the newly introduced AdaBound
optimizer for the optimization.20 AdaBound features
the ability to get the results of stochastic gradient
descent while converging at the speed of Adam.21
Perhaps most importantly, however, is our preprocess-
ing step of homogenizing the data. Considering only
the raw OCT cubes by themselves ignores a great deal
of spatial context, such as the location, orientation,
and scale of the retina. To account for this spatial
information, we first homogenized the data by extend-
ing the technique we presented in Russakoff et al.22
to 3D using automated layer segmentation software
(Fig. 2; Orion, Voxeleron). The homogenization also
allows for the analysis of the textures of the images
at the same scale across the entire dataset. Recent
work has focused attention on the inherent bias of
CNNs23 to texture over other types of features. The
homogenization allows for the CNN to focus its learn-
ing on a smaller domain of textures, which has the
effect of improving the generalizability of the learned
results. The gNet3D was then trained on the data
above to return the probability of “REFERABLE”
vs. “NONREFERABLE” that may be converted to
a binary classification. We evaluated its performance
using five-fold cross validation with no patient’s scans
split across the training, validation, or testing sets.

We compared our results to those from Maetschke
et al.15 by implementing their reported deep learning
framework and running it over our data in the same
way, namely using five-fold cross-validation. We review
this work in more detail in the discussion below. The
five-fold cross-validation is performed by randomly
partitioning the data into five equal subsets, or folds.
One fold is used as a test set, whereas the other four
folds are used to train a model. We created each
partition taking care that no one patient’s data ever
appeared in both the training and the testing sets. By
performing this procedure on each of the five folds in
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Figure 1. Schematic of gNet3D. The model consists of three 3D convolutional layers together with two fully connected layers. Rectified
Linear Unit (ReLU).

Figure 2. Example of the preprocessing used to homogenize the images (all axes are in pixels). The segmentation allows for a simple
normalization to a standardized size: Note that the lower limit is a fixed offset (390 μm) from Bruch’s membrane, which is itself estimated as
a baseline to the retinal pigment epithelium. This homogenization step helps add spatial context to the classifier by factoring out position
and scale variations in the images.

turn, we can generate a prediction for each data point.
In addition, for the entire set of predictions, we gener-
ate a receiver operating characteristic (ROC) curve as
well as the corresponding area under that curve (AUC).
We also generated precision-recall curves for this data
to complement theAUCROC results. This analysis was
performed five times with five different cross-validation
partitions.

We also applied the gNet3D trained on the Stanford
data to two independent test sets from outside insti-
tutions. In particular, we used each of the five
models generated during the initial cross-validation
and applied them as a classifier ensemble, taking the
median value as the final output. We also evaluated the
performance of themodel across myopia severity in the
dataset from the United States (Table 3). Finally, we
performed an occlusion sensitivity analysis to investi-
gate which areas of the volumes were most useful in
discriminating the two classes. We ran this analysis on
a random subset of 40% of the original data using the
models trained from the first cross-validation split.

Results

Demographic data, such as age, ethnicity distri-
bution, mean values with SDs for VF parameter in
terms of mean field defects (MDs) and refractive error
in terms of spherical equivalent in the referable and
nonreferable groups from the United States, Hong
Kong, and India datasets are given in Table 2. In the
training, testing, primary validation referable dataset,
and referable dataset from India, there were significant
differences in age, mean deviation, and mean refractive
error in terms of spherical equivalent, whereas there
was only significant difference in mean refractive error
in terms of spherical equivalent in the referable dataset
from Hong Kong.

In all cases, we measured the classifier perfor-
mance for referable versus nonreferable glaucoma
using the AUROC curve. The results are summarized
in Figures 3 and 4. The AUC for classification of refer-
able glaucoma using gNet3D is 0.88 versus 0.81 for the
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Figure 3. Illustration of the improved performance of gNet3D over
the framework of Maetschke et al.15 on this dataset.

Figure4. Precision-Recall curve illustrating the same improvement
in Figure 3.

framework reported by Maetschke et al.15 We report
this primarily as a way of demonstrating how much
more challenging our current dataset is with suspects
included. The other main difference between our data
and theirs is that they use the optical nerve head
(ONH) cube scans versus our macular volumes. There
is nothing, however, in their framework to suggest its
performance is tuned more to ONH versus macular
anatomy, so we would expect a similar performance
improvement on ONH cubes. Additionally, to further
investigate the importance of the preprocessing, we
trained our gNet3D framework on the raw macular
cubes. The AUC for that experiment was 0.82, compa-

Figure 5. Results fromapplication of the gNet3D trained onUnited
States (Stanford) data applied to two outside institutions. The
discrepancy here is likely due to the differing characteristics of the
two datasets. For example, the India data had referral cases with
significantly lower mean deviation and the Hong Kong (CUHK) data
consists exclusively of Chinese Asian eyes (Table 2).

rable to Maetschke et al.15 and suggests that the archi-
tecture is likely less important than the preprocessing.

We have also used the models trained on the
Stanford data and attempted to validate them on exter-
nal data from CUHK and Narayana Nethralaya Eye
Hospital, India. These results are shown in Figure 5.

Finally, the occlusion sensitivity analysis results are
shown in Figure 6. In brief, it demonstrates that, as
expected, the inferior regions have the highest response
in the classifier in the “Referable” cases.

Further, the performance of the model across
myopia severity distribution was assessed in the dataset
from the United States and was found to have an AUC
of 0.85, 0.92, and 0.95 in severe, moderate, and mild
myopia, respectively (Table 4).

Discussion

OCT is now one of the most common imaging
procedures with 5.35 million OCT scans performed
in the US Medicare population in 2014 alone.24 Most
of the recent studies15–17 have been on utilization of
deep learning in detecting glaucoma, excluding the
cases that require identification beyond a nonspecialist-
level interpretation and excluding real-world scenarios,
which include highmyopes who are glaucoma suspects.
This, despite several large population-based studies
using different definitions of high myopia, including
Los Angeles Latino Eye Study and the Blue Mountain
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Figure 6. Illustration of the occlusion sensitivity analysis.

Eye Study (BMES), which have found that myopes are
more likely to have glaucoma.25,26 So far, ours is the
first study that has included glaucoma suspects who are
the most enigmatic subset of patients presenting in any
ophthalmology clinic. Our training dataset included
SD-OCT scans of all degrees of myopia (Table 3),
glaucoma suspects, and scans with low SS (because
we included >3) and, hence, arguably represents the
challenge, as it exists in the clinics today. Although
strict exclusion criteria, such as VF defect thresholds,
low corrected visual acuity are common, our cohort
did not exclude such patients and, hence, was more
challenging.

Even though recent studies have reported similar
diagnostic capability of macula parameter based on
GCIPL and ONH parameter based on RNFL,27 as
of now, ours is the first study utilizing unsegmented
OCT macula cube volumes in glaucoma and suspect
detection using deep learning. A recent study using
deep learning on macula scans using GCIPL thickness
maps to detect glaucoma had an AUC of 0.9307.28
The differences from our study were that they defined
glaucoma based on the presence of glaucomatous
disc changes with RNFL defects on clinical exami-
nation along with corresponding VF defects and did
not use multimodal longitudinal imaging for ground
truth definitions. They used segmented data to estimate
GCIPL thickness, did not use raw 3D cube scans, and
did not include glaucoma suspects.

It is known that high myopia can be associated with
elongation of the eye and resultant stretching effect,
which can lead to decreasing GCIPL thickness identi-
fied as defects on OCT GCIPL deviation and thick-
ness maps that may resemble glaucomatous damage.
We included all ranges of myopia in both our referable
and nonreferable datasets to account for these varia-
tions.

We defined severity of myopia by slightly modify-
ing the BMES.29 We modified the BMES category
of moderate to severe myopia (spherical equiva-

lent [SE] >-3D) by further subdividing it into mild
myopia (SE up to -3D), moderate myopia (SE -3
up to -6D), and severe myopia (SE lesser than -
6D), using cutoffs established in the Beijing Eye
Study.30 The myopia severity distribution has been
used to analyze the distribution of cases across the
dataset and to show that severe myopia cases have been
included in the training, primary validation, and test
datasets (Table 3).

It is known that diagnosing glaucoma and high-
risk glaucoma suspects in the setting of myopia is a
common challenge due to alteration of the appear-
ance of the optic nerve and macula. Myopic refractive
error impacts RNFL and macular thickness measure-
ments due to stretching and thinning of these layers
due to an increased axial length and optical projec-
tion artifact of the scanning area.31 This often results
in many false-positive diagnoses, also known as “Red
Disease.”The performance of themodel across myopia
severity distribution has been assessed in the dataset
from the United States and was found to have an
AUC of 0.85, 0.92, and 0.95 in the severe, moderate,
and mild myopia, respectively (Table 4). The perfor-
mance of our model in detecting referable cases in
severe myopia with an AUC of 0.85 is a promising
tool to show the normative database limitations can
be overcome with ever increasing datasets. Our perfor-
mancewith external test sets demonstrated good results
across geographical and ethnicity distribution. Results
from application of the gNet3D trained on US data
applied to two outside institutions was, interestingly,
better in the dataset from India. A possible explanation
for this could be significantly lower mean deviation in
this dataset compared to that from the United States
and Hong Kong (Table 2). Another possible reason
for better performance in the India dataset could be
because the referable and nonreferable datasets from
India included only true glaucoma and true normal,
respectively, and did not include suspects, and these
cases would likely be easier to differentiate.
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Table 4. Results of the ProposedModel on the Dataset
from the United States for Each Myopia Severity Level

Myopia Severity Number of Cases AUC

Severe 51 0.85
Moderate 79 0.95
Mild 224 0.92

AUC, area under the curve.

The external validation performance was lower in
the dataset from Hong Kong. The distribution of
ethnicity in this dataset, which consisted exclusively of
Chinese Asian eyes, could be a reason for the dispar-
ity in performance. Our training, primary validation,
and primary test sets included subjects of white, Asian
(which included Chinese Asians, Non-Chinese Asians,
and Indians), African American, and Hispanic origin
(Table 2). Another reason for the difference in perfor-
mance on the test set from Hong Kong could be the
inclusion of only gradable images with SS ≥5. The
data from the United States included cases with SS
≥3 and excluded images with artifacts, which obscured
imaging of measuring GCIPL within a 14.13 mm2

elliptical annulus area centered on the fovea.
The variation in performance between the datasets

from India andHongKong versus that from theUnited
States could also be attributed to the significant differ-
ence in the mean refractive error between the referable
group from the United States and that from India and
Hong Kong (P < 0.001). Data from the United States
had significantly higher mean myopic refractive error
compared to India and Hong Kong in the referable
group (Table 2). Another reason for the difference in
the performance in the Hong Kong dataset could be
due to the fact that structural defects in true glaucoma
cases in this dataset were based only on OCT RNFL
deviation and thickness maps and did not include
GCIPL maps, which might have possibly categorized
low-risk cases with RNFL defects as true glaucoma.
This is an example where generalization with external
dataset is influenced by referable definitions, which can
be difficult to reach a consensus standard.

In the recent study by An Ran et al.,16 the 3D deep
learning system for optic nerve cubes had an AUC of
0.969, sensitivity of 89%, specificity of 96% (92–99),
and accuracy of 91% (89–93) in the primary valida-
tion set for detection of glaucomatous optic neuropa-
thy. This study had good performance across an exter-
nal dataset from the United States with an AUC of
0.893. The major difference in their study from ours
was that although their study used ONH cube scans,
we used macula SD OCT scans. In their study, only
gradable images with SS ≥5 were included for training

and validation, but in our study we used lower intensity
scores (SS ≥3) and excluded images with artifacts that
obscured imaging of measuring GCIPL within a 14.13
mm2 elliptical annulus area centered on the fovea for
training and validation, hence representing real-world
data. Unlike in our study, this study did not include
eyes with suspected glaucoma and those with preperi-
metric glaucoma in the training dataset.

Maetschke et al.’s15 work used 3D CNN to classify
eyes as healthy or glaucomatous directly from raw,
unsegmented OCT volumes of the ONH and achieved
a high AUC of 0.94, and is the most similar to ours.
The cases included in training and validation sets in
their study were ONH scans of well-defined cases of
glaucoma versus normals and did not include high-
or low-risk suspects. As an attempt at comparison,
we applied their published deep learning framework
to our dataset of macular cubes and saw, as can be
expected from a more challenging dataset, a large drop
in performance. We matched this drop in performance
by applying our own deep learning architecture on
the raw cubes. This result underscores the importance
of adding spatial context to the CNNs via our data
homogenization process. Their feature agnostic frame-
work has merit but, to work on the domain of all possi-
ble scans in all positions and orientations would likely
require orders of magnitude more data, more akin to
what is seen for ImageNet32 where there is little attempt
to restrict the domain. Our homogenization effectively
restricts the domain of input images allowing the
network to focus its discriminative power on a smaller
subset of image characteristics. The homogenization
also allowed us a way to easily compare scans in a
standardized reference frame for the occlusion sensi-
tivity analysis. This analysis shows the regions of the
image that are most discriminative with respect to the
input classes. The results in Figure 6 suggest that areas
of interest in determining referables from nonrefer-
ables are inferior and temporal. This concurs with
what we know about glaucoma in the macula currently,
where the inferior region is commonly affected (first)
with inferior temporal bundle defects. Prior publica-
tions have found that glaucoma most often affects the
inferior temporal followed by superior temporal fundus
regions, followed by the temporal horizontal sector.33
On histopathology, this finding has been attributed to
the thicker nerve fiber layer in the inferior and superior
peripapillary areas compared to the temporal and nasal
peripapillary regions; a wider neuro retinal rim in the
inferior and superior disc regions compared with the
nasal and temporal disc sectors; and the morphol-
ogy of the lamina cribrosa with the largest pores in
the inferior and superior disc regions and the smallest
pores in the temporal and nasal areas.33 Our occlusion
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sensitivity analysis highlights infero-temporal regions
as an area of interest in identifying referables, which
includes high-risk suspects along with preperimetric
and perimetric glaucoma cases. This analysis shows the
regions of the image that are most discriminative with
respect to the input classes.

Glaucoma suspects are controversial clinical dilem-
mas. One of the most difficult challenges faced by clini-
cians in an ophthalmology clinic is in identifying high-
and low-risk glaucoma suspects and thereby deciding
whether to treat prophylactically or not treat a suspect.
This is mainly because there is no consensus for identi-
fying risk among glaucoma suspect cases even among
experts. Ours is one of the first studies to use machine
learning in risk stratification. A major highlight of our
study was inclusion of these cases based on broad crite-
ria, which are routinely used by glaucoma specialists in
risk stratification based on longitudinal chart review.
We also have included preperimetric glaucoma cases,
which are often excluded from recent studies while
training algorithms.13,14 Another strength of our study
was multinational external dataset validation across
geographical and ethnicity distribution from Hong
Kong and India.

Our study had a few limitations. We have included
SD-OCT scans with low SS. This is because many
of times, clinicians are deprived of high-quality OCT
images for diagnosis and evaluation of glaucoma, as
many of the elderly glaucoma patients have associ-
ated age-related cataract, corneal decompensations,
or vitreous degenerations. Our aim was to train the
algorithm to be able to identify available feature agnos-
tic representations to detect glaucoma even on low-
quality images, hence replicate real-world presenta-
tions. Despite the generalizability of the performance
of our algorithm across the datasets, one major limita-
tion of our study was the lack of inclusion of suspects
in our external datasets and we are in the process of
acquiring images of suspects from these centers, which
would be included in our future databases. Our training
and internal validation sets had consistent definitions
and the differences in performance in the external sets
can be attributed due to this difference in the data.

Another limitation of our study was that we
have not included risk factors like pseudo-exfoliation,
pigment dispersion, or any secondary mechanisms
during risk categorization. Cases were labeled only
depending on structural and functional defects and
requirement for therapy or frequency of advised
follow-up based on longitudinal chart review as refer-
able versus nonreferable. Another drawback of our
study was that we have not yet inspected cases with
false predictions and have not correlated it withmyopia
severity, axial length, disc size, or cup-to-disc ratio.

Even though we have not excluded any cases based on
axial length or disc sizes and have included extremes
of these characters in our datasets, we have not looked
into the performance of our model on different subsets
of disc sizes or axial length. One other major limita-
tion is that AUC, which has been used to analyze the
performance of the model, does not demonstrate what
a normal clinician’s performance would have been,
given the same data. This study is being carried out
separately.

Going forward, we plan to include rawOCTmacula
scans along with ONH scans for better algorithm
development (ensemble techniques to improve perfor-
mance). Lastly, we look forward to larger train-
ing cohorts of high- and low-risk suspects with
better consensus among more glaucoma specialists for
the CNN to achieve optimal performance on these
challenging cases.

Conclusion

A deep CNN accounting for spatial context is
capable of accurately referring patients for glaucoma
in a dataset representative of a real-world clinical
setting. This work demonstrates that a referable versus
nonreferable definition can still be applied across differ-
ent datasets with reasonable performance.
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