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Abstract

Accurate ET0 estimation is of great significance in effective agricultural water management

and realizing future intelligent irrigation. This study compares the performance of five Boost-

ing-based models, including Adaptive Boosting(ADA), Gradient Boosting Decision Tree

(GBDT), Extreme Gradient Boosting(XGB), Light Gradient Boosting Decision Machine

(LGB) and Gradient boosting with categorical features support(CAT), for estimating daily

ET0 across 10 stations in the eastern monsoon zone of China. Six different input combina-

tions and 10-fold cross validation method were considered for fully evaluating model accu-

racy and stability under the condition of limited meteorological variables input. Meanwhile,

path analysis was used to analyze the effect of meteorological variables on daily ET0 and

their contribution to the estimation results. The results indicated that CAT models could

achieve the highest accuracy (with global average RMSE of 0.5667 mm d-1, MAE of 4199

mm d-1and Adj_R2 of 0.8514) and best stability regardless of input combination and stations.

Among the inputted meteorological variables, solar radiation(Rs) offers the largest contribu-

tion (with average value of 0.7703) to the R2 value of the estimation results and its direct

effect on ET0 increases (ranging 0.8654 to 0.9090) as the station’s latitude goes down,

while maximum temperature (Tmax) showes the contrary trend (ranging from 0.8598 to

0.5268). These results could help to optimize and simplify the variables contained in input

combinations. The comparison between models based on the number of the day in a year

(J) and extraterrestrial radiation (Ra) manifested that both J and Ra could improve the

modeling accuracy and the improvement increased with the station’s latitudes. However,

models with J could achieve better accuracy than those with Ra. In conclusion, CAT models

can be most recommended for estimating ET0 and input variable J can be promoted to

improve model performance with limited meteorological variables in the eastern monsoon

zone of China.
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Introduction

Reference evapotranspiration (ET0) is an essential factor in both of hydrological and ecological

process [1–5]. Since ET0 plays a crucial role in calculating crop water requirement, water bud-

geting and agricultural water management, accurate estimation of ET0 is very meaningful and

also serves as the foundation of realizing water-saving irrigation and intelligent irrigation.

Methods of obtaining ET0 can be generally divided into three types: experimental method,

empirical models and numerical simulations. Although experimental determination can mea-

sure ET0 directly, it can hardly be popularized due to its tedious operation steps and strong

regional limitations [6–8]. Now days, FAO-56 Penman-Monteith (FAO-56 PM) model is gen-

erally regarded as the most authentic method for estimating ET0 in semiarid and humid

regions and the estimation result is also widely used as the target to validate other models in

areas where ET0 data are not available [9–12]. However, the meteorological variables required

by FAO-56 PM model for estimating ET0 are difficult to obtain or fully available in most

regions, which makes it difficult to be implemented. According to the principle of selecting

ideal model for estimating ET0 proposed by Shih [13], ideal models should be based on mini-

mal input variables with acceptable accuracy. Therefore, empirical models based on less mete-

orological variables have evolved to enhance the practicality of empirical models over the years

[12,14–16], which can be generally classified as temperature-based, radiation-based, pan evap-

oration-based, mass transfer-based and combination type [4]. Among all these empirical mod-

els, Hargreaves-Samani model [17] requires the least meteorological variables input and has

already been proved its accuracy around the world, which makes it the most popular empirical

model. Other empirical models based on simplified Penman-Monteith model and solar radia-

tion, such as Priestley-Taylor model [18], Irmak model [19] and Makkink model [20], have

also been implemented in areas where full meteorological factors can hardly be obtained.

However, these methods usually have such regional limitation and poor portability that they

are not suitable to be applied for accurate estimation directly without taking localization

approach.

By introducing intelligent algorithms for analyzing the non-linear relationship between

meteorological variables and ET0, numerical simulation method using machine learning and

deep learning have been advanced greatly. Since Kuma first investigated artificial neural net-

work (ANN) models for estimating ET0 [21], this kind of method has attracted more and

more researchers because of its short time, high precision and strong generalization ability.

These algorithms can be generally classified as artificial neural networks-based [9,22–25], tree-

based [7,26,27], kernel-based [28,29], heuristic-based [27,30,31] and hybrid algorithm-based

[32,33].

To further improve the accuracy of machine learning algorithm in ET0 estimation, ensem-

ble learning has drawn attention from more and more researchers. The core idea of ensemble

learning is to combine several ‘weak learners’ to build a new ‘strong learner’, so as to reduce

bias, variance and improve prediction results. Common ensemble learning models like Ran-

dom Forest [34], Gradient Boosting Decision Tree [35] and Extreme Gradient Boosting mod-

els [36] have already widely used in various classification and regression problems [3,37–39]

based on the characteristics of simple structure and high accuracy.

This study provides a comparison of five Boosting-based models to find out the best Boost-

ing-based for estimating daily ET0 under the condition of limited input variables in the eastern

monsoon zone of China. Therefore, the main purpose of this study produced as follows: (1) to

compare the accuracy and stability of Boosting-based models with various input combinations

across different climate zones; (2) to find an effective approach for improving the modeling

accuracy under the condition of limited input variables.
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Material and methods

Study area and data description

Geographically, the eastern monsoon zone of China is located in the east of the Great Khingan

Mountains, south of the Inner Mongolia Plateau and east of the eastern edge of the Tibetan

Plateau, including the second-level Loess Plateau, Sichuan Basin, Yunnan-Guizhou Plateau

and the Hengduan Mountain area, as well as the third-level coastal plain and hilly areas. The

climate types of the eastern monsoon zone include temperate monsoon climate, subtropical

monsoon climate and tropical monsoon climate. This study area is significantly affected by the

ocean monsoon in summer and the cold air flow from the north in winter. The annual average

temperature changes significantly with latitude, showing a decreasing trend from south to

north. This zone accounts for about 45% of the country’s land area and 95% of the Chinese

total population. As the eastern monsoon zone servers as one of the main farming areas of

China, the research on the estimation model of ET0 can provide scientific basis for the accurate

prediction of crop water demand in this region and improve the utilization efficiency of agri-

cultural water resources, which is of great significance to the sustainable utilization of water

resources.

According to the climate type and latitude distribution range of the eastern monsoon zone,

10 meteorological stations (Harbin, Shenyang, Yan ’an, Jinan, Nanjing, Changsha, Chengdu,

Kunming, Nanning and Guangzhou) were selected as research stations. To be more specific,

Harbin, Shenyang, Yan ’an, Jinan belong to the temperate monsoon zone (TMZ), Nanjing,

Changsha, Chengdu, Kunming belong to the subtropical monsoon zone (SMZ) and Nanning,

Guangzhou belong to the tropical monsoon zone (TPMZ).

In order to test and verify the accuracy and stability of Boosting-based models for ET0 esti-

mation, daily meteorological variables, including maximum(Tmax), and minimum(Tmin) air

temperature, relative humidity (RH), wind speed at 2 m height (U2) and solar radiation (Rs)

from 1997 to 2016 continuously, were selected as the training and testing data set. The above

meteorological data was obtained from the National Meteorological Information Center

(NMIC) of China Meteorological Administration (CMA) with good quality and high precision

and the missing data was interpolated through PYTHON KNN interpolation method in data

pre-processing. The annual average values of the main meteorological variables at above sta-

tions during the study period were illustrated in Table 1.

Table 1. The annual average of the main meteorological variables of 10 stations during the study period.

Climate zone Station Longitude Latitude Altitude Tmax Tmin U2 RH Rs Pr

(E) (N) (m) (˚C) (˚C) (m s-1) (%) (MJ m-2 d-1) (mm yr-1)

TMZ Harbin 126.5 45.8 165.5 10.0 -1.6 2.8 65.7 13.9 535.0

Shenyang 123.5 41.7 74.8 14.5 2.4 2.9 61.8 14.6 621.1

Yan‘an 109.5 36.6 1275.8 16.5 3.4 2.6 53.1 15.4 497.2

Ji’nan 116.7 36.6 95.6 20.1 7.9 2.5 58.6 15.1 650.4

SMZ Nanjing 118.8 32.1 25.5 21.5 10.9 2.6 73.0 13.8 1090.7

Changsha 112.9 28.2 90.4 22.7 13.2 2.1 77.6 11.9 1465.3

Chengdu 104.1 30.6 617.2 22.2 12.1 1.6 68.7 11.7 939.6

Kunming 102.8 24.9 1938.5 22.4 10.3 2.5 68.6 16.3 836.1

TPMZ Nanning 108.4 22.8 160.4 27.1 17.4 2.5 76.4 13.4 1373.1

Guangzhou 113.3 23.1 64.3 27.1 17.8 2.3 77.3 13.5 1776.7

Where Pr is annual average precipitation.

https://doi.org/10.1371/journal.pone.0235324.t001
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All daily meteorological data were normalized to fall between 0 and 1 to improve the con-

vergence rate of the model and minimize the influence of absolute scale. The normalization

equation is as follows [3,24,26]:

Xnorm¼
X0� Xmin

Xmax� Xmin
ð1Þ

Where Xnorm is the normalized value, X0, Xmin, and Xmax are the real value, the minimum

value, and the maximum value of the same variable, respectively.

FAO-56 Penman-Monteith model

Since it is difficult to obtain the practical ET0 data in this study area, ET0 values calculated by

the FAO-56 Penman-Monteith model are regarded as the target for training and testing the

Boosting-based models, which is a widely used and acceptable practice in this case

[2,8,22,30,40].

The FAO-56 PM model is expressed as:

ET0¼
0:408DðRn � GÞ þ g 900

Tmeanþ273
U2ðes � eaÞ

Dþ gð1þ 0:34U2Þ
ð2Þ

Where ET0 is reference evapotranspiration (mm d-1), Rn is net radiation (MJ m-2 d-1), G is soil

heat flux density (MJ m-2 d-1), Tmean is mean air temperature at 2 m height (˚C), es is saturation

vapor pressure (kPa), ea is actual vapor pressure (kPa), Δ is slope of the saturation vapor pres-

sure function (kPa ˚C-1), γ is psychometric constant (kPa ˚C-1), U2 is wind speed at 2 m height

(m s-1).

Boosting-based models

Boosting algorithm is a category of the ensemble learning algorithm. The principle of the

Boosting algorithm is to first train a weak learner1 from the training set with the initial weight

and then update the weight according to the error. When the weight becomes higher, samples

with high error rate are more valued in the latter weak learner 2. After adjusting the weight

based on the training set, the repetition of single weak learner is performed until the number

of weak learners reaches the predetermined number. Finally, the weak learners are integrated

through the set strategy (usually by weighted averaging) to obtain the final strong learner for

regression or classification purpose [41].

In 1997, Freund proposed the first practical Boosting algorithm-Adaptive Boosting [42],

which laid the foundation for Boosting from an idea to a practical approach. Subsequently,

Friedman introduced the idea of gradient descent into the Boosting algorithm and then pro-

posed the Gradient Boosting algorithm [35] which is more practical and can handle different

loss functions. Based on the above research, Boosting-based model has been continuously

developed by researchers and has already been widely used in classification and regression

problems. In this study, five Boosting-based models, Adaptive Boosting (ADA), Gradient

Boosting Decision Tree(GBDT), Extreme Gradient Boosting(XGB), Light Gradient Boosting

Decision Machine(LGB) and Gradient boosting with categorical features support(CAT), are

employed to compare their performance of estimating ET0 value. All codes of Boosting-based

models introduced in this study were written in Python and performed in a laptop with Intel

Core i7-9750H CPU @2.60GHz, NVDIA GeForce GTX 1660Ti GPU and 16GB of RAM. For

evaluating the performance of each model at the same level of model structure and complexity,

only ‘n_estimators’ and ‘learning_rate’ were set to 500 and 0.05 respectively and other hyper

parameters were set to default.
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Adaptive Boosting (ADA). The first boosting algorithm, Adaptive Boosting (ADA) was

proposed by Freund [42]. AdaBoost assigns equal initial weights to all training data for weak

learns training, then updates the weight distribution according to the prediction results. To be

more specific, higher weights are assigned to mispredicted samples while lower weights are

given to samples predicted correctly, which makes the next training step more focused on mis-

predicted samples to reduce bias. Above process is repeated until the specified number of itera-

tions or the expected error rate is reached, then all predicted results of the weak learners are

added linearly with weights as the final result. The detailed calculation procedures of ADA are

described as follows:

For the given dataset D ¼ fxi; yig
M
i¼1

, the steps of ADA model for regression problem can be

expressed as follows:

(1) Initialize the weight distribution of the training samples as follows:

For i = 1,2,3. . .M

D1 ¼ ðo11; . . . ;o1i; . . . ;o1MÞ;o1i ¼
1

M
ð3Þ

(2) For k (k = 1,2,3. . .K), taking Dk as the training set of weak learner fk(x) and calculating the

following indicators:

(a) Maximum error:

Ek ¼ maxjyi � fkðxiÞj; i ¼ 1; 2; 3 . . . M ð4Þ

(b) Relative error of each sample:

eki ¼
yi � fkðxiÞ
� �2

Ek
ð5Þ

(c) Regression error rate:

ek ¼
XM

i¼1

okieki ð6Þ

(d) Weight of weak learner fk(x):

ak ¼
ek

1 � ek
ð7Þ

(e) Weight distribution of samples is updated as:

okþ1;i ¼
oki

Zk
ak

1� eki ð8Þ

Where Zk is normalizing factor:

Zk ¼
XM

i¼1

okiak
1� eki ð9Þ

(3) The final strong learner is obtained as:

f ðxÞ ¼
XM

m¼1

ln
1

am

� �� �

gðxÞ ð10Þ

Where g(x) is the median of all αmfm(x), m = 1,2,3. . .M.
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Although ADA is no longer suitable for the current scenario of large sample, high-latitude

data usage, its appearance has turned Boosting idea from an initial conjecture into a practical

algorithm, which greatly promoted the development of subsequent Boosting-based

algorithms.

Gradient Boosting Decision Tree (GBDT). The Gradient Boosting Decision Tree

(GBDT) is an iterative decision tree algorithm, proposed by Friedman [35]. The weak learners

in GBDT model have strong dependencies between each other and are trained by progressive

iterations based on the residuals. The results of all weak learners are added together as the final

result, which makes GBDT have great advantages in over-fitting and computational cost fields

and also insensitive to data set missing and can reduce bias at the same time. The detailed cal-

culation procedures of GBDT are described as follows:

For the given dataset D ¼ fxi; yig
M
i¼1

, the steps of GBDT model for regression problem can

be expressed as follows:

(1) Initialize the weak learner:

f0ðxÞ¼ argmin
g

XM

i¼1

Lðyi; gÞ ð11Þ

Where L(yi, γ) is the loss function.

(2) For m (m = 1,2,3. . .M) sample in the training set, the residual along the gradient direc-

tion is written as:

rim¼ �
@Lðyi; f ðxiÞÞ

@f ðxiÞ

� �

f ðxÞ¼fn� 1ðxÞ

12

Where n is the number of the estimators (‘n_estimators), n = 1,2,3. . .,N.

(3) Taking (xi, rim) i = 1,2,3. . .,m as the training data of the weak learner n and the leaf node

region is Rnj, j = 1,2,3. . .,J. For this new weak learner, the optimal negative gradient fitting

value of each leaf node is calculated as follows:

gnj¼argmin
g

X

xi2Rnj

L yi; fn� 1ðxiÞ þ g
� �

ð13Þ

(4) The model is updated as:

fnðxÞ ¼ fn� 1ðxÞ þ
XJ

j¼1

gnjI x 2 Rnj
� �

ð14Þ

(5) The final strong learner is obtained as:

f ðxÞ ¼ f0ðxÞ þ
XN

n¼1

XJ

j¼1

gnjI x 2 Rnj
� �

ð15Þ

Extreme Gradient Boosting (XGB). Extreme Gradient Boosting (XGB) is an improved

algorithm based on GBDT algorithm [36]. Different from the original GBDT model, XGB

model obtains the residual by performing second-order Taylor expansion on the cost function,

and adds a regularization term to control the complexity of the model at the same time. The

addition of regularization terms reduces the variance of the model and makes the model more

simplified, making XGB model superior to original GBDT model in terms of weighing the
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bias-variance tradeoff and preventing overfitting. Also, XGB supports multiple cost functions

and parallel operations on feature granularity.

The specific calculation procedures of XGB are described as follows:

(1) Define the objective function as follows:

O¼
Xn

i¼1

L yi; f ðxiÞ
� �

þ
Xt

k¼1

RðfkÞ þ C ð16Þ

Where C is a constant term, which can be commonly omitted and R(fk) is the regularization

term at the k time iteration, defined as follows:

RðfkÞ ¼ aH þ
1

2
Z
XT

j¼1

oj
2 ð17Þ

Where α is complexity of leaves, T is the number of the leaves, η is the penalty parameter and

ωj is the output result of each leaf node.

(2) Introduce second-order Taylor series of objective function and adopt the mean square

error as the loss function, the objective function can be described as follows:

O¼
Xn

i¼1

gioqðxiÞ
þ

1

2
ðhio

2

qðxiÞ
Þ

� �

þ aT þ
1

2
Z
XT

j¼1

o2

j
ð18Þ

Where oqðxiÞ
is fk, gi and hi is the first and second derivative of loss function, respectively.

the output result of each leaf node.

(3) Determine the final loss value by summing the loss values of leaf nodes. Therefore, the

objective function can be expressed as:

O¼
XT

j¼1

Gjoj þ
1

2
ðHj þ ZÞo

2

j

� �

þ aT ð19Þ

Where Gi¼
X

i2Ij

gi, Hi¼
X

i2Ij

hi, and Ij indicates all samples in leaf node j.

Light Gradient Boosting Decision Machine (LGB). Light Gradient Boosting Decision

Machine (LGB) is a novel algorithm from Microsoft [43], which has the advantages of lower

memory consumption, higher precision and faster training efficiency. Traditional Boosting-

based algorithms need to scan all the sample points for each feature to select the best segmenta-

tion point, which leads to the model taking too much time in the large sample and high lati-

tude data condition. In order to solve the above problems and further improve the efficiency

and scalability of the model, LGB introduces the Gradient-based One-Side Sampling(GOSS)

and Exclusive Feature Bundling(EF-B) algorithm. Fig 1 illustrates the special strategy adopted

by LGB algorithm and detailed introduction is as follows:

The GOSS algorithm does not use all sample points to calculate the gradient, but instead

reserves the sample points with large gradients and performs random sampling on the sample

points with small gradients to complete the data sampling in order to maintain the accuracy of

information gain. Information gain indicates the expected reduction in entropy caused by
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splitting the nodes based on attributes, which can be described as follows:

IGðB;VÞ ¼ EnðBÞ �
X

u2ValuesðVÞ

jBvj

B
EnðBvÞ ð20Þ

EnðBÞ¼
XD

d¼1

pd log2
pd ð21Þ

Where En(B) is the information entropy of the collection B, pd is the ratio of B pertaining to

category d, D is the number of categories, v is the value of attribute V and Bv is the subset of B
for which attribute has value v.

Fig 1. Special process of LGB algorithm. (a) Histogram-based algorithm; (b) Obtain difference value by histogram

value; (c) Level-wise and leaf-wise strategies.

https://doi.org/10.1371/journal.pone.0235324.g001
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As shown in Fig 1A, the EF-B uses a histogram-based approach, which can discrete float-

ing-point eigenvalues into k integers and construct a histogram of k width. In this way, optimal

segmentation point can be found based on the discrete value of histogram with lower memory

consumption. In addition, Fig 1B also manifests that the histogram of a single leaf can be

obtained by contrasting the histogram of its parent node with that of its sibling node in LGB

algorithm, which further increases the speed of the model.

The general process of level-wise and leaf-wise strategies is shown in Fig 1C. Compared

with the level-wise strategy, the limited leaf-wise strategy used by LGB could be more effective

because it only split at the leaf with the largest information gain and the limited depth can pre-

vent overfitting effectively.

Gradient boosting with categorical features support (CAT). Gradient boosting [44]

with categorical features support (CAT) introduces a modified target-based statistics (TBS) to

use all data set for training and avoid potential overfitting problem by performing random per-

mutations. To be more specific, CAT first randomly sorts all samples, and then takes a value

from a category-based feature. Each sample’s feature is converted to a numerical value by tak-

ing an average value based on the category label that precedes the sample, and adding priority

and weight coefficients of priority. In the process of building new weak learners, CAT first

uses the gradient of the sample points before the sample Xn to estimate the model, and then

uses these models to calculate the gradient of Xn and update the model. Moreover, CAT uses

the oblivious tree as the weak learner, and the index of each leaf node in the oblivious tree can

be encoded as a binary vector of length equal to the depth of the tree, which further enhance

the model’s ability to resist overfitting.

Compared with XGB and LGB, CAT has following main contributions:

1. Categorical features can be handled automatically by using TBS before training process.

2. Feature dimensions can be enriched by combining the category features according to the

relationship between different ones.

3. Overfitting problem can be better resisted by adopting complete oblivious tree.

Calibration and validation of the models

This study considered limited meteorological variables input combinations as the combina-

tion of air temperature data (Tmax and Tmin) with Rs, RH and U2 respectively. In addition,

Since extraterrestrial radiation (Ra) is commonly applied to improve the modeling accuracy

for estimating ET0 with limited input meteorological variables and it is closely related to the

geographic data of the station and the number of the days in a year(J), this study also

employed J as the input variable to compare with the modeling accuracy improvement

brought by Ra and J.

As summarized above, six input meteorological variables combinations were shown in

Table 2, these combinations are: (1) Tmax, Tmin, Rs; (2) Tmax, Tmin, RH; (3) Tmax, Tmin, U2; (4)

Tmax, Tmin; (5) Tmax, Tmin, Ra and (6) Tmax, Tmin, J.

10-fold cross validation method was used to better evaluate the accuracy of the model and

reduce the randomness brought by test samples, and the average value of 10-fold cross-valida-

tion result is used as the final performance of the model. In addition, meteorological data from

1997 to 2011, 2012 to 2016 were used as the training and testing set respectively, with a differ-

ent proportion of training and testing sets from that of 10-fold cross validation stage to analyze

model accuracy on daily scale.
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Performance criteria

Present study introduced root mean square error (RMSE), mean absolute error (MAE) and

adjusted R2 (Adj_R2) to evaluate performance of the models [4,24,26,28,45].

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1
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i

� �
2

v
u
u
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" #2
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Adj R2 ¼ 1 �
ð1 � R2ÞðN � 1Þ

N � P � 1
ð25Þ

Where ETPM
i and ETM

i are ET0 values estimated by FAO-56 PM and other models respectively.

ETPM
0

and ETM
0

are the mean values of the ET0 values estimated by FAO-56 PM model and

other models respectively. N and P are the number of test samples and variables, respectively. i
is the number of i-th step, n is the number of the total steps. RMSE is in mm day-1, with the

value range from 0 (optimum value) to +1 (worst value). MAE is in mm/d, with the value

range from 0 (optimum value) to +1 (worst value). R2 and Adj_R2 are dimensionless, with

the value range from 1 (optimum value) to −1 (worst value).

Results

Comparison of different Boosting-based models with various input

combinations on daily scale

The performances of Boosting-based models with daily different meteorological variables

inputs at Harbin, Shenyang, Yan ’an, Jinan, Nanjing, Changsha, Chengdu, Kunming, Nanning

and Guangzhou stations were illustrated in Tables 3–12, respectively. Tables manifested that

the tested models generally had similar performance ranking across 10 stations. For brevity,

Harbin, Changsha and Guangzhou were chosen as representatives of TMZ, SMZ and TPMZ

respectively to describe in detail.

Table 2. The input meteorological variables combinations for different models.

Input combination Input variables Model abbreviation

ADA GBDT XGB LGB CAT

M1 Tmax, Tmin, Rs ADA1 GBDT1 XGB1 LGB1 CAT1

M2 Tmax, Tmin, RH ADA2 GBDT2 XGB2 LGB2 CAT2

M3 Tmax, Tmin, U2 ADA3 GBDT3 XGB3 LGB3 CAT3

M4 Tmax, Tmin ADA4 GBDT4 XGB4 LGB4 CAT4

M5 Tmax, Tmin, Ra ADA5 GBDT5 XGB5 LGB5 CAT5

M6 Tmax, Tmin, J ADA6 GBDT6 XGB6 LGB6 CAT6

https://doi.org/10.1371/journal.pone.0235324.t002
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As shown in Table 3, CAT models generally achieved the best performance (on average

RMSE of 0.5259 mm d-1, MAE of 0.3614 mm d-1 and Adj_R2 of 0.9168) among all the tested

models with all input combinations at Harbin station (TMZ), followed by LGB (on average

RMSE of 0.5430 mm d-1, MAE of 0.3671 mm d-1 and Adj_R2 of 0.9142) and XGB (on average

RMSE of 0.5376 mm d-1, MAE of 0.3727 mm d-1 and Adj_R2 of 0.9128). The GBDT models

could also achieve acceptable precision (on average RMSE of 0.5618 mm d-1, MAE of 0.3883

mm d-1 and Adj_R2 of 0.9041), while the original ADA models had the relatively worst perfor-

mance (on average RMSE of 0.6597 mm d-1, MAE of 0.5077 mm d-1 and Adj_R2 of 0.8704).

Table 3. Performance of Boosting-based models during 10-fold cross validation and testing stages at Harbin station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.5748 0.4715 0.9019 0.5400 0.4140 0.9042

GBDT1 0.4523 0.2994 0.9400 0.3942 0.2790 0.9489

XGB1 0.4354 0.2937 0.9444 0.3769 0.2784 0.9533

LGB1 0.4335 0.2890 0.9449 0.3721 0.2694 0.9545

CAT1 0.4288 0.2871 0.9461 0.3699 0.2662 0.9550

Tmax, Tmin, RH

ADA2 0.6108 0.4857 0.8883 0.6400 0.5263 0.8654

GBDT2 0.4511 0.2994 0.9401 0.4270 0.2843 0.9401

XGB2 0.4411 0.3051 0.9427 0.4228 0.2994 0.9413

LGB2 0.4385 0.2950 0.9433 0.4261 0.2925 0.9403

CAT2 0.4334 0.2919 0.9446 0.4123 0.2844 0.9441

Tmax, Tmin, U2

ADA3 0.7052 0.5417 0.8537 0.6934 0.5441 0.8420

GBDT3 0.6268 0.4417 0.8838 0.6091 0.4275 0.8781

XGB3 0.6108 0.4348 0.8899 0.5955 0.4286 0.8834

LGB3 0.6091 0.4324 0.8906 0.5885 0.4211 0.8862

CAT3 0.5997 0.4259 0.8940 0.5811 0.4132 0.8890

Tmax, Tmin

ADA4 0.7432 0.5585 0.8373 0.7524 0.5557 0.8141

GBDT4 0.6911 0.4821 0.8596 0.6508 0.4656 0.8609

XGB4 0.6817 0.4905 0.8636 0.6488 0.4804 0.8618

LGB4 0.6709 0.4803 0.8684 0.6269 0.4516 0.8709

CAT4 0.6586 0.4657 0.8726 0.6228 0.4466 0.8726

Tmax, Tmin, Ra

ADA5 0.6812 0.5107 0.8632 0.6806 0.5286 0.8478

GBDT5 0.5581 0.3706 0.9086 0.5358 0.3668 0.9057

XGB5 0.5330 0.3584 0.9168 0.5094 0.3563 0.9147

LGB5 0.5291 0.3543 0.9181 0.5019 0.3460 0.9172

CAT5 0.5224 0.3507 0.9201 0.4957 0.3385 0.9193

Tmax, Tmin, J

ADA6 0.6429 0.4783 0.8782 0.6426 0.4856 0.8643

GBDT6 0.5394 0.3600 0.9147 0.5185 0.3536 0.9117

XGB6 0.5235 0.3539 0.9197 0.5075 0.3554 0.9153

LGB6 0.5228 0.3516 0.9199 0.4928 0.3424 0.9202

CAT6 0.5122 0.3473 0.9231 0.4897 0.3395 0.9212

https://doi.org/10.1371/journal.pone.0235324.t003
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During the 10-fold cross validation stage, models with M1(Rs) input (with RMSE ranged

from 0.4288–0.5748 mm d-1, MAE ranged from 0.2871–0.4715 mm d-1, Adj_R2 ranged from

0.9019–0.9461) and M2(RH) input (with RMSE ranged from 0.4334–0.6108 mm d-1, MAE

ranged from 0.2919–0.4857 mm d-1, Adj_R2 ranged from 0.8883–0.9446) performed the best.

When only Tmax and Tmin data were inputted, models based on M4 input achieved the worst

precision (with RMSE ranged from 0.4288–0.5748 mm d-1, MAE ranged from 0.2871–0.4715

mm d-1, Adj_R2 ranged from 0.8373–0.8726), followed by models based on M3(U2) input

(with RMSE ranged from 0.5997–0.7052 mm d-1, MAE ranged from 0.4259–0.5417 mm d-1,

Table 4. Performance of Boosting-based models during 10-fold cross validation and testing stages at Shenyang station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.6376 0.5208 0.8792 0.6089 0.4706 0.8795

GBDT1 0.5315 0.3657 0.9184 0.4912 0.3413 0.9216

XGB1 0.5173 0.3630 0.9225 0.4785 0.3399 0.9256

LGB1 0.5139 0.3567 0.9236 0.4721 0.3307 0.9276

CAT1 0.5020 0.3506 0.9272 0.4656 0.3255 0.9295

Tmax, Tmin, RH

ADA2 0.6737 0.5374 0.8635 0.6533 0.5281 0.8613

GBDT2 0.5224 0.3571 0.9202 0.4875 0.3350 0.9228

XGB2 0.5085 0.3603 0.9242 0.4813 0.3417 0.9247

LGB2 0.5071 0.3528 0.9246 0.4801 0.3309 0.9251

CAT2 0.5027 0.3485 0.9259 0.4763 0.3311 0.9264

Tmax, Tmin, U2

ADA3 0.7903 0.6300 0.8157 0.7637 0.6239 0.8104

GBDT3 0.6644 0.4896 0.8695 0.6189 0.4626 0.8755

XGB3 0.6488 0.4820 0.8758 0.5992 0.4545 0.8833

LGB3 0.6477 0.4797 0.8763 0.5933 0.4481 0.8856

CAT3 0.6334 0.4711 0.8814 0.5894 0.4491 0.8871

Tmax, Tmin

ADA4 0.8371 0.6621 0.7935 0.8270 0.6298 0.7779

GBDT4 0.7469 0.5449 0.8375 0.7002 0.5226 0.8408

XGB4 0.7419 0.5578 0.8391 0.6952 0.5368 0.8430

LGB4 0.7218 0.5371 0.8485 0.6633 0.5031 0.8571

CAT4 0.7087 0.5263 0.8532 0.6584 0.4994 0.8592

Tmax, Tmin, Ra

ADA5 0.7546 0.5880 0.8322 0.7240 0.5741 0.8297

GBDT5 0.6150 0.4283 0.8924 0.5693 0.4098 0.8947

XGB5 0.5879 0.4166 0.8992 0.5506 0.4017 0.9015

LGB5 0.5835 0.4122 0.9009 0.5460 0.3945 0.9031

CAT5 0.5731 0.4073 0.9043 0.5446 0.3928 0.9036

Tmax, Tmin, J

ADA6 0.7419 0.5807 0.8381 0.7088 0.5623 0.8367

GBDT6 0.5970 0.4191 0.8959 0.5626 0.4021 0.8971

XGB6 0.5794 0.4130 0.9019 0.5462 0.3987 0.9030

LGB6 0.5752 0.4087 0.9034 0.5439 0.3921 0.9039

CAT6 0.5684 0.4068 0.9057 0.5385 0.3921 0.9058

https://doi.org/10.1371/journal.pone.0235324.t004
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Adj_R2 ranged from 0.8537–0.8940). It is worth to see that models based on M5(Ra) and M6

(J), which are combinations of temperature data with Ra and J respectively, could achieve bet-

ter performance than models based on M4 and even models based on M3 input. In addition,

models based on M6 (with RMSE ranged from 0.5122–0.6429 mm d-1, MAE ranged from

0.3473–0.4783 mm d-1, Adj_R2 ranged from 0. 8782–0.9231) could obtain slightly better accu-

racy than models based on M5 (with RMSE ranged from 0.5224–0.6812 mm d-1, MAE ranged

from 0.3507–0.5107 mm d-1, Adj_R2 ranged from 0.8632–0.9201).

Table 5. Performance of Boosting-based models during 10-fold cross validation and testing stages at Yan’an station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.6368 0.5079 0.8905 0.6544 0.5167 0.8700

GBDT1 0.5508 0.4074 0.9180 0.5198 0.3963 0.9180

XGB1 0.5338 0.3975 0.9230 0.4962 0.3842 0.9252

LGB1 0.5299 0.3930 0.9241 0.4876 0.3777 0.9278

CAT1 0.5251 0.3895 0.9254 0.4829 0.3732 0.9292

Tmax, Tmin, RH

ADA2 0.6503 0.5274 0.8851 0.6819 0.5633 0.8588

GBDT2 0.5592 0.3997 0.9156 0.5238 0.3809 0.9167

XGB2 0.5361 0.3935 0.9225 0.5126 0.3826 0.9202

LGB2 0.5377 0.3893 0.9219 0.5166 0.3804 0.9190

CAT2 0.5280 0.3830 0.9248 0.5016 0.3679 0.9236

Tmax, Tmin, U2

ADA3 0.8212 0.6553 0.8172 0.8121 0.6559 0.7998

GBDT3 0.6703 0.5010 0.8785 0.6402 0.4793 0.8756

XGB3 0.6560 0.4919 0.8836 0.6262 0.4714 0.8810

LGB3 0.6524 0.4890 0.8849 0.6211 0.4655 0.8829

CAT3 0.6411 0.4817 0.8888 0.6117 0.4597 0.8864

Tmax, Tmin

ADA4 0.8948 0.7024 0.7832 0.8925 0.6975 0.7583

GBDT4 0.8265 0.6165 0.8160 0.7883 0.5962 0.8115

XGB4 0.8096 0.6191 0.8232 0.7723 0.6023 0.8190

LGB4 0.8013 0.6078 0.8275 0.7480 0.5736 0.8302

CAT4 0.7890 0.5960 0.8323 0.7372 0.5642 0.8351

Tmax, Tmin, Ra

ADA5 0.7998 0.6248 0.8269 0.7930 0.6194 0.8091

GBDT5 0.6810 0.4994 0.8756 0.6599 0.4852 0.8678

XGB5 0.6614 0.4888 0.8819 0.6354 0.4720 0.8774

LGB5 0.6598 0.4878 0.8825 0.6275 0.4668 0.8804

CAT5 0.6499 0.4818 0.8860 0.6157 0.4566 0.8849

Tmax, Tmin, J

ADA6 0.7835 0.6064 0.8340 0.7825 0.6067 0.8141

GBDT6 0.6742 0.4964 0.8774 0.6494 0.4812 0.8720

XGB6 0.6550 0.4870 0.8842 0.6326 0.4720 0.8785

LGB6 0.6523 0.4844 0.8852 0.6209 0.4633 0.8830

CAT6 0.6397 0.4755 0.8896 0.6118 0.4570 0.8864

https://doi.org/10.1371/journal.pone.0235324.t005
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The performance of tested models at Changsha station (SMZ) was demonstrated in Table 6.

The accuracy ranking of various Boosting-based models was same as that of Harbin station,

which was in the order of CAT, LGB, XGB, GBDT and ADA. However, the overall simulation

accuracy suffered a slight decrease compared with the performance of models at Harbin sta-

tion, the average Adj_R2 value of ADA, GBDT, XGB, LGB and CAT decreased by 13.02%,

11.22%, 10.00%, 10.00% and 9.72% respectively. Particularly, models based on M1 combina-

tion achieved the best precision (with RMSE ranged from 0.2746–0.4275 mm d-1, MAE ranged

Table 6. Performance of Boosting-based models during 10-fold cross validation and testing stages at Ji’nan station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.7516 0.6139 0.8547 0.6986 0.5436 0.8637

GBDT1 0.6115 0.4357 0.9047 0.5679 0.4050 0.9100

XGB1 0.5977 0.4309 0.9089 0.5423 0.3940 0.9179

LGB1 0.5924 0.4249 0.9106 0.5359 0.3870 0.9198

CAT1 0.5861 0.4198 0.9124 0.5259 0.3789 0.9228

Tmax, Tmin, RH

ADA2 0.8077 0.6538 0.8315 0.7889 0.6382 0.8262

GBDT2 0.6413 0.4586 0.8952 0.6132 0.4384 0.8950

XGB2 0.6143 0.4513 0.9034 0.5860 0.4360 0.9041

LGB2 0.6124 0.4444 0.9042 0.5769 0.4209 0.9071

CAT2 0.6044 0.4388 0.9066 0.5766 0.4204 0.9072

Tmax, Tmin, U2

ADA3 0.8731 0.6815 0.8043 0.8215 0.6502 0.8115

GBDT3 0.7067 0.5301 0.8717 0.6672 0.5015 0.8757

XGB3 0.6931 0.5226 0.8767 0.6472 0.4891 0.8830

LGB3 0.6907 0.5206 0.8776 0.6454 0.4877 0.8837

CAT3 0.6811 0.5126 0.8810 0.6334 0.4755 0.8880

Tmax, Tmin

ADA4 0.9552 0.7496 0.7658 0.9106 0.7133 0.7686

GBDT4 0.8563 0.6407 0.8135 0.8108 0.6155 0.8166

XGB4 0.8500 0.6508 0.8159 0.7829 0.6107 0.8289

LGB4 0.8330 0.6297 0.8240 0.7651 0.5826 0.8366

CAT4 0.8204 0.6183 0.8287 0.7471 0.5705 0.8442

Tmax, Tmin, Ra

ADA5 0.8630 0.6652 0.8089 0.8226 0.6402 0.8111

GBDT5 0.7330 0.5349 0.8626 0.6907 0.5090 0.8668

XGB5 0.7139 0.5236 0.8698 0.6723 0.4996 0.8738

LGB5 0.7099 0.5200 0.8713 0.6629 0.4916 0.8773

CAT5 0.7042 0.5146 0.8734 0.6520 0.4847 0.8813

Tmax, Tmin, J

ADA6 0.8357 0.6445 0.8215 0.7851 0.6114 0.8279

GBDT6 0.7259 0.5306 0.8654 0.6957 0.5156 0.8649

XGB6 0.7044 0.5182 0.8732 0.6643 0.4957 0.8768

LGB6 0.6978 0.5126 0.8757 0.6569 0.4898 0.8795

CAT6 0.6877 0.5060 0.8791 0.6479 0.4801 0.8828

https://doi.org/10.1371/journal.pone.0235324.t006
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from 0.1959–0.3527 mm d-1, Adj_R2 ranged from 0.8976–0.9573),which was far ahead of mod-

els with other input combinations. The above results could also be found in the testing stage.

Table 12 showed the performance of tested models at Guangzhou station (TPMZ).

Same performance ranking of tested models could also be found at Guangzhou station, but

overall simulation accuracy suffered a more significant decrease, the average Adj_R2 value

of ADA, GBDT, XGB, LGB and CAT decreased by 38.39%, 30.08%, 27.83%, 27.43 and

26.73% respectively, compared with those of models at Harbin station. In terms of effect of

input combinations on modeling accuracy, models with M5 (with RMSE ranged from

Table 7. Performance of Boosting-based models during 10-fold cross validation and testing stages at Nanjing station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs
ADA1 0.5564 0.4663 0.8590 0.5494 0.4638 0.8597

GBDT1 0.3918 0.2850 0.9315 0.3605 0.2721 0.9396

XGB1 0.3832 0.2816 0.9345 0.3505 0.2658 0.9429

LGB1 0.3798 0.2784 0.9356 0.3476 0.2630 0.9438

CAT1 0.3740 0.2743 0.9376 0.3406 0.2593 0.9461

Tmax, Tmin, RH
ADA2 0.6397 0.5326 0.8157 0.5993 0.4761 0.8330

GBDT2 0.5462 0.3969 0.8665 0.5175 0.3749 0.8755

XGB2 0.5269 0.3923 0.8757 0.4994 0.3762 0.8840

LGB2 0.5264 0.3880 0.8760 0.4970 0.3659 0.8851

CAT2 0.5194 0.3830 0.8793 0.4917 0.3602 0.8876

Tmax, Tmin, U2

ADA3 0.7774 0.6195 0.7265 0.7634 0.6113 0.7290

GBDT3 0.6851 0.5174 0.7893 0.6453 0.4913 0.8064

XGB3 0.6647 0.5042 0.8016 0.6226 0.4792 0.8198

LGB3 0.6613 0.5021 0.8038 0.6130 0.4722 0.8252

CAT3 0.6548 0.4956 0.8076 0.6065 0.4642 0.8290

Tmax, Tmin

ADA4 0.9803 0.7305 0.5812 0.7509 0.6003 0.7380

GBDT4 0.7695 0.5441 0.7446 0.6737 0.5172 0.7891

XGB4 0.6927 0.5365 0.7849 0.6583 0.5171 0.7986

LGB4 0.6785 0.5170 0.7940 0.6359 0.4901 0.8121

CAT4 0.6699 0.5081 0.7992 0.6274 0.4820 0.8171

Tmax, Tmin, Ra
ADA5 0.7482 0.5925 0.7474 0.7352 0.5801 0.7487

GBDT5 0.6311 0.4661 0.8215 0.6141 0.4575 0.8247

XGB5 0.6106 0.4534 0.8328 0.5935 0.4470 0.8362

LGB5 0.6062 0.4501 0.8352 0.5875 0.4431 0.8395

CAT5 0.6014 0.4453 0.8379 0.5738 0.4298 0.8469

Tmax, Tmin, J
ADA6 0.7645 0.6077 0.7359 0.7557 0.6005 0.7345

GBDT6 0.6243 0.4609 0.8253 0.6072 0.4536 0.8286

XGB6 0.6030 0.4479 0.8370 0.5850 0.4433 0.8408

LGB6 0.5980 0.4454 0.8397 0.5781 0.4387 0.8446

CAT6 0.5914 0.4380 0.8431 0.5665 0.4244 0.8508

https://doi.org/10.1371/journal.pone.0235324.t007
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0.6494–0.7622 mm d-1, MAE ranged from 0.5036–0.6171 mm d-1, Adj_R2 ranged from

0.4512–0.5992) performed slightly worse than models with M3 (with RMSE ranged from

0.6322–0.7658 mm d-1, MAE ranged from 0.4906–0.6215 mm d-1, Adj_R2 ranged from

0.4457–0.6207), while models with M6 (with RMSE ranged from 0.6171–0.7580 mm d-1,

MAE ranged from 0.4745–0.6138 mm d-1, Adj_R2 ranged from 0.4574–0. 6382) still per-

formed better than models with M3, while the effect of the other input combinations was

generally the same as that of Harbin station and Changsha station.

Table 8. Performance of Boosting-based models during 10-fold cross validation and testing stages at Changsha station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs
ADA1 0.4275 0.3527 0.8976 0.4433 0.3658 0.8894

GBDT1 0.2865 0.2037 0.9536 0.2715 0.1989 0.9585

XGB1 0.2790 0.2011 0.9559 0.2641 0.1952 0.9607

LGB1 0.2790 0.1994 0.9559 0.2654 0.1935 0.9604

CAT1 0.2746 0.1959 0.9573 0.2569 0.1881 0.9628

Tmax, Tmin, RH
ADA2 0.6134 0.4873 0.7908 0.5861 0.4568 0.8066

GBDT2 0.5744 0.4212 0.8161 0.5355 0.3968 0.8386

XGB2 0.5528 0.4121 0.8298 0.5141 0.3879 0.8512

LGB2 0.5531 0.4098 0.8296 0.5086 0.3805 0.8544

CAT2 0.5462 0.4040 0.8338 0.5021 0.3731 0.8581

Tmax, Tmin, U2

ADA3 0.7151 0.5802 0.7143 0.7130 0.5798 0.7138

GBDT3 0.6466 0.4789 0.7667 0.6281 0.4700 0.7779

XGB3 0.6258 0.4693 0.7816 0.6041 0.4586 0.7945

LGB3 0.6257 0.4684 0.7818 0.6018 0.4553 0.7961

CAT3 0.6176 0.4623 0.7873 0.5978 0.4480 0.7988

Tmax, Tmin

ADA4 0.7174 0.5808 0.7129 0.6982 0.5617 0.7257

GBDT4 0.6622 0.4968 0.7558 0.6394 0.4870 0.7700

XGB4 0.6484 0.5009 0.7659 0.6319 0.4954 0.7754

LGB4 0.6421 0.4913 0.7713 0.6197 0.4753 0.7840

CAT4 0.6335 0.4813 0.7767 0.6117 0.4672 0.7895

Tmax, Tmin, Ra
ADA5 0.7158 0.5807 0.7138 0.7172 0.5841 0.7104

GBDT5 0.6276 0.4606 0.7802 0.6169 0.4533 0.7858

XGB5 0.6053 0.4487 0.7956 0.5938 0.4444 0.8015

LGB5 0.6035 0.4477 0.7969 0.5912 0.4407 0.8032

CAT5 0.5943 0.4394 0.8030 0.5834 0.4321 0.8084

Tmax, Tmin, J
ADA6 0.7163 0.5798 0.7133 0.7133 0.5782 0.7136

GBDT6 0.6188 0.4540 0.7863 0.6081 0.4530 0.7918

XGB6 0.5978 0.4430 0.8007 0.5896 0.4437 0.8043

LGB6 0.5962 0.4415 0.8018 0.5870 0.4392 0.8061

CAT6 0.5870 0.4324 0.8079 0.5754 0.4271 0.8136

https://doi.org/10.1371/journal.pone.0235324.t008
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In conclusion, CAT models could offer the highest accuracy among all tested models

no matter under what input combination or at which station, followed by LGB and XGB

models, which could also achieve relatively satisfactory precision. There is no doubt CAT1

based on Rs obtained the best performance and be highly recommend for estimating daily

ET0 in this study area. However, CAT5 and CAT6 models based on only temperature data

and partial geographic data could achieve acceptable accuracy with fewest meteorological

variables, which can be regarded as more cost-effective and more conducive to promotion

and application.

Table 9. Performance of Boosting-based models during 10-fold cross validation and testing stages at Chengdu station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.5473 0.4533 0.8515 0.5506 0.4556 0.8458

GBDT1 0.3697 0.2630 0.9323 0.3640 0.2583 0.9326

XGB1 0.3595 0.2585 0.9360 0.3543 0.2528 0.9361

LGB1 0.3582 0.2556 0.9364 0.3516 0.2508 0.9371

CAT1 0.3521 0.2499 0.9385 0.3413 0.2439 0.9407

Tmax, Tmin, RH

ADA2 0.5962 0.4731 0.8247 0.5907 0.4662 0.8225

GBDT2 0.5552 0.4074 0.8476 0.5501 0.4005 0.8461

XGB2 0.5425 0.4042 0.8545 0.5201 0.3891 0.8624

LGB2 0.5370 0.3978 0.8574 0.5235 0.3852 0.8606

CAT2 0.5337 0.3943 0.8592 0.5109 0.3746 0.8672

Tmax, Tmin, U2

ADA3 0.6889 0.5560 0.7665 0.6831 0.5553 0.7626

GBDT3 0.6100 0.4645 0.8166 0.6092 0.4681 0.8112

XGB3 0.5914 0.4548 0.8277 0.5908 0.4595 0.8224

LGB3 0.5898 0.4529 0.8286 0.5881 0.4576 0.8240

CAT3 0.5835 0.4483 0.8323 0.5753 0.4455 0.8316

Tmax, Tmin

ADA4 0.7012 0.5602 0.7582 0.7124 0.5639 0.7419

GBDT4 0.6482 0.4973 0.7933 0.6495 0.5004 0.7855

XGB4 0.6369 0.4984 0.8006 0.6376 0.5016 0.7933

LGB4 0.6288 0.4910 0.8060 0.6330 0.4933 0.7963

CAT4 0.6197 0.4808 0.8110 0.6206 0.4820 0.8042

Tmax, Tmin, Ra

ADA5 0.6824 0.5470 0.7703 0.6857 0.5549 0.7608

GBDT5 0.6159 0.4711 0.8125 0.6267 0.4753 0.8002

XGB5 0.5944 0.4593 0.8256 0.5967 0.4606 0.8189

LGB5 0.5948 0.4588 0.8253 0.5953 0.4587 0.8197

CAT5 0.5869 0.4521 0.8300 0.5795 0.4474 0.8292

Tmax, Tmin, J

ADA6 0.6739 0.5376 0.7760 0.6697 0.5414 0.7719

GBDT6 0.6135 0.4689 0.8141 0.6180 0.4750 0.8057

XGB6 0.5963 0.4599 0.8247 0.5943 0.4594 0.8203

LGB6 0.5949 0.4590 0.8255 0.5916 0.4574 0.8219

CAT6 0.5881 0.4531 0.8294 0.5800 0.4500 0.8288

https://doi.org/10.1371/journal.pone.0235324.t009
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Comparison of model accuracy stability with different input combinations

across 10 stations

Fig 2 demonstrated the average RMSE values of Boosting-based models with various input

combinations across 10 stations as a box plot. Because of the modeling accuracy of ADA mod-

els were much worse than the other Boosting-based models, the stability comparison employed

in present study mainly focuses on GBDT, XGB, LGB and CAT models. Among the tested

models, CAT model not only achieved the smallest average RMSE value, but also the most

Table 10. Performance of Boosting-based models during 10-fold cross validation and testing stages at Kunming station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.4682 0.3851 0.8682 0.4675 0.3742 0.8841

GBDT1 0.3507 0.2514 0.9264 0.3735 0.2696 0.9260

XGB1 0.3415 0.2469 0.9301 0.3648 0.2624 0.9294

LGB1 0.3408 0.2457 0.9303 0.3655 0.2616 0.9291

CAT1 0.3338 0.2417 0.9331 0.3557 0.2538 0.9329

Tmax, Tmin, RH

ADA2 0.4430 0.3525 0.8816 0.5061 0.3937 0.8642

GBDT2 0.4156 0.3253 0.8962 0.4346 0.3354 0.8998

XGB2 0.4039 0.3168 0.9020 0.4199 0.3262 0.9065

LGB2 0.4028 0.3158 0.9025 0.4166 0.3236 0.9079

CAT2 0.3977 0.3106 0.9049 0.4110 0.3173 0.9104

Tmax, Tmin, U2

ADA3 0.5864 0.4690 0.7933 0.6212 0.4958 0.7953

GBDT3 0.4982 0.3868 0.8503 0.5096 0.4015 0.8622

XGB3 0.4887 0.3807 0.8559 0.4982 0.3925 0.8683

LGB3 0.4871 0.3791 0.8569 0.4998 0.3941 0.8675

CAT3 0.4785 0.3721 0.8618 0.4890 0.3819 0.8732

Tmax, Tmin

ADA4 0.6290 0.5001 0.7630 0.6779 0.5351 0.7564

GBDT4 0.5791 0.4494 0.7988 0.5890 0.4603 0.8161

XGB4 0.5665 0.4437 0.8076 0.5785 0.4570 0.8226

LGB4 0.5633 0.4398 0.8103 0.5720 0.4476 0.8266

CAT4 0.5542 0.4314 0.8157 0.5620 0.4387 0.8325

Tmax, Tmin, Ra

ADA5 0.6152 0.4864 0.7731 0.6373 0.5038 0.7845

GBDT5 0.5087 0.3899 0.8448 0.5250 0.4059 0.8538

XGB5 0.5007 0.3828 0.8498 0.5118 0.3947 0.8611

LGB5 0.4996 0.3829 0.8504 0.5162 0.3982 0.8587

CAT5 0.4914 0.3766 0.8551 0.4906 0.3768 0.8724

Tmax, Tmin, J

ADA6 0.5392 0.4227 0.8254 0.5712 0.4467 0.8269

GBDT6 0.4735 0.3662 0.8654 0.4933 0.3831 0.8709

XGB6 0.4607 0.3561 0.8726 0.4772 0.3716 0.8792

LGB6 0.4602 0.3558 0.8729 0.4772 0.3719 0.8792

CAT6 0.4507 0.3486 0.8780 0.4624 0.3592 0.8866

https://doi.org/10.1371/journal.pone.0235324.t010
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concentrated distribution of RMSE values regardless of the input combinations, which indi-

cated that the CAT model had the best precision stability. The stability of the other three mod-

els is basically the same, thus the modeling accuracy should be the primary consideration

when selecting one model for estimating ET0 among these 3 models. In terms of the effect of

input combinations, taking CAT models as example, the RMSE values of CAT model based on

M2 input obtained the minimal fluctuation (with RMSE ranged from 0.4334–0.6044) across

10 stations, followed by models based on M3, M6, M5, M4 and M1. It’s also worth noting that

although the accuracy of models with M1 input was the highest in each station, the accuracy

Table 11. Performance of Boosting-based models during 10-fold cross validation and testing stages at Nanning station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.5397 0.4489 0.7728 0.5938 0.5139 0.7500

GBDT1 0.4300 0.3023 0.8540 0.4247 0.3110 0.8721

XGB1 0.4152 0.2952 0.8638 0.4043 0.3040 0.8841

LGB1 0.4149 0.2935 0.8640 0.4016 0.3003 0.8857

CAT1 0.4105 0.2916 0.8667 0.3932 0.2942 0.8904

Tmax, Tmin, RH

ADA2 0.5919 0.4837 0.7254 0.6139 0.4964 0.7327

GBDT2 0.5260 0.4050 0.7812 0.4995 0.3778 0.8231

XGB2 0.5169 0.4029 0.7893 0.4900 0.3797 0.8298

LGB2 0.5104 0.3946 0.7942 0.4796 0.3649 0.8369

CAT2 0.5060 0.3902 0.7978 0.4768 0.3638 0.8388

Tmax, Tmin, U2

ADA3 0.7424 0.6064 0.5696 0.7750 0.6370 0.5742

GBDT3 0.6539 0.5113 0.6642 0.6455 0.5088 0.7045

XGB3 0.6412 0.5036 0.6774 0.6376 0.5039 0.7118

LGB3 0.6399 0.5023 0.6788 0.6377 0.5050 0.7116

CAT3 0.6344 0.4972 0.6842 0.6323 0.4984 0.7165

Tmax, Tmin

ADA4 0.7500 0.6074 0.5613 0.7671 0.6218 0.5830

GBDT4 0.7145 0.5614 0.5995 0.7165 0.5661 0.6362

XGB4 0.6923 0.5490 0.6247 0.6903 0.5587 0.6623

LGB4 0.6903 0.5470 0.6280 0.6812 0.5478 0.6712

CAT4 0.6847 0.5417 0.6327 0.6747 0.5444 0.6774

Tmax, Tmin, Ra

ADA5 0.7374 0.5984 0.5752 0.7689 0.6298 0.5808

GBDT5 0.6694 0.5241 0.6466 0.6677 0.5308 0.6839

XGB5 0.6538 0.5146 0.6635 0.6482 0.5221 0.7021

LGB5 0.6553 0.5168 0.6622 0.6472 0.5217 0.7030

CAT5 0.6486 0.5108 0.6686 0.6401 0.5164 0.7095

Tmax, Tmin, J

ADA6 0.7472 0.6066 0.5638 0.7834 0.6411 0.5648

GBDT6 0.6390 0.4957 0.6792 0.6405 0.5047 0.7092

XGB6 0.6236 0.4849 0.6948 0.6221 0.4959 0.7256

LGB6 0.6245 0.4863 0.6941 0.6222 0.4949 0.7255

CAT6 0.6165 0.4810 0.7011 0.6062 0.4833 0.7395

https://doi.org/10.1371/journal.pone.0235324.t011
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gap between stations across different climate zones was the largest (with RMSE ranged from

0.2746–0.5861), which may as a result of the differences in the Rs distribution among each sta-

tion and the different contribution of Rs to daily ET0 across various climate zones.

The results of path analysis between meteorological variables and ET0 at 10

stations

Path analysis is a method proposed by Sewell Wright for studying the direct and indirect

effects of independent variables on dependent variables and quantitatively analyzing the

Table 12. Performance of Boosting-based models during 10-fold cross validation and testing stages at Guangzhou station.

Models 10 Fold cross validation results Testing results

RMSE MAE Adj_R2 RMSE MAE Adj_R2

mm/d mm/d mm/d mm/d

Tmax, Tmin, Rs

ADA1 0.4997 0.4115 0.7624 0.5269 0.4457 0.7515

GBDT1 0.3890 0.2610 0.8539 0.3751 0.2614 0.8740

XGB1 0.3778 0.2577 0.8618 0.3620 0.2613 0.8827

LGB1 0.3760 0.2557 0.8629 0.3585 0.2562 0.8849

CAT1 0.3708 0.2516 0.8664 0.3528 0.2533 0.8886

Tmax, Tmin, RH

ADA2 0.6114 0.5029 0.6453 0.5971 0.4804 0.6808

GBDT2 0.5396 0.4172 0.7228 0.5243 0.3938 0.7539

XGB2 0.5334 0.4186 0.7292 0.5013 0.3846 0.7750

LGB2 0.5253 0.4068 0.7374 0.5005 0.3783 0.7757

CAT2 0.5193 0.4036 0.7432 0.4891 0.3697 0.7858

Tmax, Tmin, U2

ADA3 0.7658 0.6215 0.4457 0.7854 0.6315 0.4478

GBDT3 0.6596 0.5088 0.5866 0.6558 0.5006 0.6149

XGB3 0.6422 0.4990 0.6086 0.6341 0.4875 0.6400

LGB3 0.6407 0.4988 0.6106 0.6296 0.4853 0.6451

CAT3 0.6322 0.4906 0.6207 0.6167 0.4760 0.6596

Tmax, Tmin

ADA4 0.7593 0.6152 0.4558 0.7797 0.6181 0.4561

GBDT4 0.7109 0.5574 0.5210 0.6976 0.5467 0.5645

XGB4 0.6944 0.5501 0.5439 0.6736 0.5365 0.5940

LGB4 0.6872 0.5422 0.5542 0.6654 0.5255 0.6038

CAT4 0.6794 0.5336 0.5625 0.6555 0.5169 0.6156

Tmax, Tmin, Ra

ADA5 0.7622 0.6171 0.4512 0.7871 0.6389 0.4453

GBDT5 0.6737 0.5221 0.5688 0.6547 0.5084 0.6162

XGB5 0.6592 0.5125 0.5874 0.6427 0.5037 0.6302

LGB5 0.6566 0.5110 0.5904 0.6365 0.4990 0.6373

CAT5 0.6494 0.5036 0.5992 0.6249 0.4879 0.6504

Tmax, Tmin, J

ADA6 0.7580 0.6138 0.4574 0.7875 0.6386 0.4449

GBDT6 0.6450 0.4946 0.6047 0.6294 0.4838 0.6453

XGB6 0.6312 0.4865 0.6217 0.6127 0.4760 0.6639

LGB6 0.6282 0.4843 0.6252 0.6083 0.4738 0.6687

CAT6 0.6171 0.4745 0.6382 0.5909 0.4560 0.6874

https://doi.org/10.1371/journal.pone.0235324.t012
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mutual influence degree of factors. Therefore, this study introduced path analysis to analyze

the effect of Tmax, Tmin, RH, U2 and Rs on daily ET0. The results of path analysis between mete-

orological variables and ET0 across all stations were shown in Table 13.

It could be found from Table 13 that except for RH and U2, the other 3 meteorological vari-

ables all had positive correlation coefficient to ET0 at all 10 stations. As illustrated in Fig 3A,

the dashed line is the trend line of its corresponding meteorological variables. At stations in

TMZ, the correlation coefficient of Tmax, Tmin, RH, U2 and Rs were 0.799–0.860,0.643–0.787,-

0.442- -0.614,0.034–0.240 and 0.843–0.865 respectively. When it comes to stations in SMZ, the

correlation coefficient of Tmax, Tmin, RH, U2 and Rs were 0.741–0.793,0.374–0.639,-0.343-

-0.806, -0.091–0.345 and 0.866–0.927 respectively. And the correlation coefficient of Tmax,

Tmin, RH, U2 and Rs were 0.527–0.643,0.270–0.402,-0.349- -0.367, -0.045–0.209 and 0.865–

0.909 respectively at stations in TPMZ. It’s obvious to see that from Harbin station to Guang-

zhou station, the correlation coefficient of Tmax, Tmin, RH and U2 with ET0 showed decrease

trend in general, while only Rs were on the contrary (increased from 0.749 at Harbin station to

0.826 at Guangzhou station), which indicated that the overall contribution of Rs on ET0

increased significantly and became more and more crucial for accurately estimating ET0 as the

latitude of the station goes down in this study area.

The direct effects tendency of Tmax, Tmin, RH, U2 and Rs on ET0 across 10 stations was

shown in Fig 3B. At Harbin station, Tmax contributed the largest direct effect (0.544), which

was 0.154 more than Rs (0.390), but the direct effect of Tmin was almost none, only 0.003. As

the station’s latitude goes down, the direct effect of Tmax showed a significant decrease, the

direct effect of Tmin, RH (absolute value) and Rs had apparent rise, and that of U2 showed a

slight rise. When it comes to Guangzhou station, the direct effect of Tmax only left 0.104, while

the direct effect of Rs rose to 0.711 and Tmin exceeded Tmax to 0.348. This trend is similarly

reflected in the overall contribution of variables to R2. It can be seen from Fig 3C, specially, as

the second most contributing variable (0.142) at Harbin station, Tmax reduced to the least con-

tributing variable (0.001)at Guangzhou station. On the contrary, Tmin, which is the least con-

tributing variable at Harbin station (0.000), could offer a contribution to R2 of 0.069 at

Guangzhou station. Other meteorological variables also gradually increase the contribution to

the R2 of ET0 estimation results, as the latitude goes from north to south.

Fig 2. Average RMSE values of Boosting-based models at 10 stations under different input combinations.

https://doi.org/10.1371/journal.pone.0235324.g002
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Table 13. Path analysis between meteorological variables and ET0 at 10 stations.

Meteorological Variables Correlation Coefficient Direct Effect Indirect Effect Contribution to R2

Tmax Tmin RH U2 RS Sum

Harbin

Tmax 0.860 0.544 - 0.976 -0.318 -0.085 0.670 0.316 0.142

Tmin 0.787 0.003 0.976 - -0.216 -0.097 0.567 0.784 0.000

RH -0.614 -0.184 -0.318 -0.318 - -0.125 -0.628 -0.430 0.026

U2 0.034 0.087 -0.085 -0.097 -0.125 - -0.077 -0.053 0.007

RS 0.865 0.390 0.670 0.567 -0.628 -0.077 - 0.475 0.749

Shenyang

Tmax 0.829 0.565 - 0.968 -0.016 -0.039 0.598 0.264 0.164

Tmin 0.726 0.050 0.968 - 0.130 -0.056 0.461 0.675 0.000

RH -0.442 -0.236 -0.016 0.130 - -0.087 -0.527 -0.205 0.038

U2 0.117 0.136 -0.039 -0.056 -0.087 - -0.040 -0.019 0.018

RS 0.843 0.362 0.598 0.461 -0.527 -0.040 - 0.480 0.710

Yan’an

Tmax 0.822 0.310 - 0.943 -0.156 -0.138 0.597 0.512 0.142

Tmin 0.673 0.256 0.943 - 0.068 -0.148 0.388 0.417 0.004

RH -0.581 -0.252 -0.156 0.068 - -0.208 -0.642 -0.330 0.033

U2 0.124 0.140 -0.138 -0.148 -0.208 - 0.030 -0.015 0.020

RS 0.870 0.420 0.597 0.388 -0.642 0.030 - 0.450 0.757

Jinan

Tmax 0.799 0.396 - 0.946 -0.051 -0.060 0.600 0.403 0.127

Tmin 0.643 0.190 0.946 - 0.176 -0.124 0.417 0.453 0.002

RH -0.513 -0.290 -0.051 0.176 - -0.223 -0.532 -0.223 0.052

U2 0.240 0.187 -0.060 -0.124 -0.223 - 0.098 0.053 0.032

RS 0.856 0.366 0.600 0.417 -0.532 0.098 - 0.490 0.732

Nanjing

Tmax 0.765 0.294 - 0.936 0.015 -0.137 0.504 0.471 0.144

Tmin 0.592 0.248 0.936 - 0.254 -0.080 0.300 0.344 0.004

RH -0.485 -0.299 0.015 0.254 - 0.135 -0.524 -0.186 0.038

U2 -0.091 0.133 -0.137 -0.080 0.135 - -0.237 -0.224 0.017

RS 0.866 0.519 0.504 0.300 -0.524 -0.237 - 0.347 0.750

Changsha

Tmax 0.776 0.012 - 0.930 0.019 -0.176 0.610 0.764 0.070

Tmin 0.629 0.392 0.930 - 0.296 -0.062 0.430 0.237 0.000

RH -0.343 -0.227 0.019 0.296 - 0.239 -0.378 -0.117 0.012

U2 -0.133 0.133 -0.176 -0.062 0.239 - -0.265 -0.266 0.015

RS 0.927 0.701 0.610 0.430 -0.378 -0.265 - 0.226 0.859

Chengdu

Tmax 0.793 0.260 - 0.948 -0.203 -0.002 0.595 0.532 0.104

Tmin 0.639 0.146 0.948 - 0.029 0.028 0.426 0.493 0.001

RH -0.589 -0.229 -0.203 0.029 - -0.115 -0.504 -0.360 0.043

U2 0.097 0.149 -0.002 0.028 -0.115 - -0.140 -0.052 0.022

RS 0.895 0.583 0.595 0.426 -0.504 -0.140 - 0.312 0.801

Kunming

Tmax 0.741 0.117 - 0.839 -0.368 -0.018 0.515 0.624 0.114

Tmin 0.374 0.289 0.839 - 0.102 -0.165 0.114 0.085 0.008

RH -0.806 -0.398 -0.368 0.102 - -0.362 -0.732 -0.408 0.060

(Continued)
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In conclusion, Rs had the greatest contribution to ET0, followed by Tmax, Tmin and RH,

while U2 generally had the least effect on daily ET0. These results provided an explanation for

the difference in the modeling accuracy of models with same input condition between stations

across different climate zones and could also offer a reliable reference for selecting appropriate

input combination for ET0 estimation in different climate zones.

Discussion

Effect of Ra and J on improving model accuracy

Ra has been proved that it can improve the estimation accuracy of daily ET0 when only limited

meteorological variables are available [26,46–48]. As shown in Fig 4, taking CAT models as

examples, CAT4 based on only temperature data could only obtain an average RMSE value

ranging from 0.5542–0.8204 mm day-1, while the average RMSE values of CAT5 and CAT6

ranged from 0.4914–0.7042 mm day-1and 0.4507–0.6877 mm day-1 respectively. Compared

with CAT4, employing Ra could make the average RMSE value decrease by 20.67%, 19.14%,

17.63%, 14.17%, 10.22%, 6.18%, 5.29%, 11.34%, 5.26% and 4.42% from Harbin to Guangzhou

station, while using J could make that decreased by 22.22%, 19.79%, 18.93%, 16.18%, 11.72%,

7.33%, 5.10%, 18.67%, 9.95% and 9.17% respectively. It is obvious to see that CAT6 performed

even better than CAT5 and this kind of improvement on modeling accuracy decreased as the

station’s latitude decreases. This phenomenon may as a result of meteorological conditions of

the stations in this study area are generally quite stable and ET0 is the result of the coupling

effect of various meteorological variables, so J contains more overall information and variation

pattern of ET0 than the single calculated Ra.

To sum up, the result of employing Ra with only temperature data for estimating ET0 in

present study was also same as previous. As a parameter to calculate Ra, J could also improve

the modeling accuracy with limited inputs and was even better than Ra. Therefore, models

based on J input can be recommended for estimating ET0 when partial meteorological vari-

ables and geographical data are absent.

Table 13. (Continued)

Meteorological Variables Correlation Coefficient Direct Effect Indirect Effect Contribution to R2

Tmax Tmin RH U2 RS Sum

U2 0.345 0.156 -0.018 -0.165 -0.362 - 0.205 0.189 0.023

RS 0.878 0.462 0.515 0.114 -0.732 0.205 - 0.416 0.771

Nanning

Tmax 0.643 0.222 - 0.878 0.265 -0.306 0.587 0.421 0.042

Tmin 0.402 0.256 0.878 - 0.579 -0.263 0.409 0.146 0.006

RH -0.367 -0.443 0.265 0.579 - -0.220 -0.131 0.075 0.088

U2 -0.045 0.213 -0.306 -0.263 -0.220 - -0.342 -0.258 0.071

RS 0.865 0.645 0.587 0.409 -0.131 -0.342 - 0.220 0.748

Guangzhou

Tmax 0.527 0.104 - 0.874 0.383 -0.418 0.502 0.423 0.001

Tmin 0.270 0.348 0.874 - 0.694 -0.293 0.285 -0.078 0.069

RH -0.349 -0.476 0.383 0.694 - -0.127 -0.178 0.127 0.036

U2 -0.209 0.173 -0.418 -0.293 -0.127 - -0.400 -0.382 0.021

RS 0.909 0.741 0.502 0.285 -0.178 -0.400 - 0.168 0.826

https://doi.org/10.1371/journal.pone.0235324.t013
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Strategy for selecting proper input combination at different stations

According to Tables 3–12 and the results of path analysis in 3.3, we can optimize the meteoro-

logical variables involved in the input combination at different stations. For example, Tmin has

the least contribution to R2 and smallest direct effect on daily ET0 at Harbin station, thus Tmin

could be removed from these input combinations without reducing the modeling accuracy.

Similarly, Tmax could be removed from the input combinations at Guangzhou station due to

the fact that it could hardly make contribution to the R2 value of the estimation results. The

Fig 3. Path analysis results of meteorological variables to daily ET0 across different stations. (a) Correlation

coefficient between meteorological variables and ET0 at 10 stations; (b) Direct effect of meteorological variables on ET0

at 10 stations; (c) The contribution of meteorological variables to R2 value at 10 stations.

https://doi.org/10.1371/journal.pone.0235324.g003
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different model performance between various stations could also be explained by the path

analysis results. Taking CAT models in 10-fold validation stage as examples, the correlation

coefficient of RH and U2 at Kunming station are much higher than those at other stations,

thus CAT2 model (with RMSE of 0.3977 mm d-1, MAE of 0.3106 mm d-1 and Adj_R2 of

0.9168) and CAT3 model (with RMSE of 0.4785 mm d-1, MAE of 0.3721 mm d-1 and Adj_R2

of 0.8618) achieved the highest precision compared with CAT2 and CAT3 models at other sta-

tions. In conclusion, the selection of the input combination for estimating daily ET0 should be

based on the importance and contribution of meteorological variables at each single station, so

as to make use of available meteorological variables more effectively to obtain better accuracy.

Conclusion

This study investigated 5 Boosting-based models, including original Adaptive Boosting(ADA),

Gradient Boosting Decision Tree(GBDT), Extreme Gradient Boosting(XGB), Light Gradient

Boosting Decision Tree (LGB) and Gradient boosting with categorical features support(CAT),

for accurately estimating daily ET0 value with 6 different meteorological variables input com-

binations at 10 stations across the eastern monsoon zone of China. The results indicated that

the CAT models had the highest accuracy and stability over all tested models under the same

input combinations across all stations. And the LGB and XGB models could achieve very close

accuracy, while original ADA models produced the worst performance. Under the condition

of limited meteorological variables input, Rs definitely plays the most important role for accu-

rately estimating daily ET0 value which makes the models based on M1 provide the best accu-

racy regardless of which station. Model with M2 input combination could offer the second

highest precision, while models based on M4 (only temperature data) had the worst estimation

accuracy. However, when Ra and J were employed with temperature data, the modeling accu-

racy increased significantly. The accuracy of models based on M6 generally ranked the third

place (better than models with M3 input) and models based on M5 ranked the fifth place

(much better than models with M4 input). Thus, in terms of improving the accuracy of the

Fig 4. Comparison of the RMSE value of CAT4, CAT5 and CAT6 across 10 stations.

https://doi.org/10.1371/journal.pone.0235324.g004
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models with limited meteorological variables, J has better effect than Ra and is more easier to

obtain in this study and the improvement brought by employing J was more and more signifi-

cant as the latitude of the stations increases compared with employing Ra.

In summary, the CAT could be most highly recommended for estimating daily ET0 and J

can be highly recommended for improving the accuracy of models when limited meteorologi-

cal variables are available or geographical information is absent in the eastern monsoon zone

of China.
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