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Abstract

In most organisms, dietary restriction (DR) increases lifespan. However, several studies

have found that genotypes within the same species vary widely in how they respond to DR.

To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila

melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites

under both diets. Twenty four out of 105 metabolites were associated with the magnitude of

the lifespan response. These included proteinogenic amino acids and metabolites involved

in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine

synthesis pathways in the DR response through genetic manipulations. We used covariance

network analysis to investigate diet-dependent interactions between metabolites, identifying

the essential amino acids threonine and arginine as “hub” metabolites in the DR response.

Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multi-

ple genes that influence DR lifespan response, some of which have not previously been

implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide

receptor that influences satiety response and insulin signaling. Across the lines, variation in

an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five

metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of

adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in

lifespan response. These results provide support for the power of combined genomic and

metabolomic analysis to identify key pathways underlying variation in this complex quantita-

tive trait.
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Author summary

Dietary restriction extends lifespan across most organisms in which it has been tested.

However, several studies have now demonstrated that this effect can vary dramatically

across different genotypes within a population. Within a population, dietary restriction

might be beneficial for some, yet detrimental for others. Here, we measure the metabo-

lome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly

strains vary widely in their lifespan response to dietary restriction. We then use informa-

tion about each strain’s genome and metabolome (a measure of small molecules circulat-

ing in flies) to pinpoint cellular pathways that govern this variation in response. We

identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide

receptor that has not previously been implicated in dietary restriction or age-related sig-

naling pathways. This study demonstrates the power of leveraging systems biology and

network biology methods to understand how and why different individuals vary in their

response to health and lifespan-extending interventions.

Introduction

No two individuals age in exactly the same way [1, 2]. Variation in aging, as with all complex

traits, is determined by contributions from variation in genes, the environment, and the inter-

action between the two. Similarly, an individual’s response to interventions that slow aging is

likely to be equally as complex.

Among these interventions, dietary restriction (DR) has been shown to extend lifespan in

almost all model organisms in which it has been tested [3]. However, despite this high level of

conservation across species [4], several studies suggest that the DR response might be far from

universal. For example, Harper et al. [5] found no effect of DR on mean longevity in grand-off-

spring of wild-caught mice. Additionally, results from studies in three different species reveal

extensive within-species variation in the DR response [6–10]. Liao et al. [6] showed that fewer

than half of 41 recombinant inbred mouse strains on DR showed a lifespan increase. Several

years later, a study of 166 single-gene deletion yeast strains found variation in the DR response,

ranging from a 79% reduction to a 103% increase in lifespan [7]. In 2017, Stanley et al. [9] mea-

sured lifespan for 80 recombinant inbred Drosophila melanogaster lines on control and DR

diets and found highly significant diet-by-genotype interaction for median life span. Most

recently, Wilson et al. [10] showed that of 161 naturally-derived inbred lines of D.melanoga-
ster, 71% showed a DR-mediated lifespan extension, while the rest showed either a non-signifi-

cant lifespan response or reduced lifespan under DR ([10], Fig 1A and S1A Fig). In light of this

considerable variation, to fully understand the factors that determine the response to DR, we

need to understand not only the mechanisms underlying DR itself, but also the mechanisms

that influence variation in the DR response within a population.

To better understand why some individuals respond to DR while others do not, we employ

a systems biology approach, focusing on the influence of two distinct biological domains—the

genome and the metabolome. Given that DR dramatically changes the metabolic state of an

organism, metabolomic profiling has become an invaluable tool for investigating the mecha-

nisms underlying DR and aging [11–13]. The metabolome, which includes all low-molecular

weight molecules within a biological system, plays a crucial role in the biology of aging [14].

Examples include the role of specific amino acids like tryptophan or methionine in DR [15,

16], of polyamines in age-related decline in circadian periodicity [17], and of α-ketoglutarate
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(α-KG) and its derivatives in TOR signaling and epigenetic regulation [18, 19]. High-through-

put, high-resolution metabolomic profiling methods allow us to capture a snapshot of the cir-

culating products and intermediates of cellular metabolism within a tissue or organism. This

ability has proven invaluable for understanding the mechanisms underlying complex traits for

many reasons. First, although feedback mechanisms likely exist between all domains within a

biological system, the metabolome is generally thought to be downstream of transcriptional

and translational regulation. Second, the metabolome is highly influenced by, and therefore

integrates information from, both the genome and environment [11, 20]. As a result, the meta-

bolome may explain a greater proportion of phenotypic variation within a population than

genomic, transcriptomic, or proteomic profiling alone. This is critical, as many genome-wide

studies of complex traits explain only a fraction of the phenotypic variation [21]. Third, metab-

olites are involved in all biological processes within the cell, and as such, metabolomic studies

can help bridge the gap between genotype and phenotype [20, 22] [23–26]. As researchers

learn more about the intricacies of the various cellular mechanisms that govern aging, systems

biology approaches such as these are essential for revealing mechanisms that underlie these

complex phenotypes.

Our group previously showed that DR slows age-related changes in the metabolome and

dramatically alters metabolic network structure in a single, wildtype strain of Drosophila [11].

However, this work did not consider the extent to which the response to DR varies among

genotypes. Here, we explore the metabolic signatures from different fly strains that vary widely

in their response to DR by profiling the metabolome in 178 inbred fly lines from the Drosoph-
ilaGenetic Reference Panel (DGRP), a set of inbred, fully sequenced strains of Drosophila
derived from a wild population [27, 28]. The DGRP has been successfully used to profile and

genetically map complex quantitative traits including longevity [29], oxidative stress resistance

[30], microbiota composition [31], and many others [32].

Here, building on a prior analysis of lifespan measurements collected by Wilson et al. [10],

we extend this with metabolomic profiling of flies from the same experiment. Taken together,

this is the largest Drosophila study we know of to leverage both the metabolome and genome

of a large number of genotypes of the same species to study lifespan response to DR. Specifi-

cally, we show that i) DR dramatically remodels the metabolome in consistent ways across 178

Fig 1. Variation in DR-mediated lifespan extension across the DGRP. (A) Variation in DR–AL lifespan measured across 161 DGRP lines plotted in ascending

order. Each point represents a fly line. Statistical significance was determined using 5% FDR adjusted P value from Student’s t-tests. Error bars represent 95%

confidence interval from t-test. (B) Relationship between change in lifespan and relative change in lifespan (rLS). The two lifespan traits are significantly correlated.

https://doi.org/10.1371/journal.pgen.1008835.g001
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different genotypes; ii) several individual metabolites correlate with lifespan response, includ-

ing amino acids and metabolites involved in α-KG/glutamine metabolism; iii) differential net-

work analysis reveals that metabolite network structure varies with diet and reveals ‘hub’

metabolites that gain or lose multiple network connections in a diet-specific manner; iv) net-

work analysis of genome-wide association tests reveals candidate gene-to-metabolite-to-phe-

notype pathways that might underlie the DR response; and v) down-regulation of three of the

genes identified from this analysis alters lifespan response, including a neuronal effect of

CCHa2R, a gene that encodes a neuropeptide receptor thought to be involved in nutrient sens-

ing and satiety response.

Results

Diet specific changes in the metabolome

Targeted metabolomic profiling was performed on 178 DGRP lines for each diet condition.

The flies used for metabolomics were collected from the same cohort of flies used for lifespan

measurements. The lifespan measurements across the DGRP on AL and DR were first pre-

sented and discussed in Wilson et al. [10], while the metabolomic data are novel to this study.

After quality filtering (see Methods), 105 metabolites were included in downstream statisti-

cal analysis. With this dataset, our goal was to identify biologically meaningful relationships

that might exist between diet, lifespan response, the genome, and the metabolome.

To begin, we summarize the effect of DR on the metabolome across the DGRP lines using

principal component analysis (PCA). The first principle component (PC) explained 69% of the

variation across the entire metabolome, and cleanly separated samples by diet, revealing that

DR has an extremely strong effect on the fly metabolome (S2A Fig).

To determine which metabolites were affected by diet, difference in mean abundance (DR–

AL) was calculated for each metabolite across all the lines. Since this calculation was performed

on log-normalized and scaled data (see Methods), we interpret the resulting difference as a rel-
ative change in abundance (i.e., log(DR)–log(AL) = log(DR/AL)). As determined from paired

t-tests, almost all measured metabolites showed a highly significant response to diet (S2B Fig,

Table A in S1 Table). These results are consistent with previous studies demonstrating a sub-

stantial remodeling of the fly metabolome under DR [11].

The effect of DR on lifespan in the DGRP

There is considerable variation in lifespan response as a result of DR across the DGRP (S1A

Fig, [10]). As expected, we also observed a wide range of variation across the DGRP in the dif-

ference in lifespan between diets (DR–AL) (Fig 1A). Change in mean lifespan varied among

lines from 18 days shorter to 27 days longer in response to DR. Of the 161 DGRP lines that

have lifespan measurements, 114 lines (70.8%) lived longer, 30 lines (18.6%) did not show any

significant change in lifespan, and 17 (10.5% lines) lived shorter as a result of DR (Fig 1A,

[10]).

The primary goal of this study is to investigate the lifespan response to DR across the

DGRP. The difference between DR and AL lifespan is one measure of this response. However,

this difference value is correlated with AL lifespan (S1C Fig), which means that any significant

associations that we find with the difference in lifespans might actually be due to a relationship

with AL lifespan. To remove potentially confounding effects of AL lifespan on the DR

response, we derive another lifespan response trait that we call the relative change in lifespan

(rLS; see Methods). rLS is highly correlated with the difference in lifespans (Fig 1B), but not

with AL lifespan (S1D Fig). For the remainder of this study, we will use rLS as our primary life-

span response phenotype.
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Metabolites are significantly correlated with lifespan response

To determine which metabolites are correlated with lifespan traits (mean lifespan and rLS), we

used a simple linear regression to model lifespan phenotypes as a function of each metabolite

measured under either diet:

Lifespan trait ¼ aþ b �metaboliteAL þ ε ð1Þ

or

Lifespan trait ¼ aþ b �metaboliteDR þ ε ð2Þ

Looking first for metabolites associated with mean lifespan, we found that 10 metabolites

measured under DR were correlated with mean DR lifespan (with a false discovery rate (FDR)

= 0.01) (Fig 2A, Table B in S1 Table). Notably, no metabolites measured under AL were found

to be correlated with mean AL lifespan (Fig 2A; Table C in S1 Table), though 8 metabolites

measured under AL were correlated with DR lifespan (Table C in S1 Table).

We next identified metabolites that were correlated with rLS. Out of a total of 105 measured

metabolites, 24 were associated with rLS after FDR correction (Fig 2B, Table B and C in S1

Table). Thirteen metabolites are associated with rLS under both conditions (top right quadrant

in Fig 2B), while 10 were only significant when measured under AL (bottom right quadrant in

Fig 2B), and only threonine was significant under DR (top left quadrant in Fig 2B).

Next, we asked if the change in metabolite abundance was predictive of lifespan response.

To do this, we modeled rLS as a function of change in metabolite level (Δmzi = mzDR,i−mzAL,i

for metabolite i). Of 105 metabolites, the change in abundance of 4 metabolites—2-phosphoe-

nolpyrivic acid (PEP), 2-phosphoglyceric acid, threonine, and arginine—was associated with

rLS (Fig 2C, Table D in S1 Table).

Diet-dependent changes in metabolite networks

Having identified metabolites associated with lifespan and its response to DR across genotypes,

we wanted to investigate the relationship between these metabolites and the broader metabo-

lome measured here, and more specifically, to determine how those relationships change

between diets. To capture this, we measured covariance among all metabolites and performed

differential network analysis to investigate interactions between metabolites across diets (Fig

3A). We grouped interactions into three categories: 1) metabolite-metabolite interactions that

are significantly greater (as measured by correlation coefficient ρ; see Methods) under AL than

DR (red edges in Fig 3A; Fig 3B); 2) interactions that are significantly greater under DR than

AL (blue edges in Fig 3A; Fig 3C); and 3) interactions that are strongly significant under both

conditions (yellow edges in Fig 3A; Fig 3D). We focus solely on positive correlations because

there were no significant negative correlations between metabolites in the network.

Some metabolites gain or lose many interactions under one diet in comparison with the

other. Of these, the most striking example is arginine, which gains 14 edges under AL (Fig 3E

and right asterisk in Fig 3A). Such metabolites may represent ‘hubs’ in the metabolome net-

work. Hubs are also found under DR conditions, with threonine gaining seven edges (Fig 3F

and left asterisk in Fig 3A). Three features of this metabolome network stand out to us. First,

the two hub metabolites threonine and arginine are among the top hits for Δmzs associated

with rLS (Fig 2C). Second, many of the edges that these hub metabolites gain or lose across

diets are shared with other amino acids (Fig 3A). Last, this network includes many of the

essential amino acids, most of which are all correlated to one another under both AL and DR

(boxed metabolites in Fig 3A). The essential amino acids in Drosophila include arginine and

the nine essential amino acids in humans [33].
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Manipulation of α-KG pathways alters lifespan response to DR

Our analysis of metabolites associated with the lifespan response to DR identified both α-KG

and glutamine (Fig 2), which form a sub-network within the overall metabolome network (Fig

3A and 3D). Given our finding, and previous studies implicating α-KG in DR and TOR signal-

ing [18], we used RNA interference (RNAi) to knock down genes in the α-KG/glutamine path-

way to explore its possible role in the effect of DR on lifespan. Specifically, we manipulated the

expression of glutamate dehydrogenase (GDH), which catalyzes the reversible conversion

between αKG and glutamate, and glutamine synthetase 1/2 (GS1, GS2), which catalyze the

conversion of glutamate to glutamine (S3A Fig). For these experiments we used the inducible

Fig 2. Metabolites significantly correlated with lifespan response. (A,B) Results of univariate analysis modeling lifespan phenotypes as functions of individual

metabolites measured under either AL or DR were performed and -log10(P values) were plotted. Each point represents a single metabolite and the significance of its

association with (A) mean lifespan and (B) rLS. Red dotted lines represent FDR cutoff at α = 0.01. (C) Rank of -log10(P values) from linear regression modeling rLS as a

function of change in metabolite abundance. Four labeled metabolites passed FDR cutoff of α = 0.05.

https://doi.org/10.1371/journal.pgen.1008835.g002
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GAL4-GeneSwitch (GAL4-gs) drivers to knock down each gene in different parts of the fly

upon induction with the compound RU486 [34].

We exposed inducible RNAi fly strains to AL and DR diets and recorded lifespan. To test

for a change in lifespan response as a result of RNAi, we tested for a significant RNAi-x-diet

interaction term in a Cox Proportional Hazards model (see Methods). Knockdown of gs2 in

the whole fly most strongly affected the lifespan response as compared to knockdown of gs1
and gdh, with knockdown flies living longer on the AL diet (S3B–S3D Fig). A greater extension

Fig 3. Diet-dependent correlation network analysis. (A) Nodes represent metabolites and edges represent correlation between two metabolites. Edge color denotes

correlations that significantly become more positive with AL (red), DR (blue), or have correlation coefficients that exceed abs(0.8) in both diets (yellow). For red and

blue edges, only correlation coefficient differences of greater than abs(0.4) are shown. Bolded and italicized metabolites were also found to be significantly associated

with rLS. Boxed metabolites are essential amino acids. Asterisks indicate suspected “hub” metabolites. (B-D) Examples of each type of covariance relationship (edge

color) are shown. (E-F) Degrees (number of edges) of top 5 most connected nodes under each diet.

https://doi.org/10.1371/journal.pgen.1008835.g003
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of AL lifespan was seen with neuron-specific knockdown of GS2, but less so in fat body or gut-

specific RNAi (S3E–S3G Fig). This suggests that GS2 is part of a diet-specific lifespan pathway

active in neurons.

Gene-metabolite-phenotype network analysis for lifespan response

While we found that fully 23% of measured metabolites were associated with rLS, we per-

formed a gene-level genome-wide association study (GWAS) on the rLS trait and only one

gene, an uncharacterized coding gene CG6231, was associated with rLS. In light of this, we

decided to leverage the metabolite-lifespan associations identified here, creating a bipartite

network of genes and metabolites that would allow us to look for genes that might impact life-

span indirectly through their impact on the metabolome. To do this, we first performed multi-

ple individual gene-level GWAS using metabolite levels as quantitative traits. Specifically, we

selected metabolites that were associated with rLS. This included 23 AL metabolites and 14 DR

metabolites (Fig 2B). The gene-level GWAS resulted in significance scores for each gene-

metabolite pair. Briefly, gene scores were assigned by taking the minimum P value from all var-

iants associated with a gene after adjustment via at least 10,000 rounds of permutation testing.

A detailed explanation of this calculation is included in the Methods. Significant gene-metabo-

lite relationships were used to build a network connecting genes, metabolites, and the lifespan

response phenotype. The resulting multi-omic network for AL metabolites is visualized in Fig

4 and the network for DR metabolites in S4 Fig. All genes that appear in the DR network also

appear in the AL network, so we display the AL network in the main figures. The purpose of

this network is to diagram molecular paths that might regulate lifespan extension, starting

from the gene level (teal nodes) to the metabolite level (yellow nodes), and that ultimately

influence lifespan response to diet as quantified by rLS (center grey node). The degree, or

number of edges, of each gene node is represented by its size in the figure. A complete list of

significant AL and DR network edges and scores is provided in Table E in S1 Table.

Across both the AL and DR network, the gene with the most significant gene-level score

was Vps15 which is associated with AL levels of 2-phosphoglyceric acid and PEP (Table E in S1

Table). Vps15 encodes a serine/threonine protein kinase that is part of the PI3-Kinase (PI3K)

complex [35]. We can also examine gene node degree as an indicator of the gene’s role in the

signaling network. It is important to note that the degree of a gene node can be interpreted to

mean that a gene affects all metabolites its connected to independently, or that a gene more

directly affects the level of one metabolite whose level in turn is correlated with other metabo-

lites. In the latter case, some edges may represent indirect gene-metabolite relationships. For

example, CCHa2R, which has a degree of 5 in the AL network (Fig 4), could independently

associate with five metabolites. However, it may instead affect the abundance of one metabolite

more directly than the others. In both the AL and DR networks, the gene with the largest

degree value is CCHa2R (Fig 4, S4 Fig). CCHa2R encodes the protein CCHamide-2 receptor

(CCHa2-R), a neuropeptide receptor thought to be expressed in the brain and gut of fruit flies,

and is proposed to be involved in appetite regulation and insulin signaling [36, 37]. Thus, our

network analysis identified genes that might be involved in regulating lifespan response to DR,

including Ddc, SelT, jeb, Nuak1, z, and several uncharacterized coding genes (Fig 4, S4 Fig,

Table E in S1 Table).

CCHa2R and SelT are involved in the lifespan response to DR

To test the ability of our multi-omic network analysis to identify genes involved in the DR

response, we used inducible RNAi to measure the effects of gene knockdown on AL and DR

lifespans. We focused on the genes CCHa2R and selT. The single nucleotide polymorphism
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(SNP) 2R_1939249_SNP identified from metabolite GWAS is a C/T variant in an intron of

CCHa2R. This SNP was associated with differential abundance of five rLS-associated metabo-

lites under AL (Fig 5A). As an example, the relationship between iso-leucine, rLS, and

CCHa2R SNP are shown in Fig 5B–5D. Knocking down CCHa2R using a whole-body driver

resulted in an increased mean lifespan under DR, but a slightly decreased mean lifespan under

AL, although this effect was not statistically significant under a Cox Proportional Hazards

model framework (Fig 5E). Given this trend, we then used a neuronal specific driver to knock

down CCHa2R, which showed a much greater effect of increasing lifespan under DR, but not

AL (Fig 5F).

Manipulation of SelT also resulted in changes to diet-specific lifespans (S5 Fig). SelT
encodes selenoprotein T. Selenoproteins are a family of thioredoxin-disulfide reductases that

plays a role in defending against cellular oxidative damage by controlling the redox balance of

the cell [38]. We found that whole-body SelT knockdown increased lifespan on AL while

Fig 4. Multi-omic network for lifespan response. Gene-metabolite-phenotype network was constructed from linear modeling and

GWAS results from AL metabolites that were correlated with lifespan response as measured by rLS. Gene nodes are colored in teal,

metabolite nodes are colored in yellow. Gene node size is directly proportional to node degree, while metabolite node size is held

constant. An edge exists between a metabolite and lifespan response if the metabolite was significantly correlated with rLS at FDR cutoff

of α = 0.01. An edge exists between a gene and metabolite and/or lifespan response if it the gene had a score of�1E-4.5.

https://doi.org/10.1371/journal.pgen.1008835.g004
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having no effect on lifespan under DR (S5 Fig). Taken together, these results support our net-

work analysis as a map of gene-to-metabolite-to-phenotype pathways that underlie natural

variation in the DR response and also highlight the fact that DR response can be influenced

through a change in AL lifespan, DR lifespan, or both.

Discussion

Diet restriction is regarded as the most robust form of lifespan extension known, and has been

consistently demonstrated to increase longevity in almost all model organisms in which it has

been studied [3]. However, in almost all of these studies, researchers have used a single strain

chosen from a handful of common lab-adapted strains, limiting our ability to gain insight into

variation in response to DR in a diverse population. Here, we have leveraged the power of the

genetic variation found within the DGRP, together with systems biology methods, to measure

and explain genetic variation in the DR response. This work brings three key approaches to

bear on the study of DR response, including natural genetic variation, metabolome profiling,

and network modeling. By combining all three of these, an approach never used before in the

Fig 5. CCHa2r is associated with change in metabolite levels and modulates lifespan response to DR. (A) Diagram of one of the candidate gene pathways identified

from metabolite-gene-network analysis, CCHa2r, and its relationship with iso-leucine and lifespan response. (B-D) Iso-leucine and its relationship with CCHa2r SNP

2R_1939249_SNP and residual lifespan. (E-F) Survival of RNAi (+RU486) versus control (-RU486) flies of CCHa2r RNAi in whole-body (D; da-gal4-gs driver) and

neurons (E; elav-gal4-gs driver). Vertical lines represent mean lifespan. All lifespan experiments were conducted with 150–200 flies per condition. P values from B and

C are from plink linear GWAS model. P value from D is from a linear regression as summarized in Fig 2. Statistical model in E and F is a Cox Proportional Hazards

model fitting survival as a function of diet, RNAi, and the interaction between diet and RNAi. Hazard ratios (HR) and P values are specific to the interaction term.

https://doi.org/10.1371/journal.pgen.1008835.g005
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context of DR, we are able to generate novel genetic and biochemical hypotheses about DR.

We then validate these findings experimentally using inducible RNAi.

This work adds to a growing body of evidence for genetic variation in the DR response,

including similar studies conducted in mice [6], yeast [7], and a different fly genetic reference

panel derived from recombinant inbred strains [9]. While these previous studies underscore

the importance of genetic variation in shaping the DR response, our work focuses in particular

not on single-gene knock-out strains or genotypes derived from recombinant inbred strains,

but rather on the natural genetic variation derived from a single wild population [28]. The

translational path from Drosophila to humans is a long one, but these results do underscore

the possibility that the effect of interventions designed to decrease or delay the onset of age-

related decline in human populations could have diverse outcomes from one person to the

next, depending on individual genetic makeup and environment history [6–9]. The lifespan

results we present in this study were also analyzed by Wilson et al [10]. We note that Wilson

et al. found multiple candidate variants that affect diet-dependent longevity, while we identify

one that met our significance cutoff (Fig 4 and S4 Fig). This is not surprising, given that these

two studies fit two different response variables to different covariates. Wilson et al. used a lin-

ear model predicting mean lifespan with an interaction term between genotype and diet for

their GWAS, while we use relative lifespan as the outcome for our GWAS.

While it is relatively straightforward to measure genetic variation for complex traits, identi-

fying the individual genes that contribute to this variation has proven to be far more challeng-

ing [21]. To fill this gap, researchers have turned to the metabolome. This has helped not only

to define genetic variation, but also to suggest mechanisms that underlie this variation [23–

26]. Previous studies have found that DR leads to dramatic shifts in metabolism in diverse

organisms [39] and that it attenuates metabolic signatures of aging [11, 40, 41]. Metabolomic

profiling has become a popular tool for investigating mechanisms underlying DR within single

genotypes across a wide array of species, including worms [41, 42], flies [11, 43], mice [40, 44],

non-human primates [45], and humans [46, 47]. Many of these studies pointed to changes in

fatty acid metabolism as a result of DR [40, 44, 47]. This is consistent with the finding from

Liao et al. that across 41 mouse strains, the ones with the least reduction in fat under DR were

more likely to show lifespan extension on DR [48]. Our study, which is the first that we know

of to use metabolome profiling to investigate lifespan response to DR across genotypes, identi-

fied 25 metabolites that were correlated with lifespan response either through their baseline

abundance or change in abundance across the two diets (Fig 2B and 2C). We did not profile

enough lipid metabolism-related metabolites to be able to test whether or not fat maintenance

might be an influential component underlying the DR response. However, one of the genes

our bipartite network analysis identified was jeb (jelly belly), which encodes a low-density lipo-

protein proposed to be involved in neuronal PI3K signaling during nutrient restriction in flies

[49]. Jelly belly may regulate lifespan response through a mechanism involving the metabolite

hypoxanthine (Fig 4). In addition, many of the 25 metabolites associated with lifespan

response in our study were related to amino acid metabolism, which we have previously

shown to be a significant pathway modified under DR in flies [11].

As we note above, the metabolome can act as a statistical link between genotype and pheno-

type [25, 26]. Here we advance this approach in two important respects. First, we use a novel

differential network analysis to contrast AL and DR metabolite networks in a manner that

allows straightforward comparison between the two diet conditions (Fig 3), providing the criti-

cal and necessary context needed to interpret the interactions that we see under DR. This net-

work captures a snapshot of metabolic relationships that might explain how flies translate

nutritional environment to lifespan. For example, others have shown that restricting essential

amino acids, methionine in particular, is necessary and sufficient to extend lifespan in flies
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[50]. Our differential network links methionine and other essential amino acids to metabolites

that correlate with lifespan response, diagramming metabolic paths that might explain the rela-

tionship between methionine, other amino acids, and the DR response (Figs 3 and 4 and S4

Fig). Second, while previous studies have typically focused on single molecular domains such

as genetics or metabolomics [51–54], here we create a bipartite network that links specific

genes to metabolites, and specific metabolites to the DR response, allowing us to identify new

candidate genes and pathways that we begin to explore here. We use molecular genetic meth-

ods to confirm that indeed, many of the genes we identified influence lifespan response under

dietary modification, including CCHa2R and SelT. We also identify other genes that have been

identified by previous independent studies of Drosophila longevity. One of these genes, Ddc,
encodes dopa decarboxylase, which has been suggested to influence natural variation in Dro-
sophila longevity via a neuronal mechanism [55], adding further credence to the validity of our

network approach. Other genes that will be of particular interest to pursue in future studies

include jeb, as previously discussed, and Vps15, a PI3-Kinase regulator involved in autophagy.

In addition, our RNAi results suggest a role for neuronal perception of nutrient availability

in lifespan response to DR. In Drosophila, neuronal signaling regulates physiological response

to environmental nutrients, including gustatory and metabolic perception of amino acids and

sugars [56–58], receipt of signals about nutrient availability from peripheral organs such as the

gut [59], and feeding restraint [60]. We present evidence for a neuron-specific mechanism

involving glutamine/α-KG signaling that influences lifespan under AL. GS2 RNAi, but not

GS1, extended the lifespan of flies on AL (S3 Fig). In Drosophila, GS1 localizes primarily to the

mitochondria while GS2 localizes to the cytosol [61]. In light of this, we postulate that cytosolic

glutamine and perhaps glutamatergic signaling in neurons play a role in the DR response. This

idea is supported by recent findings identifying a set of glutamatergic interneurons that signal

Drosophila larvae to overcome amino acid limitation and pupate [62]. Furthermore, support

for the suggestion that regulation of α-KG levels partially explains the lifespan response we

observed is provided by work in Caenorhabditis elegans showing diet-dependent regulation of

mTOR signaling by α-KG [18]. This evidence suggests the existence of interactions between

glutamine/α-KG signaling and mTOR that ultimately influence lifespan response to DR.

We also found that knocking down expression of neuronal CCHa2R resulted in longer life-

span under DR (Fig 5). To our knowledge, this is the first study to implicate CCHa2R in an

aging/DR-related signaling mechanism. We hypothesize that CCHa2R is associated with life-

span due to its influence on metabolism, an idea supported by previous studies in Drosophila.

CCHa2-R is a G-protein coupled receptor that exclusively binds the neuropeptide CCHa2 and

is thought to be involved in nutrient sensing and satiety response [36]. CCHa2 is mainly

expressed in the fat body and at low levels in the gut and central nervous system (CNS), while

its receptor CCHa2-R is highly enriched in the CNS, particularly in Drosophila insulin-like

peptide (Dilp) producing cells that control the secretion of neuropeptide F and SIFamide in

the brain [36]. In fly larvae, CCHa2 signaling appears to mediate the secretion of Dilp2 and

Dilp5 [36] and signaling between peripheral organs and the brain [37]. Given the important

role of Dilps both in nutrient signaling and aging [63], this novel connection between

CCHa2-R and the effect of DR on aging is not surprising. In addition, the closest human

homolog of CCHa2-R is bombesin receptor subtype 3 [64]. Mammalian bombesin-like pep-

tides are widely distributed in the central nervous system and gastrointestinal tract, mirroring

the distribution of CCHa2 peptide in Drosophila [36], and are thought to mediate signaling

between the gut and brain, regulating processes such as smooth-muscle contraction, metabo-

lism, and behavior [65]. The striking similarities between Drosophila CCHa2 signaling and

mammalian bombesin signaling suggest that the processes are conserved to some extent.
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Studying the genetic basis of natural trait variation complements existing mutational lab

studies, offering critical additional insight into the biology of DR. Like other GWAS of lifespan

in the DGRP [29, 66], we sought out to identify natural genetic variation affecting phenotypic

variation. Interestingly, the genes and pathways identified by our work along with Durham

et al. [66] and Ivanov et al. [29] largely differ in comparison to the canonical lifespan-associ-

ated genes and pathways identified by mutational studies. Although the reasons for this are

unclear, these differences further emphasize the importance of systems approaches such as

ours for developing a more complete picture of how genetics and environment impact healthy

aging.

Limitations of study

Readers should keep two caveats in mind in evaluating the results presented here. First, DGRP

metabolite profiles were measured from whole fly bodies. However, different tissues of the fly,

including the head, thorax, and abdomen, show different metabolome profiles under AL and

DR [11]. Given the large number of lines measured here, tissue-specific profiling across the

DGRP was outside the scope of the present study. In light of our understanding that neuronal

perception of nutrients plays an important role in aging, future studies focused on head or

brain specific metabolomics would be of great interest (e.g.[67]).

Second, flies were diet restricted by decreasing the percentage of yeast extract in their food.

This diet has been used previously to demonstrate the effects of DR in flies [68–70]. There are

many different methods of implementing DR that have been published in the Drosophila com-

munity, [50, 71, 72], and no single diet is considered standard, raising challenges in comparing

results across studies. Furthermore, some have argued that different fly strains might have dif-

ferent optimal DR food levels, and that a decrease in fecundity must coincide with increased

lifespan in order for the response to truly be considered DR [73]. Future work in this area

should include genetic variation for survival and fecundity, should explore different types of

DR, and finally should consider whether genotypes differ in how they respond to DR because

they vary in their optimal diet concentration.

Concluding remarks

Our work represents the first effort to understand the role of naturally occurring variation in

the DR response and the mechanisms that underlie this variation. Studies such as this are criti-

cal to the future of health and aging research, as the most common age-related diseases are

genetically and phenotypically heterogeneous, and, as a result, likely require treatments tai-

lored to environment and genotype. As such, it is imperative to explore mechanisms of aging

and disease not only in single, traditional laboratory strains, but also in the context of geneti-

cally heterogeneous animal models.

Materials and methods

Drosophila DR and lifespan

Methods for lifespan experiments were originally described in Wilson et al. [10]. Briefly,

DGRP lines were obtained from the Bloomington Drosophila Stock Center. All flies were

maintained on standard stock food (1.55% live yeast, 7.5% sugar, 8.5% cornmeal, 0.46% agar,

85% water). Flies were kept on a 12-hour light/dark cycle at 25˚C and approximately 65%

humidity throughout the experiment. In preparation for lifespan measurements, approxi-

mately 15 female flies and 3 male flies were put in each bottle of stock food. Approximately 6

bottles were set up per strain. Five days after setting up stocks, adults were discarded, leaving
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behind larvae that would be used for lifespan studies. Fourteen days after set-up when the

experimental flies were estimated to be 2–3 days old, mated female flies were sorted into

approximately 8 vials of either high yeast extract food (AL; 5% yeast extract, 5% sugar, 8.5%

cornmeal, 0.46% agar, 85% water) or low yeast extract food (DR; same as previous, but with

0.5% yeast extract), with 25 flies per vial, targeting a total of 200 flies per strain�diet combina-

tion. Flies were transferred to fresh vials every other day. Recording of fly deaths commenced

8 days after flies started the new diet. All fly lifespan values presented here represent mean age-

at-death measured in days from beginning the experimental diet.

Three flies per line and diet were frozen 5 days after beginning the experimental diet and

shipped to the University of Washington in Seattle, WA for metabolomic profiling. We chose

to sample at 5 days to try and capture early metabolomic indicators of DR response. Published

studies from our group and others have shown metabolomic and other phenotypic differences

in response to DR as early as 2–10 days after beginning the experimental diet [11, 43, 74].

RNAi experiments

RNAi experiments were performed utilizing the Gal-UAS system [34]. Briefly, temporal

knockdown of target genes was carried out using the ubiquitous drug-inducible GeneSwitch

driver Act5C-GS-Gal4 and tissue specific knockdown was performed using the pan-neuronal

driver elav-GS-Gal4, the fat body driver S106-GS-Gal4, or the gut-specific driver 5966-

GS-Gal4. Following development, flies were sorted onto AL or DR foods that contained

200uM RU486 to allow activation of the GeneSwitch system. Flies were maintained under

these conditions throughout life.

Metabolomics sample preparation

Fly samples were prepared following previously described procedure [75–77] and is detailed in

our Supplementary Methods (S1 Text). Briefly, samples were thawed at room temperature,

homogenized in 10:1 PBS:Water, methanol containing known concentrations of 6C13-glucose

and 2C13-glutamate was added, samples were vortexed and stored at -20˚C for 20 min. After-

wards, samples were sonicated in an ice bath, centrifuged at 20,600 g and supernatant was

recovered and dried. At the end, dried supernatant was reconstituted in a buffer containing

known concentrations of 2C13-Tyrosine and 1C13-Lactate. A sample quality control (QC-S)

was made by pooling small volumes of randomly chosen 30 prepared and reconstituted fly

samples and this QC was used to monitor the data reproducibility.

Liquid Chromatography–Mass Spectrometry (LC-MS)

Each sample was injected twice, 15 μL and 5 μL for analysis in negative and positive ionization

modes, respectively. Both chromatographic separations were performed in HILIC mode on

two parallel identical amide-based analytical columns. While one column was performing the

separation, the other column was getting reconditioned and ready for the next injection. After

the chromatographic separation, MS ionization and data acquisition were performed using an

AB Sciex QTrap 5500 mass spectrometer (AB Sciex, Toronto, ON, Canada) equipped with an

electrospray ionization (ESI) source and operating in multiple-reaction-monitoring (MRM)

mode. We monitored 122 and 84 MRM transitions in negative and positive mode, respectively

(206 MRM transitions total corresponding to 202 metabolites and 4 stable isotope-labeled

internal standards). Additional details regarding LC-MS data acquisition, processing, and QC

monitoring are included in the Supplementary Methods (S1 Text).
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Statistical analysis

All analyses described below were carried out using the open source software package R [78].

A false discovery rate of α = 0.01 using the Benjamini-Hochberg-Yekutieli procedure [79] was

used for all multiple comparisons unless otherwise stated. The metabolome data can be found

in S1 Dataset, and the data used to make all the figures in this study can be found in S2 Dataset.

A detailed description of these data are included in S1 Text.

Calculating relative change in lifespan. To monitor the effect of DR on lifespan, we use

the relative change in lifespan (rLS) which was calculated by taking the residuals of a simple

linear least squares regression of DR lifespan against AL lifespan (S1B Fig). The purpose of cal-

culating rLS was to create a phenotype similar to the absolute different between DR and AL

lifespan, but removes the potentially confounding effects of AL lifespans driving the lifespan

response (Fig 1B and S1C and S1D Fig).

Data normalization. All metabolites were log-transformed to approximate a Gaussian

distribution. Metabolites with >5% missing measurements were excluded from the analysis.

Remaining missing data were imputed using the “impute” R package [80]. The final metabolo-

mics dataset was comprised of 356 samples (178 fly lines x 2 diet conditions) with 105 individ-

ual metabolite features for each sample. Metabolite data were then mean-centered and unit-

scaled within samples to normalize for variation in analyte amount (due to variation in fly

weight/size) loaded onto the mass spectrometer. Flies were handled in different experimental

batches and these experimental batches were found to have a statistically significant effect on

many metabolite levels, but not on lifespan. To correct for the batch effect, we regressed out

the effect of batch using a linear model. Depending on the type of analysis, we implemented 2

different types of batch correction: 1) correcting for batch within samples of the same diet, or

2) across all samples regardless of diet. The type of batch correction is indicated in the methods

sections below.

Multivariate and univariate analysis. Principle component analysis (PCA) is a form of

unsupervised multivariate analysis that partitions out independent variance components

across a dataset of multiple, potentially correlated, variables. PCA was performed on all sam-

ples using the “prcomp” function in base R to observe how well the metabolome can separate

samples by diet.

Differential analysis was performed on individual metabolites to determine which metabo-

lites increase or decrease in response to diet. Batch correction was performed across all sam-

ples together regardless of diet for both differential analysis and PCA.

We used a multiple regression model to test for the effects of metabolite abundance on life-

span phenotypes. Genotype-wide mean body mass was used as a covariate in all models. Batch

correction was performed on samples within diet for this analysis.

Analysis of RNAi lifespan experiments. We used a multivariate Cox Proportional Haz-

ards regression to model survival as a function of diet (AL or DR), treatment (control or

RNAi), and the interaction between diet and treatment. A significant interaction term sug-

gested that the gene targeted by that RNAi treatment influences lifespan response to DR.

One of the assumptions of a Cox Proportional Hazards model is that the ratio of the hazards

for individuals in different conditions remains constant over time, which can be evaluated by

examining whether or not curves from different treatments cross over one another in a sur-

vival plot. While this assumption holds for most of our survival experiments, we acknowledge

that for some of our survival experiments, that assumption does not hold (for example, Fig

5E), making some of the test results harder to interpret. However, we decided to apply the Cox

model to all of our survival experiments regardless for consistency and interpretability.
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Network analysis and genome-wide association. For differential network analysis, we

calculated Spearman’s ρ correlation matrices for all metabolites within each diet separately and

used these to build unweighted differential metabolite networks. Batch correction was per-

formed on samples within diet for this analysis.

To test the difference between the correlation structures under the two diets, we first calcu-

lated the difference in the two Spearman’s ρ correlation matrices (differential correlation

matrix). We then tested whether the differential correlation of each pair of metabolites is sig-

nificant by using parametric tests for Spearman’s ρ correlations, wherein we used the limiting

normal distribution of the differential correlation for large sample sizes. More specifically, to

improve normal approximations, we considered the scaled Spearman’s ρ for a single diet with

n samples, i.e., ρ�sqrt((n-2)/(1-ρ^2)). With independent samples, the difference in the scaled

correlations between the two diets is approximately normal with mean = 0 and variance = 2.

This asymptotic distribution was used to obtain P values for each pair of differential correla-

tions. The resulting P values were adjusted for multiple testing.

Genotype variant calls for the DGRP are publicly available online (http://dgrp2.gnets.ncsu.

edu/). Genome-wide association tests were performed in PLINK v.1.07 [81] using an additive

linear model fitting phenotype (metabolite levels or lifespan response) as a function of variant,

includingWolbachia pipientis infection status and major inversions as covariates. Variants

with a minor allele frequency> 0.05 were included in the analysis. To correct for the observa-

tion that genes with a greater number of variants are expected by chance to have lower mini-

mum P values, we calculated a gene-specific “gene score”. Gene scores for each gene were

calculated by initially taking the minimum P value from all the variants associated with a par-

ticular gene, including variants located within or 1,000 bp upstream or downstream of that

gene. Following this, 1,000,000 permutations of this analysis for the top genes were imple-

mented taking the minimum P value per gene from of those permutations. Top genes were

first identified if they had a preliminary minimum P� 10−3 from an initial 10,000 permuta-

tions of all genes. Permutations were conducted by randomizing the genotype designation

among all samples. The final gene score was then calculated by dividing the number of permu-

tations where the observed minimum P value was equal to or lower than the empirical mini-

mum P value by the total number of permutations. In effect, we are asking if the minimum P
value within a gene is even smaller than one would expect, given the number of variants found

within that gene. A gene was then included in the network if it had a final gene score� 10−4.5.

All networks were visualized using Cytoscape [82].

Supporting information

S1 Fig. DGRP lifespan on AL and DR replotted from Wilson et al, 2020. (A) Mean lifespan

of 161 DGRP lines on AL (5% yeast extract) or DR (0.5% yeast extract) diets. Least squares lin-

ear regression of DR lifespan (B) and change in lifespan (DR–AL; C) and rLS (D) as a function

of AL lifespan.

(PDF)

S2 Fig. Diet restriction dramatically remodels the metabolome. (A) PCA of all samples

using metabolite profiles colored by diet. Ellipses are drawn with confidence level of 90%. (B)

Volcano plot of significance of the difference between metabolite abundance with DR reveals

that almost all metabolites are highly significantly changed with DR. Each point on the plot

represents a single metabolite result from a pairwise Student’s t-test.

(PDF)
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S3 Fig. Diet-dependent survival of GDH, GS1, and GS2 RNAi flies. (A) The α-KG/gluta-

mine pathway was manipulated by inhibiting transcript levels of gs1/2 and gdh. (B-G) Survival

of RNAi (+RU486) versus control (-RU486) flies of GS2, GS1, and GDH RNAi in whole-body

(act5c-gal4-gs driver; B-D), GS2 RNAi in brain (elaV-gal4-gs driver; E), GS2 RNAi in fat body

(S106-gal4-gs; F), and GS2 RNAi in gut (5966-gal4-gs; G) on AL and DR. Vertical lines indi-

cate mean survival. Statistical model is a Cox Proportional Hazards model fitting survival as a

function of diet, RNAi, and the interaction between diet and RNAi. Hazard ratios (HR) and P

values are specific to the interaction term.

(PDF)

S4 Fig. Multi-omic network for lifespan response for DR metabolites. Gene-metabolite-

phenotype network was constructed from linear modeling and GWAS results from DR metab-

olites that were correlated with lifespan response as measured by rLS. Gene nodes are colored

in teal, metabolite nodes are colored in yellow. Gene node size is directly proportional to node

degree, while metabolite node size is held constant. An edge exists between a metabolite and

lifespan response if the metabolite was significantly correlated with rLS at a 1% FDR level of

significance. Grey labels are metabolites correlated with rLS with no significant gene associa-

tions. An edge exists between a gene and metabolite and/or lifespan response if it the gene had

a score of�1E-4.5.

(PDF)

S5 Fig. Diet-dependent survival of RNAi fly strains. Survival of inducible RNAi (+RU486)

versus control (-RU486) flies of selT RNAi. Vertical lines indicate mean survival. Statistical

model is a Cox Proportional Hazards model fitting survival as a function of diet, RNAi, and

the interaction between diet and RNAi. Hazard ratios (HR) and P values are specific to the

interaction term.

(PDF)

S1 Table. All supplemental tables.

(XLSX)

S1 Dataset. Normalized metabolome data (within-diet and across-diet normalized data

both included).

(XLSX)

S2 Dataset. Numerical data and summary statistics used to make main and supplementary

figures.

(XLSX)

S1 Text. Supplementary Methods, summary statistics, and explanation of numerical data

for figures.

(PDF)
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