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Abstract

Individuals in low socioeconomic brackets are considered at-risk for developing influenza-

related complications and often exhibit higher than average influenza-related hospitalization

rates. This disparity has been attributed to various factors, including restricted access to pre-

ventative and therapeutic health care, limited sick leave, and household structure. Adequate

influenza surveillance in these at-risk populations is a critical precursor to accurate risk

assessments and effective intervention. However, the United States of America’s primary

national influenza surveillance system (ILINet) monitors outpatient healthcare providers,

which may be largely inaccessible to lower socioeconomic populations. Recent initiatives to

incorporate Internet-source and hospital electronic medical records data into surveillance

systems seek to improve the timeliness, coverage, and accuracy of outbreak detection and

situational awareness. Here, we use a flexible statistical framework for integrating multiple

surveillance data sources to evaluate the adequacy of traditional (ILINet) and next genera-

tion (BioSense 2.0 and Google Flu Trends) data for situational awareness of influenza

across poverty levels. We find that ZIP Codes in the highest poverty quartile are a critical

vulnerability for ILINet that the integration of next generation data fails to ameliorate.

Author summary

Public health agencies maintain increasingly sophisticated surveillance systems, which

integrate diverse data streams within limited budgets. Here we develop a method to design

robust and efficient forecasting systems for influenza hospitalizations. With these forecast-

ing models, we find support for a key data gap namely that the USA’s public health sur-

veillance data sets are much more representative of higher socioeconomic sub-

populations and perform poorly for the most at-risk communities. Thus, our study
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highlights another related socioeconomic inequity—a reduced capability to monitor out-

breaks in at-risk populations—which impedes effective public health interventions.

Introduction

As part of a broader national security strategy, US President Obama created the first National
Strategy for Biosurveillance, outlining the nation’s key strategic goals in disease surveillance

[1]. As a core component of this strategy, President Obama listed taking “full advantage of the

advanced technologies. . . that can keep our citizens safe.” The surveillance systems outlined by

the president are targeted at both recurring diseases, such as influenza, and newly emerging

infections. Biosurveillance using advanced technologies may be most important in lower

socioeconomic areas, where influenza burden tends to be highest [2–4].

This article assesses the capacity for traditional and novel data sources to provide real-time

influenza risk assessments in under-served populations. Using a combination of public health,

health care, and Internet-source data available between 2007 and 2012 to make short-term pre-

dictions of influenza-related hospitalizations, we compare forecasting accuracy across socio-

economic groups in the Dallas-Fort Worth metro area of Texas, USA. Traditional influenza

surveillance is based on primary healthcare provider reports, which may be biased towards

serving populations with higher socioeconomic status because of the costs and accessibility of

healthcare [5, 6]. Next generation data sources provide promise for improving the timeliness

and statistical power of surveillance systems. However, a systematic evaluation of the current

surveillance system is needed to evaluate where it falls short, and whether new data can fill

gaps.

New technologies have fueled a rapid expansion of data sources that can be acquired

quickly and inexpensively for public health surveillance. For example, Google Flu Trends used

Internet search queries of influenza-related terms for surveillance [7]. Following the introduc-

tion of Google Flu Trends, digital disease surveillance has exploded [8–10] with efforts focused

on data from search engines [11, 12], crowd-sourced participatory surveillance (e.g., Flu Near

You, InfluenzaNet) [13–15], Twitter (e.g., MappyHealth) [16, 17], Facebook [18, 19], Wikipe-

dia access logs [20, 21], and a variety of other sources (as reviewed in [22, 23]). There is evi-

dence that essentially all of these next-generation surveillance data streams correlate to some

degree with epidemiological time-series during typical seasonal outbreaks.

However, there are at least two recent findings worth considering with respect to the these

high-tech surveillance systems: 1.) the performance of Google Flu Trends has been unreliable

during anomalous influenza outbreaks [24–26] and 2:) it is unclear who is responsible for

maintaining these systems [22], especially considering that Google Flu Trends was recently

taken offline.

Newly upgraded hospital information systems are another promising source of surveillance

data. For example, the United States Centers for Disease Control and Prevention (CDC)

launched the BioSense 2.0 program, a set of cooperative agreements between the Department

of Veterans Affairs, the Department of Defense, and civilian hospitals from around the coun-

try. Through the cooperative agreements, the BioSense 2.0 program creates a “collaborative

data exchange system that allows users to track health issues as they evolve” [27]. Whereas Bio-

Sense 2.0 provides real-time data on severe cases, the CDC’s primary influenza surveillance

system, the influenza-like-illness network (ILINet), provides weekly estimates of number of

patients presenting with influenza-like-illness symptoms at primary care clinics. Integrating

potentially complementary information from new and traditional systems like BioSense 2.0
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and ILINet, along with publicly available Internet-source data, like Google Flu Trends, may

provide a more timely, comprehensive, and robust picture of disease activity. To this end, the

Defense Threat Reduction Agency has begun a national effort to build the Biosurveillance Eco-

system, an integrated disease surveillance system providing access to diverse data sources and

powerful analytics [28].

Here, we build and evaluate a multi-source influenza surveillance system that leverages tra-

ditional surveillance, electronic health records, and Internet-source data. It is designed to pro-

vide short-term forecasts of influenza-related inpatient hospitalizations once an epidemic is

underway rather that provide early warning of emerging influenza threats. At the state and

multi-county regional levels, these data sources provide effective situational awareness (as

compared to early detection of outbreaks). However, we find that they are much more repre-

sentative of higher socioeconomic sub-populations and perform poorly for the most at-risk

communities. Thus, the integration of Internet and electronic medical records data into sur-

veillance systems may improve timeliness and accuracy, but fail to remedy a critical surveil-

lance bias.

Materials and methods

Ethics statement

The Texas Department of State Health Services Institutional Review Board #1 approved this

project. The associated reference number is IRB# 12-051. An informed consent waiver was

approved by the IRB.

Data sources

We used the following sources, which contained data primarily from Dallas, Tarrant, Denton,

Ellis, Johnson, and Parker counties in Texas, between 2007 and 2012:

1. Weekly BioSense 2.0 data were extracted from an online repository [29]. Data are the per-

cent of emergency department (ED) visits for upper respiratory infection, based on classifi-

cation of free-text chief complaint entries. Although ZIP Code level data are available, we

used county-level aggregates in our analysis. Because these data are hosted on a publicly

accessible site, we make them available in a CSV file hosted here: https://github.com/

Emergent-Epidemics/US_influenza_data_1998_09-2019.

2. ILINet gathers data from thousands of healthcare providers across the USA. Throughout

influenza season, participating providers are asked to report weekly the number of cases of

influenza-like illness treated and total number of patients seen, by age group. The case defi-

nition requires fever in excess of 100˚F with a cough and/or a sore throat without another

known cause. The Texas Department of State Health Services (DSHS) provided weekly ILI-

Net records from 2007–2012. In the main text, we use county-level aggregates and provide

results with ZIP Code level aggregates in S5 Text.

3. Google Flu Trends (GFT) estimated the number of ILI patients per 100, 000 people based

on the daily number of Google search terms associated with signs, symptoms, and treat-

ment for acute respiratory infections. Although GFT is no longer active, past data are avail-

able for download from Google.org and have been shown to reliably estimate seasonal

influenza activity [7, 30], but be unreliable for the 2009 H1N1 pandemic [31] and during

more recent influenza seasons [25]. We considered six different GFT time series, corre-

sponding to the state of Texas and five cities in the Dallas-Fort Worth area: Fort Worth

(Tarrant county), Irving (Dallas county), Plano (Collin and Denton counties), Addison

PLOS COMPUTATIONAL BIOLOGY Socioeconomic bias in influenza surveillance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007941 July 9, 2020 3 / 19

https://github.com/Emergent-Epidemics/US_influenza_data_1998_09-2019
https://github.com/Emergent-Epidemics/US_influenza_data_1998_09-2019
https://doi.org/10.1371/journal.pcbi.1007941


(Dallas county) and Dallas (Dallas county). Google searches are geo-located using the IP

address of the device [7]. We used one state-level and six city-level GFT data in all models.

The surveillance models predict hospitalizations that have been aggregated by income quar-

tile. We obtained hospital discharge records from Texas Health Care Information Collection

(THCIC), filtered for influenza-related principal diagnostic codes of ICD-9 487.�, which

includes 487.0 (with pneumonia), 487.1 (with other respiratory manifestations) and 487.8

(with other manifestations). The data are aggregated into weeks and by patient ZIP Code.

Patient ZIP Codes were then combined into income quartiles based on US Census estimates.

Fig 1 presents aggregate counts from the BioSense 2.0, ILINet, GFT, and hospitalization

data used in the study for the Dallas-Fort Worth region. We grouped ZIP Codes into quartiles,

based on the percentage of the population living in poverty reported in the 2011 American

Community Survey [32]. We estimated age distributions within ZIP Codes from the 2011

American Community Survey and the 2010 Census.

Short term predictions

We used generalized additive models to make short-term predictions of influenza-related

hospitalizations in the study populations. First, we partitioned ZIP Codes into four poverty

quartiles. To predict hospitalizations for group i, we use the Poisson generalized linear model

given by

yðiÞt � PoissonðlðiÞt Þ ; loglðiÞt ¼ a
ðiÞ þ

XD

k¼1

hðiÞk ðxk;tÞ ; ð1Þ

where yðiÞt is the total number of hospitalizations in group i at time t, xk,t is the kth predictor for

hospitalizations at time t, αi is a background hospitalization rate for group i, and hðiÞk ð�Þ is some

potentially nonlinear function (specific to group i) that maps predictors to expected hospitali-

zation counts. Intuitively, the xk,t scalars capture all the information used by the surveillance

model to predict hospitalizations. Here t indexes the time of the prediction and k the particular

data source—for example, GFT data from two weeks prior. We fit the hðiÞk ð�Þ by expanding

each predictor in a third-order B-spline basis with six degrees of freedom. The result of this

expansion is that each predictor is now also represented by a number of new predictors, which

functionally allow for non-linear associations between the original predictors and influenza

hospitalizations. To avoid overfitting, we regularized the spline coefficients using a lasso pen-

alty, with the regularization parameter chosen by cross-validation.

Let yi = (yi1, . . ., yiN)T be a vector of counts for income quartile i across all weeks. Let X be

an N × D matrix of surveillance variables used as predictors, where rows are weeks and col-

umns are variables. We considered one-week-ahead forecasts, thus entry t in yi corresponds to

this week’s hospitalization count, while row t of the X matrix (used to forecast yit) corresponds

to information based on surveillance variables up through week t − 1 only. Two-week-ahead

forecasts were similar, but with the X matrix containing data only through week t − 2.

We considered six different model variations, each using a distinct combination of data

from BioSense 2.0, ILINet, and GFT. Importantly, these three data sets included multiple time

series. For example, BioSense 2.0 provided hospitalization counts for all six counties in the

study area. Additionally, for each time series we added three columns in the X matrix: the level

(actual value of the time series in the trailing week), the slope of that variable (first difference

over the trailing two weeks at the time of prediction), and the acceleration (second difference

over the trailing three weeks at the time of prediction). The columns of X corresponded to

the predictors in the model, and we considered six sets of predictors: (i) ILINet alone (15
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predictors), (ii) BioSense 2.0 alone (18 predictors), (iii) GFT alone (18 predictors), (iii) ILINet+

BioSense 2.0 (33 predictors), (iv) ILI + GFT (33 predictors), (v) BioSense + GFT (36 predictors)

and (vi) GFT + ILINet+ BioSense 2.0 (51 predictors). In addition, the B-spline expansions pro-

vided another 6 variables for each set of predictors, for example, the fully expanded version of

model (vi) would have 51 + 306 predictors for a total of 357.

Across the 6 models, we fitted separate models to each group i; these group-level models

shared the same predictors, but result in different regression coefficients from B-spline expan-

sions of each partial response function. Overall, we fitted 16 models, one for every combina-

tion of ZIP Code group (i) and candidate predictor set described. Given that we had 188 weeks

of data and between 15 and 357 predictors per model, we regularized the coefficient estimates

Fig 1. Datasets used in the analysis. The top panel shows influenza-associated inpatient hospitalizations in black, as defined by ICD9 codes

486 and 487, the next panel shows ILINet in red where the proportion of doctor visits are for influenza-like illness, the next panel shows

BioSense 2.0 in blue, which is the proportion of ED visits per week that are for an upper respiratory infection. The final panel shows the

GFT estimate, in orange, of the number of influenza-like-illness cases per 100,000 people.

https://doi.org/10.1371/journal.pcbi.1007941.g001

PLOS COMPUTATIONAL BIOLOGY Socioeconomic bias in influenza surveillance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007941 July 9, 2020 5 / 19

https://doi.org/10.1371/journal.pcbi.1007941.g001
https://doi.org/10.1371/journal.pcbi.1007941


in order to avoid over-fitting. Specifically, we applied a lasso penalty on the coefficient vector

β, by minimizing the objective function

f ðbÞ ¼ lðbÞ þ l pðbÞ ;

where l(β) is the negative log likelihood arising from the Poisson model, p(β) is the lasso pen-

alty function, and λ is a scalar that governs the strength of regularization. We select λ for each

regression separately using cross validation. See [33] for further details of the model-fitting

algorithm. A similar procedure to avoid over-fitting associated with influenza forecasting was

utilized by [34].

Predictive performance

To evaluate the predictive performance of the models, we calculated out-of-sample RMSE

(ORMSE). Let ŷit be the predicted hospitalization count for group i on week t, generated from

fitting the model to every data point except week t. The quantity

eit ¼ yit � ŷit

is the out-of-sample prediction error. We refitted the model 188 times, one for each week that

is removed; this is repeated for every group and every combination of surveillance variables.

The ORMSE for a group of ZIP Codes i is given by

ORMSEðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
t¼1

e2
it

q

PopðiÞ
;

where N is the number of weeks, and Pop(i) is the total population of the group. This can be

interpreted as the average predictive error of the model. The units are hospitalization counts

per person. Although the groups have approximately the same population size, normalizing by

the population of the group is essential. Without normalization, predictions for a large popula-

tion may appear worse than predictions for a small population, simply because more hospitali-

zations occur in the larger group. We corroborated our ORMSE results using a log-likelihood

analysis (see S2 Text).

To determine whether performance differences between poverty groups were statistically

significant, we ran a permutation test with 10,000 repeats, by randomly assigning ZIP Codes

into four equally sized groups, and re-fitting the model to each randomized group, following

the original procedure, including cross-validation regularization. We then calculated ORMSE

for each group, and also the difference between the best ORMSE and the worst ORMSE

among the four groups.

For each of the four model variants, we (1) used this procedure to generate null distribu-

tions of test statistics for each of our four model variants, (2) calculated the difference between

the ORMSE measured for the highest poverty quartile and that measure in the lowest poverty

quartiles (according to the original grouping), and (3) determined the proportion of the null

distribution less than this difference. This proportion was the P-value used to determine statis-

tical significance.

Results

We evaluated the performance of BioSense 2.0, GFT and ILINet data sources, with respect to

short-term predictions of influenza-related hospitalizations in the six-county region surround-

ing the Dallas-Fort Worth metropolitan area (Fig 2). This region included 305 ZIP Codes and
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all of the emergency departments reporting to the Texas BioSense 2.0 system during the five-

year study period (2007-2012).

Influenza burden by poverty level and age

We estimated the influenza hospitalization rate per 1,000 people in each ZIP Code. Through-

out the region, we find that influenza hospitalization rates exhibit a significant positive correla-

tion with both poverty level and the proportion of the 2010 census population over age 65

Fig 2. The six counties in northeast Texas included in this study (Dallas, Tarrant, Parker, Denton, Johnson, and Ellis).

Zip codes are colored by their poverty quartile, [0-8) (dark blue), [8-12) (light blue), [12-21) (orange),>21 (red) percent of

residents below the poverty line. In addition to the state-level Google Flu Trends (GFT) time series, we used the five city-level

time series most closely associated with our study area: Fort Worth (I), Irving (II), Plano (III), Addision (IV), and Dallas (V).

https://doi.org/10.1371/journal.pcbi.1007941.g002
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(Fig 3), consistent with recent literature [2, 3, 35]. After controlling for age, we find that pov-

erty and influenza burden are significantly correlated in the under age 65 population but not

the over age 65 population (2011 American Community Survey estimates) (p<.001). We estab-

lished this result with a multivariate regression of hospitalization rate at the zip-code level with

the proportion of the ZIP Code living below the poverty line and the proportion of the ZIP

Code over 65 (Table 1).

Forecast quality by poverty quartile

We classified ZIP Codes into quartiles based on the proportion of the population living

below the federally defined poverty line and fitted separate generalized additive forecasting

models to the data in each of the quartiles. In comparisons between model predictions

and hospitalization data, we find that the data become less informative as the poverty level

increases (Fig 4 and Tables 2 and 3). The models make the best predictions in the most afflu-

ent 25% of ZIP Codes—with poverty levels between 0% and 7.5%— and the worst predic-

tions in the most impoverished 25% of ZIP Codes—those with poverty levels between 21.2%

and 48.1%, regardless of the data sources included as predictors. Additionally, in an attempt

to reduce the forecasting bias, we included the out-of-sample predictions for the three lower

poverty quartiles as candidate predictors for highest poverty quartile. This model did not

Fig 3. Relationship between age, poverty level, and influenza hospitalizations across 305 ZIP Codes from 2007 to 2012. Demographic data are

based on 2010 Census. (A) Influenza hospitalizations increase with the size of the over 65 population (p<.001). (B) Influenza hospitalizations increase

with the percent of the population under the federal poverty level (p<.001). (C) Influenza hospitalizations in over 65 year olds does not significantly

increase with poverty (p = .11). (D) Influenza hospitalizations in under 65 year olds does significantly increase with poverty (p <.001). (E) The weekly

number of hospitalizations across each of the four poverty quartiles. Because the quartiles were selected to include comparable population sizes, we find

2—3 times higher rates of inpatient hospitalizations in the most impoverished quartile (red) as compared to the least (dark blue).

https://doi.org/10.1371/journal.pcbi.1007941.g003

Table 1. A multivariate regression of hospitalization rate at the zip-code level with the proportion of the ZIP Code living below the poverty line and the proportion

of the ZIP Code over 65.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3656 0.0978 3.74 0.0002

Proportion over 65 -0.0001 0.0094 -0.01 0.9911

Proportion in poverty -0.0096 0.0043 -2.25 0.0258

Interaction 0.0022 0.0003 6.26 0.0000

https://doi.org/10.1371/journal.pcbi.1007941.t001
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improve the forecast accuracy in the highest poverty quartile (see S1 Text). The differences

in prediction errors between the upper and lower poverty quartiles are statistically significant

(P< 0.0001, bootstrap analysis and S1 Fig). This trend is confirmed by generalized linear

Poisson and negative binomial models–along with generalized additive Poisson and Gauss-

ian models–fit using one-week-ahead forecasts and evaluated using leave-one-out root-

mean-square-error and log-likelihood (all evaluated on out-of-sample data, see S2 Text and

S4 Fig). Finally, to address potential biases arising from aggregating of ILINet data from ZIP

code level to county level, we re-ran the analyses using ZIP Code level time ILINet time

Fig 4. Comparison between one-week ahead model predictions and the total number of weekly observed influenza hospitalizations for each of the

four poverty quartiles (A) upper quartile (i.e. least impoverished), (B) upper-middle quartile, (C) lower-middle quartile, (D) lowest quartile

(most impoverished) and the distribution of out-of-sample prediction errors (observed—predicted) for the (E) upper quartile, (F) upper-middle

quartile, (G) lower-middle quartile, and (H) lowest quartile. The model was trained on the first 60% of the data (dashed lines) and evaluated on the

remaining 40% of the data (solid lines). Qualitatively similar results were obtained with n-fold (leave-one-out) cross-validation, see Tables 2 and 3 and

S2 Text. Across all four quartiles, the model was unbiased according to a re-sampling test on the residuals, see S3 Text.

https://doi.org/10.1371/journal.pcbi.1007941.g004
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series. We again found that out-of-sample forecast accuracy was lowest in the most impover-

ished 25% of ZIP Codes, (see S5 Text).

Synchrony within poverty quartiles

One possible explanation for the observed bias in forecast accuracy by income quartile is that

the most impoverished ZIP Codes are either out-of-sync with each other or are more widely

distributed across the study area. We tested the hypothesis that the most disadvantaged quar-

tile exhibits greater asynchrony in influenza hospitalization rates and/or are located further

away from each other and found the opposite: ZIP Codes in the most impoverished quartile

are more synchronous and are located no less closely together as compared to more affluent

ZIP Codes.

We define asynchrony as the average pair-wise correlation between ZIP Codes. Based on

data visualization and pairwise correlation analyses among ZIP Codes, we failed to find evi-

dence in support of this hypothesis (Fig 5). In fact, influenza hospitalization patterns exhibited

significantly more similarity within the lowest poverty quartile than within the less impover-

ished quartiles. To test for significance, we randomly assigned ZIP Codes to income quartiles

5,000 times and repeated the analysis. The observed mean correlation among the most impov-

erished quartiles was higher than all of the 5,000 randomizations (i.e., p< 0.0002) and the

observed median was higher than all but 2 of the simulations (i.e., p = 0.0004).

For each poverty quartile, we also performed a principal-component analysis of ZIP Code

level hospitalization counts. That is, we calculated the principal components of the matrix Y(i)

of hospitalization counts whose rows are weeks, and whose columns are the ZIP Codes within

Table 2. Out-of-sample (60/40 training/testing) root mean-squared error (ORMSE) using a Poisson generalized additive model. Values are normalized by the popula-

tion size of each ZIP Code quartile and then multiplied by 106 to obtain ORMSE per one million residents. The rightmost column gives aggregate ORMSE across all ZIP

Codes included in our study area. The quartiles contained: [0-8) (1st quartile), [8-12) (2nd quartile), [12-21) (3rd quartile), and>21 (4th quartile) percent of residents

below the poverty line.

Surveillance Data Sources 1st quartile 2nd quartile 3rd quartile 4th quartile Combined

ILI 1.69 2.41 2.29 5.12 2.22

BioSense 1.55 1.95 2.51 2.60 2.01

GFT 1.38 1.34 2.16 2.68 1.74

ILI + BioSense 1.46 1.68 2.30 3.81 1.94

ILI + GFT 1.42 1.35 2.17 2.75 1.74

BioSense + GFT 1.44 1.58 2.11 2.64 1.79

ILI + BioSense + GFT 1.44 1.53 2.12 2.64 1.72

https://doi.org/10.1371/journal.pcbi.1007941.t002

Table 3. Out-of-sample (leave-one-out) root mean-squared error (ORMSE) for each Poisson generalized additive model. Values are normalized by the population size

of each ZIP Code quartile and then multiplied by 106 to obtain ORMSE per one million residents. The rightmost column gives aggregate ORMSE across all ZIP Codes

included in our study area. The quartiles contained: [0-8) (1st quartile), [8-12) (2nd quartile), [12-21) (3rd quartile), and>21 (4th quartile) percent of residents below the

poverty line.

Surveillance Data Sources 1st quartile 2nd quartile 3rd quartile 4th quartile Combined

ILINet 1.45 1.81 2.63 4.04 2.20

BioSense 2.0 1.69 2.05 2.66 4.23 2.52

GFT 1.33 1.64 2.61 3.63 2.00

ILINet+ BioSense 2.0 1.55 1.81 2.49 3.88 2.18

ILINet+ GFT 1.33 1.59 2.65 3.29 2.00

BioSense 2.0 + GFT 1.39 1.91 2.59 4.03 2.35

ILINet+ BioSense 2.0 + GFT 1.39 1.91 2.52 4.03 2.35

https://doi.org/10.1371/journal.pcbi.1007941.t003
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poverty quartile i. The highest poverty quartile has the highest percent variation explained by

these leading components (33.2%), as compared to 13.2% in the least impoverished, 19.3% in

the upper-middle, and 26.0% in the lower-middle quartiles, indicating greater synchrony in

influenza trends within more impoverished populations. Thus, we do not believe that the

reduced performance in lower socioeconomic groups stems from greater variation in temporal

flu trends. We utilized the same permutation-based approach described above to test for a sig-

nificant difference in the principle component analysis results (p< 0.001).

Next, we considered the hypothesis that geographic clustering might explain the discrepan-

cies in forecast accuracy. One might intuitively expect nearby populations to exhibit similar

influenza patterns; consequently, spatially aggregated populations should be more amenable

to forecasting than more dispersed populations. We found that the lowest poverty ZIP Codes

have similar patterns of spatial aggregation as the other quartiles (using both Moran’s I [36]

and inter-centroid distances, see S5 Fig and S4 Text). However, the majority of these ZIP

Codes are clustered in Dallas and Tarrant Counties, which is well represented in both our pre-

dictor and hospitalization data. To confirm that the uneven distribution of the poverty quar-

tiles across counties (see S5 Fig) did not bias our results, we fit separate prediction models to

Dallas and Tarrant counties. In both cases, we confirm our results that forecast accuracy

decreases as poverty level increases (see S4 Text).

Finally, to further evaluate alternative explanations for the observed bias, we conducted a

simulation experiment to address the role of other factors, such as reduced rates of ILI primary

care in lower socioeconomic groups [37, 38], lower correlation between ILI-related Internet

searches and actual ILI in lower socioeconomic groups [39, 40], socioeconomic differences in

vaccination levels [41, 42], and/or socioeconomic differences in underlying health conditions

[43]. The results of this simulation experiment demonstrate that, when all else is equal, a

Fig 5. Influenza synchrony among ZIP Codes within each poverty quantile. The quartiles contained: [0-8) (A., 1st quartile), [8-12) (B., 2nd quartile),

[12-21) (C., 3rd quartile), and>21 (D., 4th quartile) percent of residents below the poverty line. (A-D) Range of influenza activity (shades) around

mean (solid line) at the ZIP Code level, in least impoverished to most impoverished quartiles, respectively. (E) Boxplots of correlation coefficient among

pairs of ZIP Codes within each quartile. The most impoverished quartile exhibited the greatest synchrony. To test for significance, we randomly

assigned ZIP Codes to income quartiles 5,000 times and repeated the analysis. The observed mean correlation among the most impoverished quartiles

was higher than all of the 5,000 randomizations (i.e., p< 0.0002) and the observed median was higher than all but 2 of the simulations (i.e., p = 0.0004).

The median value for each quartile is indicated with a solid, black line, the boxes enclosed the inter-quartile range, and the whiskers cover the entier

distribution. We include the distribution of randomized median correlations on the far right (gray box plot). As discussed in the Results, we confirmed

these results using a principle component analysis.

https://doi.org/10.1371/journal.pcbi.1007941.g005
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higher hospitalization rate should increase statistical power and provide greater prediction

precision (S6 Text, S2 and S3 Figs).

Discussion

Populations with lower socioeconomic status have higher hospitalization rates across a range

of diseases [4, 44], caused in part by reduced access to healthcare [37]. Our analysis suggests a

similar disparity in the accuracy of public health outbreak surveillance.

Specifically, a combination of clinical symptom reports, Internet searches, and electronic

emergency room data can predict week-ahead inpatient influenza hospitalizations more reli-

ably in higher socioeconomic than in lower socioeconomic populations. Given this perfor-

mance discrepancy, we were surprised to find that high poverty ZIP Codes exhibit much

more synchronous influenza hospitalization patterns than low poverty ZIP Codes and are

geographically clustered. Thus, the failure likely stems from data bias or under-sampling of at-

risk populations. We speculate that GFT (which tallies the number of influenza related Google

searches) and ILINet (which collects data from volunteer outpatient clinics) provide low cover-

age of at-risk populations [5, 6, 45], while BioSense 2.0 may be biased by an excess in non-

emergency visits to emergency rooms among uninsured and Medicaid recipients [46].

Over 100 years of epidemiological study demonstrates a consistent, positive association

between health and economic prosperity [47, 48]. In many settings, lower socioeconomic sta-

tus has been linked to both reduced access to healthcare and increased burden of both infec-

tious and chronic diseases [37, 49–51]. For example, the REACH 2010 surveillance program in

the U.S.A. found that, “More minorities reported being in fair or poor health, but they did not

see a doctor because of the cost.” [49] and a recent study on neonatal intensive care in the US

found that, “Black, Hispanic, and Asian infants were segregated across NICUs [neonatal inten-

sive care units], reflecting the racial segregation of minority populations in the United States,”

which translated into lower-quality care for infants in the most at-risk populations [52]. In this

vein, we found a positive correlation between poverty and influenza hospitalization rates in

study populations under age 65, which is consistent with a three-fold excess in pediatric influ-

enza-related hospitalizations estimated for a Connecticut at-risk community [53]. However, it

is unknown which of many possible factors—including differences in access to care, vaccine

coverage, or prevalence of underlying conditions—are driving this disparity.

Our study identifies another related socioeconomic inequity—a reduced capability to detect

and monitor outbreaks in at-risk populations—which impedes effective public health interven-

tions. An analogous surveillance gap has been identified for cancer [54]. Ironically, surveil-

lance systems seem to neglect communities most in need of intervention. New methods for

designing and optimizing disease data collection have focused on state-level coverage [55–59]

or assumed that risk was evenly spread across well-mixed populations [60], but could be

adapted to identify data sources that remedy critical gaps or biases.

We recognize several important limitations of our study. First, our goal was to forecast

inpatient hospitalizations for influenza. It is likely that different forms or amounts of bias

might manifest themselves had we focused on a different objective. Second, our analysis was

restricted to the Dallas-Fort Worth region from which we obtained BioSense 2.0 data, and

may not generalize to the rest of the USA nor globally. Third, since we could not access Bio-

Sense 2.0 with influenza diagnoses, we used upper respiratory infection data as a proxy. We

expect that influenza-specific BioSense 2.0 records would generally improve one-week-ahead

predictions, but may or may not close the surveillance poverty gap. Fourth, we did not con-

sider many other data sets, some of which might provide more representative coverage of at-

risk populations, including public health laboratory data [61], pharmacy sales [62], school
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absenteeism records [63, 64], or other Internet-sourced or social media data [22, 65]. Fifth,

because we used a lasso penalty to regularize the regression coefficients–implying that the

number of degrees of freedom does not necessarily increase with the number of predictors–we

could not apply standard model selection methods, such as Akaike Information Criteria, to

compare the performance across models (rows of Table 2). Although BioSense 2.0 yields

slightly higher performance scores across all poverty quartiles, we leave a definitive compari-

son among different combinations of surveillance data sources for future study. Sixth, we did

not have individual-level patient socioeconomic and/or ZIP Code information from ILINet,

BioSense 2.0, and GFT, and thus we were unable to assess directly whether lower socioeco-

nomic groups are underrepresented. However, prior studies suggest that lower socioeconomic

groups use the Internet less frequently than higher socioeconomic groups, and that disease-

related signals derived from Internet-search data poorly reflect incidence in lower socioeco-

nomic communities [39, 40, 45]. Interestingly, our results suggest that predictions based

solely on GFT performed no worse in the lowest income quartile than did other candidate pre-

dictors. Researchers with access to individual-level BioSense 2.0 and GFT data–or other sys-

tems such as FilmArray Trend [66]–could test our hypothesis, and perhaps develop methods

for subsampling the data to improve predictive performance in low income areas. Finally, the

Texas inpatient hospitalization data did not indicate whether patients were admitted through

an emergency department. Therefore, we were unable to determine whether visitation rate

to emergency departments for influenza varied by socioeconomic status. We note that the

majority of inpatient hospitalizations in the US are not preceded by an emergency department

visit [67].

A growing community of researchers and practitioners across public health, medicine, sci-

ence, military, and non-governmental organizations are developing and deploying technol-

ogy-enabled surveillance systems [22] to support adaptive management of infectious diseases

[68] and deliver actionable forecasts [69–76]. Many of these efforts focused on improving the

timeliness and accuracy of bioevent detection, situational awareness, and forecasting [34, 77].

However, our results suggest a different, and arguably more important priority: improving

coverage in at-risk populations. Gaps in both traditional and early next generation surveillance

systems compound health disparities in populations with reduced access to healthcare or

higher rates of severe disease. Thus, as surveillance systems are upgraded and expanded to

incorporate novel data sources, and crowd-sourced/participatory systems are deployed, partic-

ular attention should be paid to improving equity, in addition to other performance goals [22,

25]. We further argue that our results highlight the critical need for more research into drivers

of disease dynamics and studies to measure the burden of disease–across severity levels–in at-

risk communities.

Conclusions

We introduce a robust and flexible method for improving and bench marking situational

awareness. Our method offers a general statistical model for short-term prediction, that can

systematically integrate diverse data sources, including traditional surveillance data, electronic

medical records and Internet-source digital data. We used the method to construct a surveil-

lance system that made one-week-ahead predictions of influenza hospitalizations from real-

time BioSense 2.0, Google Flu Trends and ILINet data. While overall performance was reason-

able, we discovered a critical data vulnerability in Dallas-Fort Worth’s most at-risk popula-

tions. This surveillance design framework can be readily applied to evaluate and integrate new

data sources that address this challenge.
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Supporting information

S1 Text. This document contains supplemental information regarding the use of hospitali-

zation forecasts as predictors.

(PDF)

S2 Text. This document contains supplemental information detailing additional statistical

model fits and evaluations.

(PDF)

S3 Text. This document contains supplemental information regarding subsampling resid-

uals to test for model bias.

(PDF)

S4 Text. This document contains supplemental information regarding models fit only to

Dallas and Tarrant County hospitalizations and a spatial autocorrelation analysis using

Moran’s I.

(PDF)

S5 Text. This document contains supplemental information regarding models fit using

ZIP Code level ILINet data.

(PDF)

S6 Text. This document contains supplemental information regarding simulations to eval-

uate the sensitivity of model predictions to hospitalization rate and surveillance detection

rate.

(PDF)

S1 Fig. Result of the permutation test for the ILI + BioSense + GFT model across 10,000

Monte Carlo samples. The vertical red line is at 3.3, the observed value based on the poverty

grouping. The results indicate that it is unlikely for the observed value to arise by chance. The

Monte Carlo p-value is 0.0001, with only of our randomized permutations yielding an ORMSE

gap at least as large as 3.3.

(TIF)

S2 Fig. Simulating disparate case hospitalization rates. The curves illustrate a typical simula-

tion. The left-hand panel depicts the Influenza-Like-Illness (ILI) time series (blue) for popula-

tions A and B, and surveillance time series for A (red) and B (green) derived by stochastically

sampling the ILI time series, assuming that 10% of cases are detected by the system (for exam-

ple, via internet use or physician visits). The right-hand panel depicts the hospitalization time

series and predicted hospitalizations for populations A and B, which had hospitalization rates

of 0.1 and 0.9, respectively. The hospitalization curves were generated by stochastically sam-

pling the ILI curve in the left-hand panel and the predictions were created using the same

regression model as in the main analysis. The average R2 over 10,000 simulations for these pre-

dictions are 0.9986 and 0.9993, for A and B, respectively.

(TIF)

S3 Fig. As the hospitalization rate or the surveillance detection rate drops, the predictions

become less precise. For each combination of surveillance detection rate and hospitalization

rate, we run 100 simulations to estimate the expected R2. These simulations are conducted

assuming β = 0.076 and γ = 0.07 and the results are qualitatively the same for other values of

these parameters.

(TIF)
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S4 Fig. Comparison between one-week ahead model predictions and the total number

of weekly observed influenza hospitalizations for each of the four poverty quartiles (A)

upper quartile, (B) upper-middle quartile, (C) lower-middle quartile, (D) lowest quartile

and the distribution of out-of-sample prediction errors (observed—predicted) for the

(E) upper quartile, (F) upper-middle quartile, (G) lower-middle quartile, and (H) lowest

quartile. Across all four quartiles, the model was unbiased according to a resampling test on

the residuals.

(TIF)

S5 Fig. Geographic distribution of ZIP Codes by poverty quartile. A. Boxplots of pairwise

distances between ZIP Codes in the four poverty quartiles. ZIP Codes in the highest poverty

quartile (red) are significantly closer than ZIP Codes in the other three quartiles (ANOVA

and Tukey Honest Test p< 0.001). B. Distribution of ZIP Codes in each poverty quartile by

county. The most impoverished quartile (21-48%) is over-represented in Dallas County.

(TIF)
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