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Abstract

Interactive data visualization is imperative in the biological sciences. The development of

independent layers of interactivity has been in pursuit in the visualization community. We

developed bigPint, a data visualization package available on Bioconductor under the GPL-3

license (https://bioconductor.org/packages/release/bioc/html/bigPint.html). Our software

introduces new visualization technology that enables independent layers of interactivity

using Plotly in R, which aids in the exploration of large biological datasets. The bigPint pack-

age presents modernized versions of scatterplot matrices, volcano plots, and litre plots

through the implementation of layered interactivity. These graphics have detected normali-

zation issues, differential expression designation problems, and common analysis errors in

public RNA-sequencing datasets. Researchers can apply bigPint graphics to their data by

following recommended pipelines written in reproducible code in the user manual. In this

paper, we explain how we achieved the independent layers of interactivity that are behind

bigPint graphics. Pseudocode and source code are provided. Computational scientists can

leverage our open-source code to expand upon our layered interactive technology and/or

apply it in new ways toward other computational biology tasks.

Author summary

Biological disciplines face the challenge of increasingly large and complex data. One neces-

sary approach toward eliciting information is data visualization. Newer visualization tools

incorporate interactive capabilities that allow scientists to extract information more effi-

ciently than static counterparts. In this paper, we introduce technology that allows multiple

independent layers of interactive visualization written in open-source code. This technol-

ogy can be repurposed across various biological problems. Here, we apply this technology

to RNA-sequencing data, a popular next-generation sequencing approach that provides

snapshots of RNA quantity in biological samples at given moments in time. It can be used

to investigate cellular differences between health and disease, cellular changes in response

to external stimuli, and additional biological inquiries. RNA-sequencing data is large,

noisy, and biased. It requires sophisticated normalization. The most popular open-source

RNA-sequencing data analysis software focuses on models, with little emphasis on inte-

grating effective visualization tools. This is despite sound evidence that RNA-sequencing
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data is most effectively explored using graphical and numerical approaches in a comple-

mentary fashion. The software we introduce can make it easier for researchers to use mod-

els and visuals in an integrated fashion during RNA-sequencing data analysis.

This is a PLOS Computational Biology Software paper.

Introduction

Interactive data visualization is increasingly imperative in the biological sciences [1]. When

performing RNA-seq studies, researchers wish to determine which genes are differentially

expressed between treatment groups. Interactive visualization can help them assess differen-

tially expressed gene (DEG) calls before performing any subsequent functional enrichment

analyses. New visualization tools for genomic data have incorporated interactive capabilities,

and some believe this trend could enhance the exploration of genomic data in the future [2].

Despite the growing appreciation of the inherent value of interactive graphics, the availability

of effective and easy-to-use interactive visualization tools for RNA-seq data remains limited.

Interactive visualization tools for genomic data can have restricted access when only avail-

able on certain operating systems and/or when requiring payment [3–5]. These limitations can

be removed when tools are published on open-source repositories. Indeed, the Bioconductor

project aims to foster interdisciplinary scientific research by promoting transparency and

reproducibility while allowing software content to be used on Windows, MacOS, and Linux

[6]. Bioconductor software is written in the R programming language, which also provides sta-

tistical and visualization methods that can facilitate the development of robust graphical tools

[7]. Several interactive visualization methods for genomic data have been developed using

Shiny, which is also based on the R programming language [8–10].

We recently developed bigPint, an interactive RNA-sequencing data visualization software

package available on Bioconductor. In the current paper, we will now explain the technical

innovations and merits of the bigPint package, including new interactive visualization tech-

niques that we believe can be helpful in the development and usage of future biological visuali-

zation software.

Design and implementation

Quick start. For users who would like to immediately try out the package hands-on and

apply bigPint graphics to their data, we recommend consulting the example pipeline (https://

lindsayrutter.github.io/bigPint/articles/pipeline). This pipeline uses reproducible code and

sample data from the bigPint package, so you can smoothly follow along each line of example

code. For additional details, we recommend users to view articles in the Get Started tab on the

package website (https://lindsayrutter.github.io/bigPint).

Basic input

Users can choose whether to input their data in SummarizedExperiment format using a single

parameter dataSE or input their data as a combination of a parameter data and dataMetrics. In

general, the data format corresponds to the assay(SummarizedExperiment) format and con-

tains the read counts for all genes of interest. The value in row i and column j should indicate

how many reads have been assigned to gene i in sample j. This is the same input format
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required in popular RNA-seq count-based statistical packages, such as DESeq2, edgeR, limma,

EBSeq, and BaySeq [11–15].

In general, the dataMetrics object corresponds to the rowData(SummarizedExperiment)
format and should be a subset of the data (usually DEGs) where each case includes quantitative

values of interest (such as fold change and FDR). This information can be easily derived from

popular RNA-seq numerical analysis packages. Again, this framework allows users to work

smoothly between visualizations in the bigPint package and models in other Bioconductor

packages, complying with the belief that the most efficient way to analyze large datasets is to

iterate between models and visualizations.

Original features

Independent layers of interactivity. The Bioconductor community advanced the bound-

aries of biological visualization in the past and generally believes that modern interactive tech-

nology must be incorporated to continue these advancements [6]. We will define the term

geom-drawing interactivity to indicate user queries that draw geoms (graphical representations

of the data, such as lines, hexagons, and points). This could mean the user adjusts sliders or

selects buttons to draw a subset of the data from the database as geoms (such as points). We

will define the term geom-manipulating interactivity to indicate user queries that alter already-

drawn geoms. This could mean the user hovers over a geom (such as a hexagon) and obtains

its associated metadata (such as the names of its contained genes). It could also mean the user

zooms and pans to further alter how already-drawn geoms are displayed.

Our package introduces what we believe is a fairly new interactive visualization technology

that is useful in the exploration of large biological datasets. Our technique allows for two inde-

pendent layers of interactivity, for the foreground and background of the plot respectively.

Each layer can include both geom-drawing and geom-manipulating interactivity. Our new

Table 1. Resources for users about bigPint interactive graphics.

Plot Figure Video Application

Scatterplot matrix Figs 1–4 bit.ly/spmVid bit.ly/spmApp

Litre plot Figs 5–8 bit.ly/litreVid bit.ly/litreApp

Volcano plot Figs 9–12 bit.ly/volcVid bit.ly/volcApp

Parallel coordinate Figs 13–16 bit.ly/pcpVid bit.ly/pcpApp

https://doi.org/10.1371/journal.pcbi.1007912.t001

Table 2. Examples of independent layers of interactivity.

Plot Layer Geom-drawing interactivity Geom-manipulation interactivity

Scatterplot

matrix

Background None User hovers over background hexagons

to view gene counts

Foreground User clicks on background hexagon to draw corresponding genes as foreground points.

Background layer does not need to be redrawn

User hovers over foreground points to

view gene names

Litre plot Background User uses Shiny buttons to specify treatment pairs and hexagon sizes for drawing

background hexagons

User hovers over background hexagons

to view gene counts

Foreground User uses Shiny buttons to specify metric, metric order, and point size for drawing

foreground points. Background layer does not need to be redrawn

User hovers over foreground points to

view gene names

Volcano plot Background User uses Shiny buttons to specify treatment pairs and hexagon sizes for drawing

background hexagons

User hovers over background hexagons

to view gene counts

Foreground User uses Shiny buttons to specify point size, log fold changes, p-values to draw foreground

points. Background layer does not need to be redrawn

User hovers over foreground points to

view gene names

https://doi.org/10.1371/journal.pcbi.1007912.t002
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technology can enhance the exploration of large datasets, especially in cases where one layer

contains large amounts of data (such as the full dataset) and the other layer contains smaller

amounts of data (such as a data subset). Because the layers are independent, users can save

time and computation by keeping the layer with more data unaltered while only redrawing the

layer with less data.

The idea of multi-layered interactive graphics in R was raised in [16] and a pilot implemen-

tation was made using qt software to create different listeners for different layers, an approach

that is no longer functional. While the concept of independent layers of interactivity in R is

not new in itself, the technology we introduce is new and solves a difficult problem that has

been raised before. We achieved our independent double-layered interactivity using htmlwid-

gets [17], ggplot2 [18], shiny [19], JavaScript, and plotly [20].

In general, we first converted a static ggplot2 object into an interactive plotly object using

ggplotly(). To overlay an additional layer of interactivity to the plotly object, we used the

onRender() method of the htmlwidgets package [17]. This method allowed us to overlay an

interactive foreground layer via plotly traces while the original interactive background layer of

the plotly object did not need to be redrawn, something that cannot foreseeably be achieved

with the native onRender() method of the plotly package [20]. Specifically, the htmlwidgets

Fig 1. Step 1: Independent interactive layers of scatterplot matrix. First step in a four-part example series of user

actions. User hovers over background hexagon to determine it contains two genes.

https://doi.org/10.1371/journal.pcbi.1007912.g001
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onRender() method contains three input parameters: an HTML Widget object, a character

vector containing JavaScript code, and a list of R objects that can be serialized to JSON format.

To develop our technique, we specified our plotly object as the HTML Widget object, which

allowed for an interactive background. Within the method, we wrote JavaScript code that

enabled interactive foregrounds to be updated without redrawing the interactive background.

We used the R object list to transfer count tables and DEG lists into the method. In some our

our applications, users can link between the layers of different interactive plots. This function-

ality was achieved by sending custom messages between the Shiny software and the JavaScript

code within the htmlwidgets method [19].

The current paper can benefit biology researchers and developers alike. Developers who

would like to modify our code can access pseudocode and documented code separately in the

supplementary material (see S1 Table). For biology researchers who would like to readily apply

our visualization tools to their data, didactic materials (figures, applications, and videos) are

available for each plotting type in Table 1. We will now briefly explain how our two-layered

Fig 2. Step 2: Independent interactive layers of scatterplot matrix. Second step in a four-part example series of user

actions. User clicks on background hexagon to overlay the two corresponding genes as orange points in the

foreground layer of each scatterplot. The computationally-expensive background layer of hexagons does not need to be

redrawn.

https://doi.org/10.1371/journal.pcbi.1007912.g002
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interactivity method can improve upon several of the RNA-seq visualization tools in our

package.

Scatterplot matrices. Scatterplot matrices have appeared in statistical graphics literature

for almost four decades and used across various fields of multivariate research [21–24]. Previ-

ous user studies have shown that participants performed better when using animated rather

than static versions of scatterplot matrices. Users also preferred animated scatterplot matrices

and found them easier to understand as they can alleviate overplotting issues [25]. Rendering

scatterplot matrices interactive is promising but challenging with large datasets [26]. The num-

ber of background geoms that need to be drawn grows exponentially by dimension size: n-

dimensional data corresponds to n2 scatterplots. Our two-layered interactive visualization

technology improves upon this dilemma by allowing details of interest to be superimposed in

the foreground while the massive number of geoms in the background does not require

redrawing. See Tables 1 and 2 and Figs 1–4 for details about our interactive scatterplot

matrices.

Litre plots. Problems still remain when scatterplot matrices are applied to large datasets.

Physical space requirements increase exponentially. Hence, when extended to large

Fig 3. Step 3: Independent interactive layers of scatterplot matrix. Third step in a four-part example series of user

actions. The background layer of hexagons remains interactive and the user can still hover over another hexagon of

interest to determine it contains 40 genes.

https://doi.org/10.1371/journal.pcbi.1007912.g003
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dimensions, it becomes difficult to mentally link many small plots within the matrix [27]. Sev-

eral techniques have been proposed to ameliorate this problem. Three dimensional scatterplots

are useful but can cause occlusion and depth perception issues [27]. Other techniques like

grand tours [28], projection pursuits [29, 30], and scagnostics [31] have been proposed.

Even though these alternative techniques are useful, they may not simultaneously display

distributions across all cases (genes) and variables (samples). We generally want to compare

replicate and treatment variability in RNA-seq data, which can be visually accomplished by

plotting all genes and samples. We also want to superimpose DEGs to determine how their

read count variability compares to that of the whole dataset. In light of this, we developed a

plot that collapses the scatterplot matrix onto one Cartesian coordinate system, allowing users

to visualize all read counts from one DEG of interest onto all read counts of all genes in the

dataset. We call this new plot a repLIcate TREatment (“litre”) plot. An in depth explanation

about the litre plot can be found in our previous methods paper [32].

We believe our two-layered interactive visualization method is an indispensable component

of the litre plot. Drawing the background (all genes in the dataset) is the time-limiting step,

Fig 4. Step 4: Independent interactive layers of scatterplot matrix. Fourth step in a four-part example series of user

actions. User clicks on background hexagon to overlay the 40 corresponding genes as orange points in the foreground

layer of each scatterplot. This step does not require the computationally-expensive background layer of hexagons to be

redrawn.

https://doi.org/10.1371/journal.pcbi.1007912.g004
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whereas drawing the foreground (one DEG of interest) is immediate. Most users would like to

superimpose DEGs from a list one by one onto the background. This process would be unnec-

essarily time-prohibiting if the background needed to be redrawn each time the user pro-

gressed to the next DEG. Fortunately, our technology allows the user to immediately redraw

the interactive foreground (the DEG of interest) while the background (all genes in the data)

remains unchanged but preserved in its interactive capabilities. See Tables 1 and 2 and Figs 5–

8 for details about our interactive litre plots.

Volcano plots. Volcano plots draw significance and fold change on the vertical and hori-

zontal axes respectively. In RNA-seq studies, volcano plots allow users to check that genes

were not falsely deemed significant due to outliers, low expression levels, and batch effects

[33]. Researchers benefit from the ability to quickly identify individual gene names in the vol-

cano plot. This was previously achieved with the identify() method in R, which identifies the

closest point in a scatterplot to the position nearest the mouse click [33]. The interactive vol-

cano plot in bigPint can identify individual gene names in a less ambiguous fashion by

responding to users hovering directly over corresponding points. It also improves upon tradi-

tional volcano plots by allowing users to threshold on statistical values in order to immediately

update the superimposed gene subset without having to redraw the more computationally-

heavy background that contains all genes. See Tables 1 and 2 and Figs 9–12 for details about

our interactive volcano plots.

Consecutive box selection. The bigPint package provides interactive tools for consecutive

box selection. A box selection is a rectangular query drawn directly on a two-dimensional

Fig 5. Step 1: Independent interactive layers of litre plot. First step in a four-part example series of user actions. User uses Shiny buttons to specify treatment

pairs (N and P) and hexagon size (10) for drawing background hexagon layer. User can hover over hexagon of interest to determine it contains 19 genes.

https://doi.org/10.1371/journal.pcbi.1007912.g005
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graph. Users can specify a box selection by clicking on the desired starting point of the rectan-

gular query and dragging the mouse pointer to the desired opposite corner point of the rectan-

gular query. This procedure for generating rectangles is widely used in interactive programs

and should be familiar to most users [34]. After the user releases the mouse, the query is pro-

cessed and only the data cases that were inside the specified rectangle remain. More precisely,

a data case remains in a box selection queried between (x1, y1) and (x2, y2) if every point within

x1� x� x2 is also within y1� y� y2 (where y2� y1 and x2� x1). The user can specify conse-

cutive queries with multiple box selections. The consecutive box selection model is convenient

in cases where identical thresholds are desired over adjacent features. In these cases, a single

box selection of width w can be used to simultaneously query the same threshold across w fea-

tures. This process is an improvement over single-feature box selection widgets, where w indi-

vidual queries would be required [34].

Consecutive box selection may have originally been designed for time series data, but has

since proven useful for detecting patterns in gene expression data. Combined with parallel

coordinate plots, the consecutive box selection technique has been used to elicit candidate reg-

ulatory splice sequences showing high values at some positions and low values at other posi-

tions [34]. In RNA-seq, this technology can also be used to investigate differential expression

showing high read counts for one treatment group and low read counts for another treatment

group, requiring a consecutive query. Consecutive box selection tools have been published for

gene expression analysis sofware that was restricted for certain operating systems [34]. We

Fig 6. Step 2: Independent interactive layers of litre plot. Second step in a four-part example series of user actions. User uses Shiny buttons to specify metric

(FDR) and metric order (Increasing) to establish the order in which genes will be overlaid as pink points in the foreground layer. User clicks “Plot gene” button

and the gene with the lowest FDR value (Glyma.19G168700.Wm82.a2.v1) is overlaid. The background layer of hexagons does not need to be redrawn.

https://doi.org/10.1371/journal.pcbi.1007912.g006
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Fig 7. Step 3: Independent interactive layers of litre plot. Third step in a four-part example series of user actions. User clicks “Plot gene” button again

and the gene with the second-lowest FDR value (Glyma.13G293500.Wm82.a2.v1) is overlaid. This step does not require the background layer of

hexagons to be redrawn.

https://doi.org/10.1371/journal.pcbi.1007912.g007

Fig 8. Step 4: Independent interactive layers of litre plot. Fourth step in a four-part example series of user actions. User can zoom and pan on the

layers using the Plotly Modebar.

https://doi.org/10.1371/journal.pcbi.1007912.g008
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believe that publishing consecutive box selection tools in a platform like R can be useful for

computational biologists using various operating systems. See Tables 1 and 2 and Figs 13–16

for details about our interactive parallel coordinate plots that feature consecutive

box selection.

Useful features

Tailoring and saving static plots. Static plots can be saved as list objects in the R work-

space and/or as JPG files to a directory chosen by the user. Saving plots into the R workspace

allows users to integrate them into analysis workflows. It also allows them to tailor the plots

(such as adding titles and changing label sizes) using the grammar of graphics via the conven-

tional + syntax. Saving plots to a directory allows users to keep professional-looking files that

can be inserted into proposals and talks. By default, the bigPint package saves static plots both

in the R workspace and a directory (the default location is tempdir()).

Second feature layer. Both static and interactive plots allow for a subset of data to be plot-

ted in a different manner than the full dataset. When analyzing RNA-seq data, this second fea-

ture layer could represent DEGs. There are three options for creating data subsets with static

Fig 9. Step 1: Independent interactive layers of volcano plot. First step in a four-part example series of user actions. User uses Shiny buttons to specify treatment

pairs (N and P) and hexagon size (9) for drawing background hexagon layer. User can hover over hexagon of interest to determine it contains 1 gene.

https://doi.org/10.1371/journal.pcbi.1007912.g009
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plots. First, users can threshold the previously-mentioned dataMetrics object by one of its

quantitative variables. Second, users can simply declare a geneList object that contains the list

of data subset IDs. Third, the user can simply leave the dataMetrics and geneList objects to

their default value of NULL and not overlay any data subsets.

Group comparison filters. When users create static plots, the package automatically cre-

ates a separate plot for each pairwise combination of treatment groups from the inputted data.

When users explore interactive plots, fields are dynamically generated from the inputted data

so that any pairwise combination of treatment groups can be selected by buttons. Users can

then quickly flip between contrasts in their data. The bigPint package comes with an example

soybean cotyledon dataset that has three treatment groups, which is used across several easy-

to-follow articles on the package website. These assets can assist users who have data contain-

ing more than two treatment groups.

Hexagonal binning. Most bigPint plots represent genes using point geoms (where each

point represents one gene) or hexagonal binning geoms (where each hexagon color represents

the number of genes in that area). Plotting each gene as a point allows for ideal levels of detail

Fig 10. Step 2: Independent interactive layers of volcano plot. Second step in a four-part example series of user actions. User uses Shiny buttons to specify log

fold change and p-value thresholds. User clicks “Plot gene subset” button and the subset of genes that pass the thresholds are overlaid in the foreground layer as

pink points. The background layer of hexagons does not need to be redrawn. User hovers over foreground point to view gene name (Glyma.19G168700.Wm82.a2.

v1).

https://doi.org/10.1371/journal.pcbi.1007912.g010

PLOS COMPUTATIONAL BIOLOGY bigPint: Visualization that makes big data pint-sized

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007912 June 15, 2020 12 / 21

https://doi.org/10.1371/journal.pcbi.1007912.g010
https://doi.org/10.1371/journal.pcbi.1007912


but overplotting can occur as the data increases, which makes it difficult to determine how

many genes are in a given area. Hexagonal binning has been used in prior software to success-

fully manage overplotting issues [26, 35] and has shown superior time performance because

less geom objects need to be plotted. The bigPint package allows users to draw the background

using either geom, as preferences can depend on the dataset.

Hierarchical clustering. Users can conduct hierarchical clustering analyses on their data

using the function plotClusters(). By default, the resulting clusters will be plotted as parallel

coordinate lines superimposed onto side-by-side boxplots that represent the five-number sum-

mary of the full dataset. There are three main approaches in the plotClusters() function:

• Approach 1: The clusters are formed by clustering only on a user-defined subset of data

(such as significant genes). Only these user-defined genes are overlaid as parallel coordinate

lines.

• Approach 2: The clusters are formed by clustering the full dataset. Then, only a user-defined

subset of data (such as significant genes) are overlaid as parallel coordinate lines.

Fig 11. Step 3: Independent interactive layers of volcano plot. Third step in a four-part example series of user actions. User uses Shiny buttons to increase point

size from 2 to 3. Foreground layer of pink points are increased in size and the background layer of hexagons does not need to be redrawn.

https://doi.org/10.1371/journal.pcbi.1007912.g011
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• Approach 3: The clusters are formed by clustering the full dataset. All genes are overlaid as

parallel coordinate lines.

The clustering algorithm is based on the hclust() and cutree() functions in the R stats pack-

age. It offers the same set of agglomeration methods (“ward.D”, “ward.D2”, “single”, “com-

plete”, “average”, “mcquitty”, “median”, and “centroid”) with “ward.D” as the default. In many

cases, users may want to save clusters derived from the plotClusters() function for later use,

such as to overlay them onto scatterplot matrices, litre plots, and volcano plots. The gene IDs

of each cluster can be saved as .RDS files for this purpose by setting the verbose option of the

plotClusters() function to a value of TRUE.

Various plot aesthetics. Users can modify various aesthetics for both static and interac-

tive plots, including geom size. Some plots also provide alpha blending, which can benefit

users plotting large datasets as parallel coordinate lines [36]. Statistical coloring is inconsistent

in numerous packages even though it can greatly enhance biological data visualization [37].

The bigPint package allows users to maintain consistent coloring across hierarchical clusters

and when working between various plots.

Fig 12. Step 4: Independent interactive layers of volcano plot. Fourth step in a four-part example series of user actions. User uses Shiny buttons to update

threshold values and again presses “Plot gene subset” button. The subset of genes that pass the new thresholds are overlaid in the foreground layer as pink points.

The background layer of hexagons does not need to be redrawn.

https://doi.org/10.1371/journal.pcbi.1007912.g012

PLOS COMPUTATIONAL BIOLOGY bigPint: Visualization that makes big data pint-sized

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007912 June 15, 2020 14 / 21

https://doi.org/10.1371/journal.pcbi.1007912.g012
https://doi.org/10.1371/journal.pcbi.1007912


Selection and aggregation. Some techniques that are effective in data exploration may

lose their efficiency and eventually fail as data size increases. Two main approaches to solving

this problem are data selection and data aggregation [38]. Data selection means that only a

subset of the full data is displayed at a given time. The data subset can be selected through que-

ries and interactive controls which allow the user to quickly examine different data subsets

[38]. Data aggregation means that the full dataset is divided into data subsets (called aggre-

gates) that reduce the amount of data being simultaneously visualized. Users with large data-

sets should ideally be able to perform both data selection and data aggregation [38]. The

bigPint package allows users to easily perform data selection using queries (such as thresholds

and sliders) and interactive controls (such as zooming, box and lasso selection, and panning)

and to perform data aggregation using hierarchical clustering.

Shiny interactivity. Interactive plots in the bigPint package open as Shiny applications

that consist of simple dashboards with “About” tabs that explain how to use the applications.

They also include “Application” tabs that provide several input fields for the user to tailor their

plots. Some of these input fields are generated dynamically from the inputted dataset so that

users have more convenience in how they select data subsets. In these applications, users can

also download lists of selected genes and static images of interactive graphics to their local

computers.

Fig 13. Step 1: Consecutive box selection in parallel coordinate plot. First step in a four-part example series of user actions. User selects the Box Select tool from

the Plotly Modebar.

https://doi.org/10.1371/journal.pcbi.1007912.g013
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Shiny applications can be launched on a local personal computer, hosted on a local or

cloud-based server, or hosted for free on the shinyapps.io website. As such, interactive big-

Pint packages can be deployed on a personal computer using only a local file containing the

data, the bigPint package and its dependencies, R / RStudio, and a browser recommended by

Shiny (Google Chrome or Mozilla Firefox). This method does not require internet connectiv-

ity, which can be useful for users who are protecting sensitive data, analyzing or presenting

data in contexts without reliable connectivity, or testing and developing applications.

Results

The bigPint package contains scatterplot matrices, volcano plots, litre plots, and parallel coor-

dinate plots as example graphics that implement our new layered interactivity technology. In a

recent methods paper, we used public RNA-seq datasets to demonstrate how these particular

bigPint graphics can help biologists detect crucial issues with normalization methods and

DEG designation in ways not possible with numerical models [32]. We also applied these big-

Pint visualization tools in a recent research paper that sought to elicit how nutrition and viral

infection affect the honey bee transcriptome [39].

Fig 14. Step 2: Consecutive box selection in parallel coordinate plot. Second step in a four-part example series of user actions. User specifies box selection by

drawing a rectangular query. Only the genes (pink lines) inside the specified rectangle remain.

https://doi.org/10.1371/journal.pcbi.1007912.g014
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Availability and future directions

The four public datasets used in our recent methods paper [32] are available online: Three are

deposited on the NCBI Sequence Read Archive with accession numbers SRA000299 [40],

PRJNA318409 [41], and SRA048710 [42]. One is deposited on the NCBI Gene Expression

Omnibus with accession number GSE61857 [43]. The original dataset we used in our recent

methods paper [39] is also available on the NCBI Gene Expression Omnibus with accession

number GSE121885.

The bigPint package itself comes with two of the aforementioned RNA-sequencing

datasets as examples [42, 43]. The package can be downloaded from the Bioconductor website

(https://bioconductor.org/packages/devel/bioc/html/bigPint.html). As linked in the Biocon-

ductor website, the bigPint package also has a vignette website (https://lindsayrutter.github.io/

bigPint), where users can follow reproducible code to install the software and use the example

datasets to create bigPint graphics and follow an example analysis pipeline. Users can also

report bugs and submit requests.

In this paper, we introduced new visualization tools that enable independent layers of inter-

active capabilities for the foreground and background of plots using Plotly in R. We believe

this methodology represents a fairly novel contribution to the field of interactive data visualiza-

tion that can lead to sizable performance gains when working with large datasets. Advocating

Fig 15. Step 3: Consecutive box selection in parallel coordinate plot. Third step in a four-part example series of user actions. User can hover over a gene of

interest (pink line) to view its name (Glyma.11G216300.Wm82.a2.v1).

https://doi.org/10.1371/journal.pcbi.1007912.g015
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state-of-the-art visualization tools is crucial for biology researchers to analyze and present

their data and for visualization researchers to develop novel methods. We anticipate that our

documented source code and pseudocode may encourage computational scientists to expand

upon our layered interactive technology and/or apply it in new ways toward other computa-

tional biology tasks.

Supporting information

S1 Table. Resources for developers about bigPint interactive graphics.

(PDF)

S1 Pseudocode. Pseudocode for interactive scatterplot matrix.

(PDF)

S2 Pseudocode. Pseudocode for interactive litre plot.

(PDF)

S3 Pseudocode. Pseudocode for interactive volcano plot.

(PDF)

S4 Pseudocode. Pseudocode for interactive parallel coordinate plot.

(PDF)

Fig 16. Step 4: Consecutive box selection in parallel coordinate plot. Fourth step in a four-part example series of user actions. User can zoom and pan on the plot

using the Plotly Modebar.

https://doi.org/10.1371/journal.pcbi.1007912.g016
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