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Abstract

Tsetse fly exhibit species-specific olfactory uniqueness potentially underpinned by differ-

ences in their chemosensory protein repertoire. We assessed 1) expansions of chemosen-

sory protein orthologs in Glossina morsitans morsitans, Glossina pallidipes, Glossina

austeni, Glossina palpalis gambiensis, Glossina fuscipes fuscipes and Glossina brevipalpis

tsetse fly species using Café analysis (to identify species-specific expansions) and 2) differ-

ential expressions of the orthologs and associated proteins in male G. m. morsitans anten-

nae and head tissues using RNA-Seq approaches (to establish associated functional

molecular pathways). We established accelerated and significant (P<0.05, λ = 2.60452e-7)

expansions of gene families in G. m. morsitans Odorant receptor (Or)71a, Or46a, Ir75a,d,

Ionotropic receptor (Ir) 31a, Ir84a, Ir64a and Odorant binding protein (Obp) 83a-b), G. palli-

dipes Or67a,c, Or49a, Or92a, Or85b-c,f and Obp73a, G. f. fuscipes Ir21a, Gustatory recep-

tor (Gr) 21a and Gr63a), G. p. gambiensis clumsy, Ir25a and Ir8a, and G. brevipalpis Ir68a

and missing orthologs in each tsetse fly species. Most abundantly expressed transcripts in

male G. m. morsitans included specific Or (Orco, Or56a, 65a-c, Or47b, Or67b,

GMOY012254, GMOY009475, and GMOY006265), Gr (Gr21a, Gr63a, GMOY013297 and

GMOY013298), Ir (Ir8a, Ir25a and Ir41a) and Obp (Obp19a, lush, Obp28a, Obp83a-b

Obp44a, GMOY012275 and GMOY013254) orthologs. Most enriched biological processes

in the head were associated with vision, muscle activity and neuropeptide regulations,

amino acid/nucleotide metabolism and circulatory system processes. Antennal enrichments

(>90% of chemosensory transcripts) included cilium-associated mechanoreceptors,

chemo-sensation, neuronal controlled growth/differentiation and regeneration/responses to

stress. The expanded and tsetse fly species specific orthologs includes those associated
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with known tsetse fly responsive ligands (4-methyl phenol, 4-propyl phenol, acetic acid,

butanol and carbon dioxide) and potential tsetse fly species-specific responsive ligands (2-

oxopentanoic acid, phenylacetaldehyde, hydroxycinnamic acid, 2-heptanone, caffeine,

geosmin, DEET and (cVA) pheromone). Some of the orthologs can potentially modulate

several tsetse fly species-specific behavioral (male-male courtship, hunger/host seeking,

cool avoidance, hygrosensory and feeding) phenotypes. The putative tsetse fly specific che-

mosensory gene orthologs and their respective ligands provide candidate gene targets and

kairomones for respective downstream functional genomic and field evaluations that can

effectively expand toolbox of species-specific tsetse fly attractants, repellents and other

tsetse fly behavioral modulators.

Author summary

Tsetse flies are insect vectors of sleeping sickness in humans and nagana in livestock in

sub-Sahara Africa. Tsetse flies identify their hosts (preferred and non-preferred) by detect-

ing and processing odor cues emitted by the hosts in their environment. Tsetse flies use

chemosensory proteins and associated pathways in their antennae to identify these cues.

In this study, we identified expansions of these chemosensory protein in six tsetse fly spe-

cies (Glossina morsitans morsitans, Glossina pallidipes, Glossina austeni, Glossina palpalis
gambiensis, Glossina fuscipes fuscipes and Glossina brevipalpis) with different known hosts.

We also identified potential ligands to these proteins based on fruit fly (Drosophila mela-
nogaster) orthologs. With G. m. morsitans as an example, we identified the proteins and

associated molecular pathways preferentially expressed in tsetse fly antennae. These pro-

teins may be responsible for the tsetse fly species-specific host discrimination, with the

ligands eliciting species-specific behavioral responses in the flies. The expressed orthologs

may be functionally important in odor detection in tsetse fly and lay down useful ground-

work for downstream functional genomics R&D for more effective tsetse fly species-spe-

cific odor attractants and repellents for routine tsetse fly control operations.

Introduction

Human African Trypanosomiasis (HAT) constitutes one of the most neglected tropical dis-

eases (NTDs) with devastating health and economic consequences in sub-Sahara Africa [1,2].

On the other hand, African Animal Trypanosomiasis (AAT) is rampant in livestock inhabiting

tsetse-infested areas throughout the continent. The AAT cause death of about three million

cattle each year [3], and in terms of agricultural Gross Domestic Product (GDP), loss of about

US$ 4.75 billion per year [3]. The HAT and AAT causative trypanosomes are transmitted by

different groups of tsetse species. Tsetse control is considered an effective approach and consti-

tutes the corner stone in trypanosomiasis suppression [4,5]. Tsetse fly species belong to Glos-
sina genus and are generally restricted to sub-Saharan Africa. Twenty-three species and eight

sub-species of tsetse flies are recognized [6,7]. These species are divided into Morsitans, Palpa-

lis and Fusca clade sub-genera, described by respective savanna, riverine/lacustrine and forest

ecological niches they occupy. The Morsitans group consists of five species that include Glos-
sina morsitans morsitans and Glossina pallidipes restricted to savannah grassland and Glossina
austeni occupying coastal woodlands [8]. This group is adapted to drier habitats than Palpalis

and Fusca [9] and preferentially feeds on livestock and wildlife. They are thus important
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vectors of African Animal Trypanosomiasis (AAT) also known as nagana. On the other hand,

Palpalis group consists of five species, including Glossina palpalis gambiensis and Glossina fus-
cipes fuscipes in West, Central and East Africa. These species are predominant vectors of

Human African Trypanosomosis (HAT), also known as sleeping sickness, despite their prefer-

ential predilection to feeding on reptiles and ungulates. Fusca group consist of 13 species

largely inhabiting damp evergreen forests of West Africa (except Glossina brevipalpis) and are

mainly associated with livestock. Glossina brevipalpis is of limited medical and agricultural sig-

nificance and occurs discontinuously in other parts of sub-Saharan Africa [6].

These tsetse fly species exhibit different olfactory uniqueness, which partly accounts for their

gradation of preferences for their particular hosts. This olfactory uniqueness (and visual

responses) has been exploited in designing effective tsetse fly bait technologies that consist of syn-

thetic blends of attractants and repellents that mimic those of their natural hosts and non-hosts

respectively [10–13]. These technologies are especially applicable for G. m. morsitans and G. palli-
dipes but not G. austeni (among savanna species) [14] and palpalis group. For example, G. pal-
lldipes, G. m. morsitans and to some extent G. brevipalpis are attracted to traps baited with POCA

(3-n-propylphenol, 1-octen-3-ol, 4-cresol and acetone) and to which G. austeni poorly responds

[15–17]. Molecular bases of these natural differential responses are poorly understood but may

be underpinned by differences in their chemosensory apparatus. The chemosensory apparatus

facilitate reception of odorants and tastants, and consist of Odorant-binding proteins (Obps),

Odorant-degrading enzymes (Odes), Odorant receptors (Ors), Ionotropic receptors (Irs), Gusta-

tory receptors (Grs), Chemosensory proteins (Csps), Sensory neuron membrane proteins

(Snmps) and CD36-like pheromone sensors [18–24]. These chemosensory proteins mediate

decoding of ecological odors and odorant specific behavioral responses in insect hosts. These

responses include seeking for hosts, location of oviposition sites, searching for mates, and detect-

ing and escaping from potential predators. The Obp transport pheromone molecules and general

odorants to Ors [25]. The Ors are odorant-gated ion channels composed of an odorant-binding

subunit and olfactory co-receptor Orco [26,27]. The Irs have higher specificity to volatiles than

Ors, detecting specific variety of odors, such as acids, aldehydes, amines and humidity [20,28].

The Ir25a and Ir8a are putative conserved Ir co-receptors [23]. The Grs discern odor tastes and

contact pheromones [29]. Only two Snmp subfamilies (Snmp 1 and Snmp 2) have been identified

in insects, where Snmp1 is expressed in pheromone-sensitive Olfactory Receptor Neurons

(ORNs) while Snmp 2 is expressed in supporting cells [30–32]. Some of these chemosensory pro-

teins are present in non-canonical chemosensory organs, such as legs [33,34], wings [35,36] and

pheromone glands [37], where only a subset of Irs are specifically expressed in D. melanogaster
antennae [20]. Among tsetse flies, genomes of G. pallidipes, G. m. morsitans, G. austeni, G. p. gam-
biensis, G. f. fuscipes and G. brevipalpis (representative of the different clades/sub-general) have

been sequenced [38], and their respective chemosensory proteins annotated [39–41].

Here we report on 1) expansions of chemosensory protein orthologs in six tsetse fly species/

subspecies (G. pallidipes, G. m. morsitans, G. austeni, G. p. gambiensis, G. f. fuscipes and G. bre-
vipalpis) to identify species-specific expansions and 2) differential expressions of these and

associated proteins in antennae and head tissues G. m. morsitans to establish probable func-

tional pathways influencing host seeking behaviors in this specie.

Materials and methods

Differential expansions of D. melanogaster chemosensory gene orthologs

among tsetse flies

We obtained complete D. melanogaster gene set release 79 (Drosophila_melanogaster. BDGP6.

pep.all.fa) from Ensembl project [42] in fasta format. We then isolated D. melanogaster
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chemosensory genes from the gene set by searching and retrieving flybase [43] chemosensory

gene IDs in the gene set using “Odorant receptor”, “Gustatory receptor”, “Ionotropic recep-

tor”, “Odorant-binding protein”, “Sensory neuron membrane protein” and “Glutamate recep-

tor” Linux bash regular expressions. For Csp orthologs, we extracted D. melanogaster IDs from

Macharia et al., (2016) [40]. We separately obtained VectorBase Release VB-2019-02 homologs

(gene trees) of disease vectors from VectorBase database [44] in OrthoXML formats. The gene

trees were pre-computed by Gene Orthology/Paralogy prediction pipeline in VectorBase [44]

that identified gene duplications within species and speciation events. We probed the Vector-

Base homologs for ortholog groups (gene families) with the D. melanogaster chemonsensory

genes (flybase IDs) to identify their respective tsetse flies (G. austeni, G. f. fuscipes, G. p. gam-
biensis, G. brevipalpis, G. pallidipes and G. m. morsitans) orthologs. We identified presence of

the individual genes in each gene family (ortholog group) and species. Gene families with

accelerated gene expansions were pre-computed through Computational Analysis of gene

Family Evolution (CAFE) [45] in VectorBase [44]. We considered the VectorBase [44] pre-

computed gene expansions/contractions reliable since they are 1) community reviewed and

adopted and with stable ortholog IDs and 2) regularly updated (with new gene-sets and

genomes). We also conducted Principal Component Analysis (PCA) in R using FactoMineR

and Factoextra packages with species-specific gene counts as input data to establish relation-

ship between the expanded/contracted chemosensory genes (Ors, Irs, Grs and Obps) and

tsetse species.

Transcriptional expression of D. melanogaster chemosensory gene

orthologs in male G. m. morsitans
We employed high throughput Illumina based RNA-Seq approach to establish expression pro-

files of the D. melanogaster chemosensory gene orthologs in male G. m. morsitans. We estab-

lished expression levels of the orthologs in the antennae and in relation to the head libraries.

We isolated and sequenced RNA from antennae or head tissues from colony reared G. m. mor-
sitans as described previously [46]. Briefly, we fed teneral male G. m. morsitans (1–3 days old)

on defibrinated bovine blood meal (their initial blood meal post-eclosion) (commercially sup-

plied by Hemostat Laboratories, Dixon, CA, USA) to putatively prime their chemosensory sys-

tem. We then extracted their antennae in two independent biological replicates (from 50 flies

each) using liquid nitrogen-based method of Menuz et al. (2014) [47] 72 hrs post-feeding. We

envisaged that the 72 hrs deprivation of blood meal (food) would biologically prime potential

host seeking chemosensory apparatus in the flies and enhance RNA-seq detection of chemo-

sensory gene expressions, specifically those associated with hunger/host seeking.

The G. m. morsitans show marked die1changes in their biting activity in the field, with their

peak activity in the morning and afternoon [48,49]. We thus snap froze individual tsetse flies

in liquid nitrogen in the morning (09:30 hrs) and carefully hand-dissected their antennae from

the head into 1.5 ml microfuge tubes kept cold in liquid nitrogen. We then isolated RNA by

mechanically crushing the antennae with disposable RNAseq-free plastic pestles in TRIzol

reagent (Invitrogen, Carlsbad, USA) following the manufacturer’s protocol. We removed

traces of potential carry over DNA (that could potentially confound our RNA-Seq analysis) by

digesting possible contaminating genomic DNAs (gDNA) in the total RNA using TURBO

DNase (Ambion life technologies, TX, USA) following manufacturer’s instructions. We con-

firmed removal of the gDNA from total RNA by qualitative assessment of PCR amplicons

from final RNA samples using tsetse fly specific beta-tubulin gene primers as documented in

Bateta et al. (2017) [46]. We verified quality and integrity of RNA samples using Agilent Bioa-

nalyzer 2100 (Agilent, Palo Alto, CA, USA) following manufacturer’s instructions. cDNA was
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then generated from the RNA using Illumina TruSeq RNA Sample Preparation Kit (Illumina,

Hayward, CA, USA) and the cDNA (75 bp single-end read) and sequenced on Illumina HiSeq

2500 at Yale University Center of Genome Analysis (YCGA), New Haven, CT, USA. We simi-

larly prepared head transcriptomes from two independent biological replicates (50 flies each)

from 72 hrs starved 40 days old males. We deposited all transcriptome sequences at the

Sequence Read Archive (SRA) under study accession numbers PRJNA343267 and

PRJNA343269 for the antennae and head libraries respectively.

Expression profiles of D. melanogaster chemosensory gene orthologs in

male G. m. morsitans antennae and head libraries

We established quality of the reads in each individual transcriptome library using FastQC

(Babraham Bioinformatics) software package (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/)). We then used the FastQC results to clean (trimm) the reads using CLC

genomic workbench version 10 software (CLC Bio, Aarhus, Denmark) through settings that

permitted 1) removal of low quality sequences (limit = 0.05), 2) removal of ambiguous nucleo-

tides (maximum 2 nucleotides allowed), 3) removal of terminal nucleotides (10 nucleotides

from the 5’ end and 1 nucleotide from the 3’ end) and 4) removal of sequences on length (min-

imum length 15 nucleotides, maximum length 1000 nucleotides). We then mapped the cleaned

reads on to G. m. morsitans transcripts gene-set version 1.9 from Vectorbase [44] using CLC

genomic workbench version 10 software (CLC Bio, Aarhus, Denmark) thorough settings that

permitted 1) mismatch cost of 2, 2) insertion/deletion cost of 3, 3)length fraction of 0.8, 4) sim-

ilarity fraction of 0.8, 5) maximum number of reads per hit of 10, and 6) strand specificity set

as both strands.

From the mappings, we established reads mapping per transcript and reads per kilobase of

transcripts per Million mapped reads (RPKM), a normalized index of relative gene expression

associated with each transcript (including chemosensory genes) in the gene-set for individual

transcriptomes [50]. We then established differentially expressed transcripts between the

antennae and the head transcriptomes by comparing the reads mapped in the genes sets from

respective transcriptomes using edgeR software [51,52]. We considered transcripts validly dif-

ferentially expressed if they had at least two-fold changes, p-value corrected False Detection

Rate (FDR) < 0.05 and one Counts Per Million (CPM) coverage to mitigate against type I sta-

tistical errors. We then determined antennae or head enriched molecular processes using

canonical Gene Set Enrichment Analysis (GSEA) using WEB-based GEne SeT AnaLysis

Toolkit (WebGestalt) [53]. Since WebGestalt database did not include tsetse flies, but D. mela-
nogaster gene set, we obtained homologs of the entire G. m. morsitans gene-set in D. melanoga-
ster through Basic Alignment Search Tool (BLAST) analysis of protein sequences (Blastp) [54]

of the G. m. morsitans gene-set against those of D. melanogaster and accepted hits with e-

value < 0.001 as significantly homologous. We then used these D. melanogaster homologs as

proxy in WebGestalt to assess enrichment of their associated G. m. morsitans homologs. We

used the FDR corrected p-value ranked D. melanogaster homolog gene-sets of differentially

expressed G. m. morsitans transcripts as input for the analysis [55]. We considered selection of

5–2000 Entrez Gene IDs, FDR < 0.05, 1000 permutations and 20 categories with the outputted

leading-edge genes default parameters for the analysis. Through GSEA, we separated and iden-

tified significantly enriched non-redundant biological processes, cellular components and

molecular function Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes,

KEGG, PANTHER, Reactome, pathways and Database of Protein, Chemical and Genetic

Interactions (BioGRID) network [56–61]. Next, we identified antennae or head (tissue) spe-

cific chemosensory genes by mapping the global most differentially (based on fold change)
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and abundantly (based on CPM) or significantly expressed (based on p-value) transcripts in

MA or volcano plots respectively using edgeR software package [52,62] in R software [63]. We

considered chemosensory genes with fold changes (FC)� 1.25 as of chemosensory biological

significance as previously documented [64].

Results

Expansions of chemosensory gene orthologs among tsetse fly species

We identified 60 each of Ors, Irs or Grs, 51 Obps, seven GluR and two Snmps (excluding iso-

forms) in D. melanogaster [43] and four Csps [40], with 58, 34, 13, 22, 2 and 3 orthologs (Vec-

torBase gene trees, Release VB-2019-02) [44] respectively among the tsetse fly species (S1

Table). Café gene expansion analysis [45] revealed significant (P<0.05, λ = 2.60452e-7) acceler-

ated expansions of several gene families/clusters including VBGT00190000010263 (Or71a and

Or46a), VBGT00190000009736 (Ir75a,d, Ir31a, Ir84a and Ir64a) and VBGT00190000009994

(Obp83a-b) in G. m. morsitans, VBGT00840000047907 (Or67a,c, Or49a, Or92a, Or85b-c,f) and

VBGT00190000013627 (Obp73a) in G. pallidipes, VBGT00190000012412 (Ir21a) and

VBGT00190000010879 (Gr21a and Gr63a) carbon dioxide receptors orthologs [65] in G. f. fuscipes,
VBGT00820000046003 (clumsy, Ir25a and Ir8a) in G. p. gambiensis and VBGT00190000013104

(Ir68a) in G. brevipalpis (S1 Table). No gene families were significantly expanded in G. austeni.
We also identified several orthologs that were missing/absent in specific tsetse fly species (S1

Table). The Ir76b ortholog was absent in four tsetse fly species (G. p. gambiensis, G. m. morsi-
tans, G. pallidipes and G. brevipalpis) while Gr33a was missing in G. brevipalpis. Both Gr32a and

Gr68a were missing in G. brevipalpis and G. m. morsitans. The Gr64a-f, Gr5a, Gr43a, Obp56a/

d/e and Or71a orthologs were absent in all tsetse fly species. The Snmp1, Or67d and Obp19a

and Orco ortholog appeared to be conserved across all tsetse fly species. Our PCA analysis

revealed a general positive correlation between tsetse species across four chemosensory groups

(Ors, Irs, Grs or Obps). Additionally, Gr and Ir orthologs appeared to be positively correlated

(S1 Fig panels B2 and B3) in relation to a unique G. m. morsitans cluster (S1 Fig panels A2 and

A3).

Expression profiles of chemosensory ortholog transcripts in male G. m.

morsitans antennae

The RNA-Seq of the antennae and head libraries yielded 23.3 to 17.9 million reads from

respective libraries. We successfully mapped 51.0 to 69.6% of these reads onto G. m. morsitans
transcripts where we established about 88.4% unique mappings of the reads to specific tran-

scripts (Fig 1). We have summarized expressions profiles of the chemosensory orthologs in Fig

2. Orco, Or56a, 65a-c, Or47b and Or67b, and three G. m. morsitans specific orthologs

(GMOY012254, GMOY009475, and GMOY006265) were among most abundantly expressed

transcripts with Or33a-c orthologs exhibiting the least expression. Expressions of the members

of the significantly expanded Ors gene families were marginal. Only six Gr orthologs were

expressed among which Gr21a and Gr63a orthologs (carbon dioxide receptors) [65] and

related two G. m. morsitans specific (GMOY013297 and GMOY013298) orthologs were abun-

dantly expressed. The putative conserved core-receptors (Ir8a and Ir25a) and Ir41a were

among the most abundantly expressed Irs orthologs. All but Ir75a-c expanded Ir orthologs

were expressed. Most abundantly expressed Obp orthologs include Obp19a, lush, Obp28a,

Obp83a-b Obp44a and two G. m. morsitans specific (GMOY012275 and GMOY013254)

orthologs. Among these, Obp83a-b were among the significantly expanded Obp families. Both

Snmps (Snmp 1 and Snmp 2) and Csp2 were also abundantly expressed.
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Enriched pathways between male G. m. morsitans antennae and head

libraries

Our Gene Set Enrichment Analysis (GSEA) of transcripts between the antennae and head

libraries revealed several enriched pathways and processes between these tissues (Table 1, S2

Table). Our GoSlim GO analysis component of the GSEA assigned 85.4% of our transcripts to

biological process, cellular components and molecular function ontologies (S2 Table). The

most predominantly enriched biological processes between the antennae and head include

metabolic processes, biological regulations, multicellular organismal processes, developmental

processes and responses to stimuli. Most of these biological processes appeared to be localized

in the membrane, macromolecular complex and nucleus cellular components, and were pre-

dominantly involved in protein binding, nucleic acid binding, ion binding and hydrolase

activity molecular functions (S2 Table). More specifically, most enriched biological processes

in the head were associated with vision, muscle activity and associated structural proteins and

neuropeptide regulations, amino acid/nucleotide metabolism and circulatory system pro-

cesses. The enriched cellular components were predominantly associated with vision and mus-

cular functions. On the other hand, most enriched antennal biological processes were cilium-

associated mechanoreceptors, chemo-sensation, neuronal controlled growth and

Fig 1. Summary of processing and mapping statistics of RNA-Seq reads from male G. m. morsitans antennae and head transcriptomes.

https://doi.org/10.1371/journal.pntd.0008341.g001
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Fig 2. Expression profiles of D. melanogaster chemosensory gene orthologs in male G. m. morsitans antennae 72 hrs post feeding.

https://doi.org/10.1371/journal.pntd.0008341.g002
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Table 1. Summary of Canonical Gene-set Enrichment Analysis (GSEA) of differentially expressed transcripts between male G. m. morsitans tsetse fly antennae and

head transcriptomes.

Functional Database Tissue Annotation Statistics

Name Class Tissue Process ID Description General Function Size L ES NES P

Value

FDR

Gene Biological Head GO:0050953 Sensory perception of light stimulus Vision 59 22 0.898 1.883 0.000 0.000

Ontology Process GO:0007186 G-protein coupled receptor

signaling pathway

Vision 162 56 0.796 1.869 0.000 0.000

GO:0032101 Regulation of response to external

stimulus

Vision 101 8 0.801 1.833 0.000 0.000

GO:0010927 Cellular component assembly

involved in morphogenesis

Muscle activity 108 18 0.773 1.765 0.000 0.001

GO:0042440 Pigment metabolic process Vision 115 18 0.735 1.692 0.000 0.004

GO:0009628 Response to abiotic stimulus Vision 360 36 0.682 1.689 0.000 0.003

GO:0003012 Muscle system process Muscle activity 27 12 0.879 1.676 0.000 0.005

GO:0044057 Regulation of system process Neuropeptide muscle

regulations

48 12 0.795 1.661 0.000 0.007

GO:0043473 Pigmentation Vision 103 18 0.706 1.610 0.003 0.025

GO:0006730 One-carbon metabolic process Vision 15 5 0.910 1.607 0.000 0.024

GO:0003013 Circulatory system process Neuropeptide

regulations

40 12 0.784 1.590 0.005 0.032

Antennae GO:0044782 Cilium organization Mechanoreception 62 22 -0.839 2.170 0.000 0.000

GO:0031503 Protein complex localization Mechanoreception 30 12 -0.849 1.903 0.000 0.001

GO:0007606 Sensory perception of chemical

stimulus

Chemo-sensation 124 57 -0.628 1.806 0.000 0.006

GO:0035218 Leg disc development Growth/differentiation 87 15 -0.665 1.781 0.000 0.007

GO:0030705 Cytoskeleton-dependent

intracellular transport

Mechanoreception 66 11 -0.676 1.751 0.000 0.012

GO:0030031 Cell projection assembly Mechanoreception 112 35 -0.624 1.742 0.005 0.011

GO:0031099 Regeneration Repair/response to

stress

18 4 -0.828 1.711 0.000 0.015

Cellular Head GO:0019898 Extrinsic component of membrane Vision 72 11 0.870 1.891 0.000 0.000

Component GO:0016028 rhabdomere Vision 34 17 0.955 1.886 0.000 0.000

GO:0043292 Contractile fiber Muscle activity 50 20 0.871 1.822 0.000 0.000

GO:0015629 Actin cytoskeleton Vision/Muscle activity 99 18 0.794 1.807 0.000 0.000

GO:0098796 Membrane protein complex Vision 233 10 0.690 1.689 0.000 0.001

GO:0098858 Actin-based cell projection Vision 22 4 0.861 1.600 0.002 0.012

GO:0031984 Organelle sub-compartment Vision 86 9 0.684 1.515 0.007 0.046

Antennae GO:0005929 Cilium Chemo-sensation/

Mechanoreception

80 30 -0.846 2.256 0.000 0.000

GO:0031252 Cell leading edge Chemo-sensation 52 28 -0.811 2.005 0.000 0.000

GO:0005815 Microtubule organizing center Mechanoreception/

Muscle activity

111 20 -0.666 1.849 0.000 0.001

Molecular Head GO:0005516 Calmodulin binding Vision/Muscle activity 43 6 0.834 1.706 0.000 0.009

Function Antennae GO:0005549 Odorant binding Chemo-sensation 49 35 -0.843 2.170 0.000 0.000

Pathway KEGG Head dme04745 Phototransduction—fly—

Drosophila melanogaster (fruit fly)

Vision 25 14 0.954 1.772 0.000 0.000

Analysis Panther Head P00057 Wnt signaling pathway Vision 62 8 0.827 1.749 0.000 0.000

P00031 Inflammation mediated by

chemokine and cytokine signaling

pathway

Vision/Muscle activity 26 5 0.895 1.716 0.000 0.002

P00044 Nicotinic acetylcholine receptor

signaling pathway

Vision/Muscle activity 38 9 0.845 1.705 0.000 0.002

(Continued)
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differentiation, and regeneration/responses to stress, while enriched cellular components were

associated with chemo-sensation, mechano-reception and muscular activities. Most enriched

molecular functions in the head and antennae were associated with vision/muscular activities

and chemo-sensation, respectively. The KEGG pathway analysis revealed enrichment of

vision-associated pathways. Similarly, PANTHER pathway analysis also identified vision, in

addition to neuropeptide signaling and muscular associated activities among the most

enriched pathways in the head. We identified similar outcomes from our protein-protein

interactions BIOGRID analysis in the head library. The Reactome pathway analysis identified

vision and amino acids and derivative metabolism pathways predominating in the head tran-

scriptome. We did not identify pathways or networks significantly enriched in the antennae

library.

Table 1. (Continued)

Functional Database Tissue Annotation Statistics

Name Class Tissue Process ID Description General Function Size L ES NES P

Value

FDR

P00016 Cytoskeletal regulation by Rho

GTPase

Vision/Muscle activity 21 4 0.911 1.680 0.000 0.004

P00004 Alzheimer disease-presenilin

pathway

Vision/Muscle activity 25 5 0.848 1.593 0.005 0.026

P00012 Cadherin signaling pathway Muscle activity 25 3 0.839 1.585 0.003 0.025

P00042 Muscarinic acetylcholine receptor 1

and 3 signaling pathway

Vision/Neuropeptide

regulations

20 7 0.836 1.568 0.011 0.033

P04374 5HT2 type receptor mediated

signaling pathway

Vision 18 7 0.841 1.567 0.014 0.030

P00028 Heterotrimeric G-protein signaling

pathway-rod outer segment

phototransduction

Vision 5 3 0.991 1.563 0.000 0.031

Reactome Head R-DME-1852241 Organelle biogenesis and

maintenance

Vision 38 4 0.904 1.778 0.000 0.000

R-DME-2514856 The phototransduction cascade Vision 12 6 0.961 1.687 0.000 0.025

R-DME-5620920 Cargo trafficking to the periciliary

membrane

Vision 15 4 0.956 1.683 0.000 0.018

R-DME-5617833 Cilium Assembly Vision 15 4 0.956 1.674 0.000 0.018

R-DME-5620916 VxPx cargo-targeting to cilium Vision 12 4 0.965 1.655 0.000 0.026

R-DME-2514859 Inactivation, recovery and

regulation of the phototransduction

cascade

Vision 12 6 0.961 1.644 0.000 0.029

R-DME-2187338 Visual phototransduction Vision 14 6 0.957 1.644 0.000 0.025

R-DME-76002 Platelet activation, signaling and

aggregation

Vision/Muscle activity 47 9 0.784 1.640 0.000 0.024

R-DME-71291 Metabolism of amino acids and

derivatives

Metabolism 57 19 0.761 1.634 0.000 0.027

R-DME-2672351 Stimuli-sensing channels Vision 9 3 0.954 1.622 0.000 0.034

R-DME-500792 GPCR ligand binding Vision 14 4 0.920 1.618 0.002 0.034

Network

Analysis

PPI_BIOGRID Head PPI_BIOGRID

M119

Muscle activity 33 16 0.872 1.711 0.000 0.004

PPI_BIOGRID

M37

Muscle activity 71 20 0.767 1.683 0.000 0.004

PPI_BIOGRID

M80

Vision 12 8 0.957 1.643 0.000 0.017

�Non-Redundant

https://doi.org/10.1371/journal.pntd.0008341.t001
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Differentially expressed transcripts between male G. m. morsitans antennae

and head libraries

Our search for both differentially (FC > 2) and abundantly expressed (CPM > 1) transcripts

between the head and antennae libraries identified 2179 and 2158 transcripts respectively dif-

ferentially expressed (FDR corrected p value < 0.05) between each library as summarized in

our MA plot (Fig 3). Among these transcripts, at least 52 transcripts were most differentially

and abundantly expressed (log FC > 2 and Average log CPM > 10) in both libraries. These

transcripts were predominantly associated with vision, iron transport, metabolism and signal

transduction in the head. In the antennae, the transcripts were involved in odor sensing and

clearing, fatty acid synthesis and regulation of feeding behavior and locomotor activity (S3

Table). Analysis of both differentially (FC) and significantly expressed (p-value) transcripts

between the head and antennae libraries identified 49 and 61 transcripts as most significantly

expressed (FC >10 or <-5, and–log10 p-value > 25) in the head and antennae libraries respec-

tively as summarized in our volcano plot (Fig 4). Overall, about 40 and 52 percent of the tran-

scripts were associated with vision (head) and chemo-sensation (antennae) respectively. Most

significantly expressed transcripts in the head library were functionally associated with energy

mobilization, feeding, immunity, cytoskeleton integrity, amino acid metabolism, endocrine

signaling and neuronal development and support. In the antennae, most significantly

expressed transcripts were functionally associated chemo-sensation, metabolism, and cell pro-

liferation, regulation of gene expression, signal transduction, anatomical integrity, neuron

integrity/development and mechanoreception (S3 Table).

Differential expression of chemosensory gene transcripts between male G.

m. morsitans antennae and head libraries

When we considered fold change greater than 1.25 as of biological chemosensory significance

[64], most (> 90%) chemosensory transcripts showed significantly higher expressions in the

antennae than in the head (Fig 5). Among these, significantly expressed chemosensory tran-

scripts (p-value < 1e-20) in the antennae include several Obp (Lush, Obp19a, Obp28a,

Obp59a, Obp83a/b and Obp84a), Ir (Ir25a, Ir31a, Ir40a, Ir41a, Ir64a, Ir75a, Ir76b, Ir84a, Ir8a

and Ir92a), Or (Orco, Or7a, Or13a, Or43a, Or45a, Or47b, Or63a/c/d and Or85d), Gr (Gr21a),

Csp [Csp2 (a10) and Csp4 (Phk-3)] and Snmp1 orthologs. Specifically, most significantly

expressed transcripts were predominantly Obp orthologs. On the other hand, we identified a

subset of obp (Obp8a, Clumsy, Obp99c Obp83cd), Or (Or85e, Or71a), Grs (Gr2a, Gr28b) and

Csp4 (Phk-3) orthologs with significantly higher expression in the head than in the antennae

libraries.

Discussion

In this study, we profiled expansions of chemosensory gene orthologs among six tsetse fly spe-

cies/subspecies (G. pallidipes, G. m. morsitans, G. austeni, G. p. gambiensis, G. f. fuscipes and G.

brevipalpis) and employed RNA-seq to discern differential expressions of the orthologs and

associated proteins in antennae and head tissues male G. m. morsitans. Our café analysis for

gene expansion revealed significant accelerated expansion of 4-methyl phenol and 4-propyl

phenol responsive Or71a [66] in G. m. morsitans. The 4-methyl phenol and 4-propyl phenol

are known G. m. morsitans and G. pallidipes attractants present in natural ox odor [17,67].

These findings probably account for the observed differential responses of these species to syn-

thetic blends of these odors [68]. On the other hand, expansions of Ir75a,d, Ir31a, Ir84a and

Ir64a orthologs in G. m. morsitans suggest differential odor-tuning and responses to acetic
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acid and 2-oxopentanoic acid in this species [69–73]. Acetic acid component of the vertebrate

breath is an attractant of most hematophagous vectors while 2-oxopentanoic acid elicit a land-

ing response from Anopheles gambiae [74]. Whether there is enhanced attraction and landing

behavior in G. m. morsitans in the presence of these kairomones remains to be determined.

Expansion of Ir84a in G. m. morsitans may also indicate enhanced response to phenylacetalde-

hyde and male-male courtship [75] in this tsetse fly specie relative to the other species. Expan-

sion of hunger responsive Obp83a ortholog [76] in G. m. morsitans suggest enhanced host

seeking persistence in this specie relative to the other species. The G. pallidipes appears to be

characterized by potentially muted responses to feeding stimulating hydroxycinnamic acids

linked to missing Or71a [77], but enhanced responses to butanol, 2-heptanone and ketones

lactones and phenolic compounds associated with the expanded Or49a [78,79], Or67a [80],

Or85f [81] and Or85c [82] orthologs. The responses to butanol, lactones, ketones and phenolic

compounds have been evaluated in development of baits used routinely in field control of G.

pallidipes. Carbon dioxide receptors Gr21a and Gr63a orthologs [65] were expanded in G. f.
fuscipes and most abundantly expressed in male G. m. morsitans antennae. These findings are

indicative of the heavier investment by G. f. fuscipes than other tsetse flies in carbon dioxide

detection and consequently host location [83]. The potential impact of the expansion (in G. f.
fuscipes) of the Ir21a required for cool avoidance behavior [84] is not clear, but may be tied to

the humid and warm habitat preference in the G. f. fuscipes lacustrine habitats. The Gr64a-f,

Gr5a and Gr43a sugar receptor orthologs [85,86] were conspicuously absent in tsetse flies, con-

sistent with our previous finding [40], a phenomenon attributable to exclusive sugar deficient

blood diet in tsetse flies. The G. brevipaplis specific expansions of hygrosensory behavior medi-

ating Ir68a ortholog [87] suggest potential behavioral responses to these and related odor cues

specific to this tsetse fly. We did not identify expansion of Or67d in tsetse flies, contrary to pre-

vious reports [39,40].

We identified several missing/absent or conserved tsetse fly species specific orthologs with

potential implications on respective tsetse species phenotypes. Absent Gr33a ortholog respon-

sive to nonvolatile repulsive chemicals, including N,N-diethyl-meta-toluamide (DEET)

[88,89] in G. brevipalpis and marginal expression of Gr66a ortholog in male G. m. morsitans
antennae, suggest diminished responses in these species to some repellents. This phenomenon

is further supported by absence of another caffeine and DEET responsive Gr32a ortholog

[88,89] and courtship pheromone associated Gr68a ortholog [90] in G. brevipalpis and G. m.

morsitans. The missing Ir76b ortholog in four tsetse fly species (G. p. gambiensis, G. m. morsi-
tans, G. pallidipes and G. brevipalpis) suggests that these tsetse species may have reduced

responses to Ir76b ortholog mediated feeding preferences for amino acids [73] relative to

remaining tsetse fly species. The conspicuous absence of Obp56a,d,e orthologs in tsetse flies,

point to possible reduction in their responses to the associated pheromones [91]. Geosmin

responsive Or56a ortholog [92] was most abundantly expressed Or after Orco in the G. m.

morsitans antennae. Since Geosmin is a microbial odorant that alerts flies of presence of harm-

ful microbes and induces avoidance behavior [92], the findings suggest potential repellence of

tsetse flies by Geosmin and associated compounds, which can form a basis for a search for

tsetse fly specific repellents. Conserved Gr2a, Gr28b and Gr66a orthologs across most species

supports a notion of general aversion of salts [93], caffeine, DEET and some amino acids (the-

ophylline, threonine and valine) [88,94–97] among the vectors. The Snmp1 ortholog

Fig 3. MA plot showing abundantly and differentially expressed transcripts between the male G. m. morsitans head and antennae transcriptomes. Dots

indicate points-of-interest that display individual transcript abundance (x axis) and fold-change (y axis). Red dots indicate transcripts with fold-changes of

two or more (log2� 1) and False Detection Rate (FDR) corrected p values of less than 0.05 (significant) between the head and antennae transcriptomes. Black

dots indicate transcripts with non-significant changes between the transcriptomes.

https://doi.org/10.1371/journal.pntd.0008341.g003
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associated with detection of pheromones appears to be conserved across all the tsetse fly spe-

cies, which in concert with similarly conserved Or67d and Orco orthologs, are functionally

associated with detection of lipid-derived pheromones [98,99]. Other conserved pheromone

responsive orthologs, include male-specific pheromone 11-cis-vaccenyl acetate (cVA)

Fig 4. Volcano plot showing abundantly and significantly expressed transcripts between the male G. m. morsitans
head and antennae transcriptomes. Dots indicate points-of-interest that display fold-changes (x axis) and statistical

significance (-log10 of p value, y axis) in transcripts between the head and antennae transcriptomes. Red dots indicate

transcripts with fold-changes of two or more (log2� 1) and False Detection Rate (FDR) corrected p values of less than

0.05 and are indicate transcripts with significant changes between the transcriptomes. Black dots represent transcripts

with non-significant changes between the transcriptomes.

https://doi.org/10.1371/journal.pntd.0008341.g004
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responsive lush and Obp19a [100] (absent in G. austeni) and l-carvone, 2-heptanone and acet-

ophenone responsive Obp83a [101]. Lush, Or67d, Or83c and Obp83a were predominantly

expressed in male G. m. morsitans antennae. We identified Ir93a ortholog in G. austeni con-

trary to previous findings [40]. Overall, we identified potential tsetse fly specific receptors and

Fig 5. Volcano plot showing abundantly and significantly expressed chemosensory gene orthologs between the male G. m.

morsitans head and antennae transcriptomes. Dots indicate points-of-interest that display fold-changes (x axis) and statistical

significance (-log10 of p value, y axis) in transcripts between the head and antennae transcriptomes. Red dots indicate transcripts with

fold-changes of two or more (log2� 1) and False Detection Rate (FDR) corrected p values of less than 0.05 and are indicate transcripts

with significant changes between the transcriptomes. Black dots represent transcripts with non-significant changes between the

transcriptomes.

https://doi.org/10.1371/journal.pntd.0008341.g005
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semiochemicals/ligands for downstream functional validations that can be employed to

expand the toolbox of tsetse fly attractants, repellents and regulators.

Our gene and pathway enrichment analyses suggest that male G. m. morsitans head and

antennae are predominately involved with vision and olfaction (odor sensing and clearing)

respectively. In addition to the classical and canonical olfaction pathways, we also established

fatty acid synthesis and associated xenobiotic responsive cytochrome P450 (Cyp6g1/2,

Cyp304a1) and Glutathione S transferase pathways preferentially enriched in the antennae. Simi-

lar observations have been made in cutworm moth (Agrotis ipsilon) antennae [102] and may

indicate significant investment in odor/pheromone clearing [103], probably as a strategy for

faster desensitization of antennae responses in the absence or disengagement with relevant cues.

Other enriched pathways and transcripts included lush, lush-like Obp19a, Obp28a and Obp83a/

b, Obp84a, Or7a and Snmp1 that are associated with responses to pheromones [91,104]. The

antennae transcriptome appears to be dominated with abundant, differentially expressed Ir75a-

c, Ir31a, Ir84a, Ir41a, Ir92a and Gr21a orthologs, functionally associated with responses to vari-

ous odor cues including acetic acid, 2-oxopentanoic acid [70–72], pyridine, 1,4-diaminobutane,

cadaverine, spermidine, pyrrolidine [72], phenylacetyaldehyde [26], ammonia [20] and carbon

dioxide [65]. Some of the cues, such as butanol, carbon dioxide and acetic acid are documented

odor cues in the breath of the tsetse fly vertebrate hosts and are actively employed by tsetse fly in

host location [10,15], suggesting that the rest might perform similar functions in nature.

The antennae were also enriched with transcripts associated with cilium mechanorecep-

tors/locomotor activity, indicating possible significant role of antennae in the detection of

kinetic energy (energy of movement, e.g. touch, sound, vibration, changing pressure) or

potential energy (e.g. gravity) and hence guiding physical orientation of the fly. Stress induced

neuronal controlled growth and differentiation and regeneration pathways were also enriched

in the antennae, suggesting important role of the antennae in modulating responses of the fly

to fluctuations in oxygen levels, temperature and redox state [105]. In addition to vision gene,

the head was enriched with muscle and associated structural proteins, and energy mobilization

potentially associated with feeding, as well as neuropeptide regulations associated with modifi-

cation of nervous and endocrine systems. Most differential and abundantly expressed head

specific chemosensory transcripts were also functionally associated with feeding. These

included Obp8a involved in food perception [106] and host location [107], and Gr28a/b and

Gr2a linked to regulation of aversion to high-salt associated diet [93]. Phenotypic roles of

other head-specific chemosensory transcripts, such as Csp2 (a10) and Csp4 (Phk-3), Clumsy,

Obp99c Obp83cd, Or85e, Or71a and Csp4 (Phk-3), remain to be elucidated. Other than vision,

olfaction and associated molecular processes, other processes appear to dominate physiological

and molecular functions in the head and antennae libraries, respectively, indicating other

functional roles of these tissues. Since these tissues (antennae and head) where extracted in the

morning, the transcriptional responses coincided with the peak activity of the tsetse flies and

hence reflect chemosensory and visual processes associated with host finding behavior pre-

dominant in that duration. Since our gene analyses were focused on antennae from male G. m.

morsitans, our gene expression results were potentially biased toward male tsetse flies and G.

m. morsitans subspecies. It would therefore be prudent to further assess for similar response in

the remaining five tsetse fly species/subspecies, both gender and at different physiological

states that influence their olfactory responses.

Conclusions

We identified tsetse fly specific chemosensory gene orthologs and their putative ligands, as

potential candidates for downstream functional genomic and field validations. The validations
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could yield new tsetse fly attractants, repellents and pheromones with potential in incremental

improvements of current tsetse fly control strategies. We also identified major sensory path-

ways and processes potentially active in the tsetse fly antennae and head that can be exploited

in modulating tsetse fly behavior.
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