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Abstract

Recently, electromyometrial imaging (EMMI) was developed to non-invasively image uterine 

contractions in three dimensions. EMMI collects body surface electromyography (EMG) 

measurements and uses patient-specific body-uterus geometry generated from magnetic resonance 

images to reconstruct uterine electrical activity. Currently, EMMI uses the zero-order Tikhonov 

method with mean composite residual and smoothing operator (CRESO) to stabilize the 

underlying ill-posed inverse computation. However, this method is empirical and implements a 

global regularization parameter over all uterine sites, which is sub-optimal for EMMI given the 

severe eccentricity of body-uterus geometry. To address this limitation, we developed a spatial-

dependent (SP) regularization method that considers both body-uterus eccentricity and EMG 

noise. We used electrical signals simulated with spherical and realistic geometry models to 

compare the reconstruction accuracy of the SP method to those of the CRESO and the L-Curve 

methods. The SP method reconstructed electrograms and potential maps more accurately than the 

other methods, especially in cases of high eccentricity and noise contamination. Thus, the SP 
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method should facilitate clinical use of EMMI and can be used to improve the accuracy of other 

electrical imaging modalities, such as Electrocardiographic Imaging.

Graphical abstract

The spatial-dependent regularization (SP) technique was designed to improve the accuracy of 

Electromyometrial Imaging (EMMI). The top panel shows the eccentricity of body-uterus 

geometry and four representative body surface electrograms. The bottom panel shows boxplots of 

correlation coefficients and relative errors for the electrograms reconstructed with SP and two 

conventional methods, the L-Curve and mean CRESO methods.
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1 Introduction

Proper timing and force of uterine contractions, which are driven by uterine smooth muscle 

(myometrial) activity, are necessary for successful term delivery of an infant. Several 
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methods have been developed to clinically monitor uterine contractions, such as 

tocodynamometers, which measure body surface contour displacements caused by uterine 

contractions, and intrauterine pressure catheters. However, the latter method is invasive and 

poses maternal and neonatal risks [19], and neither method can assess uterine contractility at 

high spatial and temporal resolution [10]. In a non-clinical method, electromyography 

(EMG), 4 to 64 electrodes are placed on a small region (around 4 cm by 4 cm) of the body 

surface and used to monitor myometrial electrical activity [13, 28]. EMG signals are the 

spatial integral of action potentials from all of the myometrial cells [8, 36]. Although EMG-

measured electrical signals can distinguish between term and preterm labor [12, 22, 31, 32], 

EMG cannot provide sufficient spatial resolution and coverage to reflect the detailed uterine 

electrophysiological patterns during contractions. Thus, we cannot answer basic questions 

such as where uterine contractions initiate, whether they always propagate in the same 

manner and speed, how contractions in different uterine regions correlate with one another, 

and what differentiates productive preterm contractions (leading to preterm labor and 

delivery) from non-productive preterm contractions.

To address the limited spatial resolution and coverage of EMG, we recently developed 

electromyometrial imaging (EMMI) [28]. In EMMI, a subject wearing magnetic resonance 

imaging (MRI) markers first undergoes MRI to derive a body-uterus geometry (Figure 1). 

Then, when the subject is in labor, up to 256 electrodes are placed on the body surface in the 

same positions as the MRI markers and used to measure EMG and generate body surface 

potential maps. Next, EMMI software solves an inverse problem (the Cauchy problem, see 

section 2.1 for details) to combine the subject-specific body-uterus geometry with the 

measured body surface EMG signals and thus reconstruct uterine surface electrical 

potentials. EMMI is based on a similar method used to monitor heart activity, 

electrocardiographic imaging (ECGI) [5, 7, 27, 35].

Because the inverse reconstruction procedure underlying both EMMI and ECGI is ill-posed, 

a small amount of noise in the measured body surface electrical signals could cause large 

errors in the reconstructed electrical signals on the uterine or heart surface. To stabilize the 

inverse computation underlying ECGI, several regularization methods have been proposed 

[9, 20, 21, 25]. The most widely used is the zero-order Tikhonov (ZOT) regularization 

method, with composite residual and smoothing operator (CRESO) determining a global 

regularization parameter, λ, which is applied to all sites on the heart [5, 7, 35]. This method 

is also used in EMMI [37]. However, because the same λ is applied to all heart/uterine sites, 

under-regularization could occur for some sites, and over-regularization could occur for 

other sites, impairing reconstruction accuracy. For example, Oster et al. [26] used a spherical 

geometry model to show that, in ECGI, optimal λ will differ depending on the distance 

between a site on the heart surface and the nearest body surface site. This under- and over-

regularization is likely a more severe problem for EMMI than for ECGI because the uterus is 

farther from the center of the body along the anterior-posterior axis than is the heart.

One approach to solving this problem is to use λ optimized for each uterine site. However, 

no methods have been developed to compute site-dependent λ. Here, we developed and 

tested a spatial-dependent (SP) method to compute site-specific λSP for EMMI. We first 

developed the SP method by using COMSOL Multiphysics to build a detailed numerical 
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simulation of the body-uterus geometry and electrical activities. Next, we compared the 

reconstruction accuracy of the SP, mean CRESO, and L-Curve regularization methods on 

both spherical and realistic body-uterus geometries. We show that the SP method produces 

more accurate EMMI reconstructions than the CRESO or L-Curve methods.

2 Materials and Methods

This section is organized as three subsections. Section 2.1 describes the biophysical model 

underlying EMMI, conventional regularization methods, and the SP regularization method 

for solving the biophysical model. Section 2.2 describes the geometry and physics setups for 

the numerical simulation. Section 2.3 describes the quantitative parameters used to compare 

the accuracy of each method, and the statistical test implemented to assess the significance 

of the differences.

2.1 The Inverse Problem

2.1.1 Zero-order Tikhonov regularization method—EMMI reconstructs uterine 

surface potential maps (USPMs) during uterine contractions by combining the body surface 

potential maps (BSPMs) and subject-specific body-uterus geometry segmented from MR 

images. Assuming that the body-uterus volume conductor is homogenous, isotropic, 

contains no primary electrical sources, and has no inductive effects (quasi-static condition), 

the basic mathematical formulation underlying this inverse problem can be described by 

Laplace's equation in three-dimensional space (equation 1), and two types of boundary 

conditions on the body surface (equations 2, 3).

∇2ϕ(x) = 0, x ∈ ΩUB (1)

Dirichlet condition ϕ(x) = ϕB(x), x ∈ ΓB (2)

Neumann condition σΩUB
∂ϕ(x)

∂n = 0, x ∈ ΓB (3)

ΓB represents the body surface, ϕB(x) is the electrical potential on the body surface at 

location x, and n denotes the normal to the boundary of ΓB. σΩUB is the conductivity of the 

volume between the uterine surface and the body surface, ΩUB, and is assumed to be 

homogeneous [7, 27, 35]. Because the conductivity of air is zero, the right side of equation 

(3) can be simplified to zero.

According to Green's theorem, (equations 1, 2, and 3) can be discretized by the boundary 

element method [2, 5, 15, 30]. As shown in equation (4), BSPM, ϕB, and USPM, ϕU, are 

associated by transfer matrix A, which encodes the patient-specific body-uterus geometry.

ϕB = A ϕU (4)
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Because transfer matrix A is numerically ill-conditioned, the inverse problem cannot be 

solved by directly inverting matrix A. A well-established technique for such cases is the 

zero-order Tikhonov (ZOT) regularization method [1], which solves a least-square problem 

with an L2 norm regularization term, shown as equation (5), where λ is a positive scalar 

regularization parameter.

min
λ > 0

{‖A ϕU − ϕB‖2 + λ‖ϕU‖2} (5)

In the ZOT regularization method, a singular value decomposition (SVD, equation 6) is 

implemented.

A = UΣXT (6)

where U is an M × M matrix with columns that are singular vectors spanning the data space 

ϕB, and X is an N × N matrix with columns that are singular vectors spanning the model 

space ϕU. M and N represent the numbers of body and uterine surface sites, respectively. Σ is 

a diagonal matrix of singular values σi, where σ1 ≥ σ2 ≥ ⋯ ≥ 0 and i = 1, 2, ⋯ , σZ, Z = 

min(M, N).

The inverse solution of the ZOT method is represented by SVD components [1] shown as 

equation (7).

ϕU = ∑
i = 1

Z σi2

σi2 + λ
U . , i

T ϕB
σi

X . , i (7)

where λ is the ZOT regularization parameter, Z is the number of non-zero singular values, 

and i indicates the ith singular value. U.,i represents the ith singular vector of matrix U, which 

is correlated with σi. Similarly, X.,i represents the ith singular vector of matrix X. We define 

di as a decomposition of the body surface potential ϕB onto singular vectors of U, shown in 

equation (8).

di = U . , i
T ϕB (8)

Substituting equation (8) into equation (7),

ϕU = ∑
i = 1

Z σi di
σi2 + λ

X . , i (9)

2.1.2 Conventional methods to determine the regularization parameter, λ—In 

equation (9), ϕU can be regarded as the linear weighted summation of the singular vectors 

X.,i, i = 1, 2, … , Z, where the linear coefficients are determined by di and σi. The two values 

are derived from SVD components and body surface measurements. The CRESO and L-

Curve methods are widely used empirical method to determine the λ for ZOT regularization 
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in ECGI [5, 7, 35]. The L-Curve method [18] locates the "corner" of the L-shaped curve and 

indicates the relationship between the norm of ϕU and the norm of residual AϕU – ϕB in a 

log-log plot with λ as a variable. The CRESO method [11] aims to determine the positive λ 
value that results in the maximum of function C(λ) shown in equation (10). Substituting the 

ZOT solution of ϕU, equation (9), into equation (10), the numerical expression can be 

derived as equation (11).

C(λ) = ‖ϕU(λ)‖2 + 2λ d
d λ‖ϕU(λ)‖2

(10)

C(λ) = ∑
i = 1

Z σidi
σi2 + λ

2
1 − 4λ

σi2 + λ
(11)

2.1.3 Spatial dependent (SP) method to determine λSP—In general, λSP is 

determined by body-uterus geometry G and the body surface potential maps ϕB (equation 

12). Based on the SVD (equation 9), the inverse solution of the SP method was formulated 

as equation 13, where λk is the SP regularization parameter associated with the kth uterine 

site, and Z is the number of non-zero singular values.

λSP = [λ1, λ2, … , λk, … , λN]T = [σg1, σg2, … , σgk, …σgN]T

= f(G, ϕB) (12)

ϕUk = ∑
i = 1

Z σi di
σi2 + λk

Xk, i (13)

k = 1, 2, … , N, where N is the number of uterine sites; gk is the index of the singular vector, 

and gk ∈ (1, Z = min(M, N)); G represents the body-uterus geometry, which is denoted by 

XYZ coordinates and the triangular connectivity of each coordinate; ϕB represents the body 

surface potential map.

The function f represents the computation process as described in Figure 2. After acquiring 

the body-uterus geometry and body surface potentials, λSP is generated in three steps. Step 1 

is to calculate the transfer matrix A (equation (4)) and its singular value decompositions (U, 

X, Σ, equation (6)) from the body-uterus geometry G. Step 2 is to calculate the two 

parameters eccentricity and signal-to-noise ratio (SNR). l represents the distances from 

uterine sites to their nearest body surface sites. lnorm represents the normalized vector by the 

maximum l value, and l̄  represents the average of l vectors. e represents the eccentricity of 

the body-uterus geometry, which is defined by the standard deviation of l vectors. The SNR 

for each ϕB is defined by the ratio between the mean absolute value of the first 10% and the 

last 30% of d, based on the discrete picard condition for the inverse problem [17] (See 

details in supplementary mater). Step 3 is to calculate λSP by using e, SNR, lnorm, X, and Σ 
derived from the first two steps. The level threshold function p(a) is a function of variable a 
and the normalized nearest distance vector lnorm. For each a, the jk(a) is defined as the 
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maximum index of singular basis satisfying ∑v = 1
t Xkv ≤ pk in equation (b). Then in 

equation (c), g(a) is computed by smoothing j by using a moving average filter with window 

size equal to 5% of the uterine sites. g(a) is the optimized index of singular vector basis for 

λSP, shown as equation (11). The under-curve ratio r(a) is defined as the ratio between the 

area under the curve of g(a) over the total area (= NZ) of cumulative X. r is determined by e 
and SNR with the estimation model r = q [e, SNR, 1]. The optimized a can be computed by 

minimizing the difference between r(a) and r, and then the optimized p and g are derived. 

Finally, the λSP for each uterine site is computed. After λSP is derived, the inverse solution 

can be calculated according to equation (13). Please see the supplemental materials for 

details regarding derivation of the level threshold function p(a) and estimation model r.

2.2 Bio-electricity Simulation

2.2.1 Geometries setup—We modeled a three-layer spherical geometry (Figure 3a), in 

which the inner-most, middle, and outer layers represented the intrauterine space, 

myometrium, and body surface, respectively. The radius of each layer was based on the 

average size of a pregnant woman at nine months' gestation [38] (Table 1). To validate the 

SP method, we used a non-spherical uterus geometry, RPI-9 (Figure 3b) developed by the 

Rensselaer Polytechnic Institute as a model of a pregnant woman at nine months' gestation 

[38]. To simplify the bio-electric simulation and generate a closed-shape body surface 

geometry, an ellipsoid with similar size as the abdominal and lower-back surface of the nine-

months pregnant female was set as the body surface (Figure 3b). In both geometries, the 

intrauterine surface was derived by shrinking the uterine surface by mm along the normal 

direction. We defined 900 uterine sites and represented the uterine surface with a mesh 

containing 1796 triangles. We defined 1400 body surface sites and represented the body 

surface with a mesh containing 2800 triangles (see details in Table 1). Anterior uterine sites 

(large index) are closer to the body surface, and posterior uterine sites (small index) are 

farther from the body surface.

2.2.2 Physics setup—The volumes and surfaces of body-uterus geometry are shown in 

a two-dimensional schematic (Figure 3c). ΩUB represents the volume conductor between the 

body surface and the uterine surface with conductivity σΩUB. ΩAU represents the volume 

conductor of the myometrium with conductivity σΩAU. ΩA represents the volume conductor 

of the amniotic fluid with conductivity σΩA. ΓB and ΓU represent body and uterine surfaces, 

respectively. Table 1 lists the conductivity values for each volume space. Similar to the 

electrical activity preceding cardiac contractions [3, 27], the electrical activity preceding 

uterine contractions can be represented by current dipoles. The current dipole was placed at 

the intrauterine surface ΓA to simulate local myometrial contractions. The current dipole 

directions (constant magnitude, Table 2) were set along normal direction of the intrauterine 

surface as well as the other two tangent directions at each intrauterine site (arrows in Figure 

3a). Because we defined 900 uterine sites, 2700 frames of BSPMs and USPMs were 

generated. At each uterine site and body surface site, we generated a time series of potential 

values with length 2700. Each time series was defined as the simulated electrogram at the 

respective site. To simulate complex uterine contractions, multiple current dipoles with 

random tangent directions were placed at random locations on the intrauterine surface ΓA. 
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The magnitudes of the dipoles changed as a sine wave with frequency 0.5 Hz (Table 2), 

which is the mean frequency of uterine contractions during active labor [13]. In total, 100 

BSPMs and USPMs were generated with a duration of 5 second for the complex uterine 

contractions. To model measurement noise, white Gaussian noise was added to the simulated 

BSPMs. Simulated USPMs were considered the ground truth for the reconstructed USPMs. 

COMSOL multiphysics finite element modeling software (COMSOL Multiphysics, version 

5.3a) was used to implement this simulation. Table 2 lists the detailed information for 

physics setups.

2.3 Statistical analysis

To quantitatively evaluate the accuracy of inverse reconstructions, uterine electrograms and 

potential maps were reconstructed with CRESO, L-Curve, or SP methods and then 

compared with the ground truth to generate correlation coefficients (CC) and relative error 

(RE), which are defined as follows:

CC =
∑i = 1

n V i
T − V T V i

R − V R

∑i = 1
n V i

T − V T 2
∑i = 1

n V i
T − V T 2 (14)

RE =
∑i = 1

n V i
T − V i

R 2

∑i = 1
n V i

T 2 (15)

For electrograms, n denotes the number of time frames within the electrograms. V i
T  and V i

R

are the ith time frame of true and reconstructed uterine potentials, respectively. V T  and V R

are the average true and reconstructed, respectively, uterine potentials over all time frames. 

For potential maps, n is the number of uterine surface sites. V i
T  and V i

R are the true and 

reconstructed, respectively, uterine potentials at the ith uterine site. V T  and V R are the 

average true and reconstructed, respectively, uterine potentials over all uterine sites. A CC 

value close to 1 indicates high morphology similarity, and a RE value close to 0 indicates 

low magnitude error.

We used the CRESO, L-Curve, and SP methods to reconstruct USPMs form the simulated 

BSPMs with spherical and RPI geometries, and then compared the reconstruction accuracies 

(CCs and REs) of the three methods. Statistical significance of differences (P-value) was 

determined with one-tailed Wilcoxon rank-sum tests in R studio [33].

3 Results

3.1 Spatial dependence of optimal regularization parameter

To confirm that the optimal regularization parameter is spatially dependent, we used pairs of 

body surface potential maps (BSPMs) and uterine surface potential maps (USPMs) 

simulated from a three-layer spherical geometry and a single current dipole (See 
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supplementary material for the definition of the optimal regularization parameter). The 

BSPMs were contaminated with white Gaussian noise with average peak-to-peak magnitude 

of 44 microvolts (15% of the signal). Figure 4a shows one representative BSPM, represented 

as a heat map in which warm colors denote positive potentials and cool colors denote 

negative potentials. We then used the optimal λ, CRESO, and L-Curve methods to 

reconstruct USPMs from the noise-contaminated BSPMs. Optimal λ values were large at 

anterior uterine sites and small at posterior uterine sites (Figure 4b).

Figure 4c,e show the electrogram morphology accuracy (CC) and magnitude error (RE) of 

each uterine electrogram (sample size = 900) reconstructed with the three regularization 

parameters. The optimally reconstructed electrograms had higher CC and lower RE than 

those constructed with the CRESO or L-curve methods. This was especially true for the 

electrograms at the anterior uterine surface (uterine sites with index > 600). To quantitively 

evaluate the superiority of the optimal λ, a one-tail Wilcoxon rank-sum test was conducted 

with the null hypothesis that the electrogram accuracy (CC or RE) calculated with the 

CRESO or L-Curve methods were equal to that calculated with optimal λ. The null 

hypothesis was rejected (P < 10−5) for all four comparisons (electrogram CC, optimal vs. 

CRESO; electrogram RE, optimal vs. CRESO; electrogram CC, optimal vs. L-Curve; 

electrogram RE, optimal vs. L-Curve).

Figure 4d,f show the CC and RE of each USPM (sample size = 2700) reconstructed with the 

three regularization parameters. The optimally reconstructed potential maps had higher CC 

and lower RE than those reconstructed with the CRESO or L-Curve methods, especially 

those associated with posterior sources (potential maps with index < 900). Moreover, one-

tail Wilcoxon rank-sum tests confirmed that the CC and RE values of potential maps were 

all significantly different (P < 10−5) between optimal λ and the CRESO and L-Curve 

methods.

3.2 Comparison of reconstruction accuracies in multiple spherical geometries and 
various noise contaminations

We calculated λSP values according to the procedures shown in Figure 2 and evaluated the 

performance of the SP, mean CRESO, and L-Curve methods on reconstructing electrograms 

and potential maps with simulated BSPMs from spherical geometries. We considered 40 

eccentricity (0.29 mm to 48.73 mm) and noise contamination settings (SNR 21 dB to 9 dB) 

(See data file S2 for details). To compare the performance of the three methods, we first 

calculated the CC and RE values between the reconstructed electrograms and potential maps 

and the simulated electrograms and potential maps. Then, we calculated the difference of 

reconstruction accuracies between mean CRESO and SP methods (Figure 5a - d), and 

between the L-Curve and SP methods (Figure 5e - h) for each dataset. These differences 

were rendered to a surface plot in Figure 5. The datasets were sorted by geometry 

eccentricity and noise level, and a larger index corresponded to large eccentricity and high 

noise level (See data file S2). The reconstructed electrogram accuracies of the three methods 

were similar at low eccentricity and low noise level. However, at large eccentricity and high 

noise levels, the SP method was superior to the mean CRESO and L-Curve methods, 

especially at anterior uterine sites (index >600). The largest differences of electrogram CC 

Wang and Wang Page 9

Med Biol Eng Comput. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and RE between the SP and mean CRESO methods were 0.15 and 0.4, respectively (Figure 

5a,c). The largest differences of electrogram CC and RE between the SP and L-Curve 

methods were 0.07 and 0.2, respectively (Figure 5e,h). The potential maps reconstructed 

with the SP method were slightly more accurate than those generated with the other two 

methods (Figure 5b,d,f,h).

3.3 Comparison of reconstruction accuracy in RPI geometry

3.3.1 Single current dipole—We simulated BSPMs with the three-layer RPI geometry 

(Figure 3b) and single current dipoles. Four levels of white Gaussian noise were added to 

BSPMs, with average peak-to-peak magnitudes 15%, 22%, 30%, and 37% of the signal. We 

calculated λSP values according to the procedures shown in Figure 2, used them to 

reconstruct uterine potentials, and compared the accuracy of the SP method to that of the 

mean CRESO and L-Curve methods. The median, first quartile, and third quartile of CC and 

RE values of reconstructions with the three methods under different levels of noise 

contamination are shown in Figure 6.

To assess the performance of the three methods, a one-tail Wilcoxon rank-sum test was 

applied between SP and mean CRESO methods, and between SP and L-Curve methods. The 

electrograms (sample size = 900)were reconstructed significantly more accurately (P < 10−4) 

with λSP than with the mean CRESO method at all four noise levels. Moreover, at 15% and 

37% noise, the median CCs of SP-reconstructed electrograms were 2% and 4.5%, 

respectively, higher than those of CRESO reconstructions, and the median REs of SP-

reconstructed electrograms were 15.7% and 20.8%, respectively, lower than those of 

CRESO reconstructions. Electrograms generated with the SP method were significantly (P < 

10−2) more accurate than those generated with the L-Curve method.

Potential maps (sample size = 2700) were also reconstructed significantly more accurately 

(P < 10−4) with λSP than with the mean CRESO method at all four noise levels. The median 

CCs of SP-reconstructed potential maps were 1.5% and 4.1% higher, respectively, than those 

of CRESO reconstructions, and the median REs of SP-reconstructed potential maps were 

13% and 18.9%, respectively, lower than those of CRESO reconstructions. The accuracy of 

potential maps reconstructed with the SP method were significantly higher (P < 10−2) than 

those reconstructed with the L-Curve method when the noise level was less than 30%. The 

exact P-values are listed in Table 3.

3.3.2 Multiple current dipoles—Next, we simulated BSPMs with the three-layer RPI 

geometry and three current dipoles (Table 2). Four levels of white Gaussian noise were 

added to the simulated BSPMs, with average peak-to-peak magnitudes 15%, 22%, 30%, and 

37% of the signal. We calculated λSP values, used them to reconstruct uterine potentials, and 

compared the reconstruction accuracy of the SP method to that of the mean CRESO and L-

Curve methods. Figure 7 shows representative simulated electrograms and electrograms 

reconstructed with the three regularization methods. The L-Curve method failed to 

reconstruct accurate uterine electrograms at any of the sites (CC < 0.1, RE < 10). At left 

lateral, anterior, and right lateral sites (A, B, and C), the SP-reconstructed electrograms were 
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more accurate than those reconstructed with the mean CRESO method, both qualitatively 

and quantitatively (CC and RE).

A representative BSPM was rendered in a heat map (Figure 8a) in which warm colors 

represent positive potentials and cool colors represent negative potentials. We then evaluated 

the reconstruction accuracy of all 900 electrograms and 100 potential maps. Figure 8b, c 

show median, first quartile, and third quartile reconstruction accuracies of the three 

regularization methods under the four levels of noise contamination. The boxplots of CC and 

RE values of electrograms reconstructed with the L-Curve method are not shown because 

the maximum CC was less than 0.5 and the minimum RE was larger than 2.2, even at the 

lowest level of noise. Electrograms reconstructed with λSP were significantly more accurate 

(P < 10−10 by one-tail Wilcoxon rank-sum test) than those reconstructed with mean CRESO, 

especially at higher noise levels. Moreover, at 15% and 37% noise, the median CCs of SP-

reconstructed electrograms were 1.8% and 5.3%, respectively, higher than those of CRESO 

reconstructions, and the median REs of SP-reconstructed electrograms were 25.7% and 

36.5%, respectively, lower than those of CRESO reconstructions. The CC and RE of the SP-

reconstructed potential maps did not significantly differ from those of the mean CRESO and 

L-Curve reconstructions. The exact P-values are listed in Table 3.

3.3.3 Reconstruction with a clinically relevant number of body surface sites
—Finally, we tested whether the SP method would accurately reconstruct electrograms and 

potential maps in a more clinically relevant situation in which 256 electrodes would be 

placed on the body surface. We simulated the three-layer RPI geometry with 256 body 

surface sites (blue dots in Figure 9) and generated a new body-uterus geometry. Importantly, 

we did not include sites in the superior and inferior regions of the geometry, as it would not 

be possible to place electrodes on these regions in clinical practice. We added 20 different 

levels of Gaussian noise with average peak-to-peak magnitudes 9% ~ 37% of the signal to 

the simulated BSPMs in section 3.3.2. Next, we extracted the body surface electrograms at 

the 256 sites from the noise-contaminated BSPMs. We combined these electrograms with 

the new body-surface geometry and used the SP method to reconstruct the uterine surface 

electrograms and potential maps.

We compared the reconstruction accuracies of electrograms generated with 1400 body 

surface sites to those generated with 256 body surface sites. Figure 9b shows the median, 

first quartile, and third quartile of CC and RE values at 20 noise levels. The CCs of 

electrograms reconstructed with 256 body surface sites were similar to those reconstructed 

with 1400 body surfaces sites. The median RE values were also similar between the two 

reconstructions, but the third quartile of REs was higher in electrograms reconstructed with 

256 body surface sites than those reconstructed with 1400 body surface sites. We also 

compared the accuracy of potential maps and found that the median CC values were 7% to 

10% lower in reconstructions with 256 body surface sites than in those with 1400 body 

surface sites. However, the CCs at different noise levels were still all more than 0.8. The REs 

of potential maps reconstructed from 256 body surface sites were about 0.2 higher than 

those reconstructed from 1400 body surface sites, but the REs were all still lower than 0.7. 

Thus, we conclude that SP can be used to accurately reconstruct electrograms and potential 
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maps from 256 body surface sites. Thus, this method should enable accurate generation of 

uterine surface activation sequences[34, 37].

4 Discussion

This study demonstrates that the optimal regularization parameter for EMMI is spatially 

dependent. Moreover, in simulations with spherical geometries with different eccentricities 

and various levels of noise contamination, the SP method resulted in more accurate 

reconstructions than the conventional L-Curve and CRESO methods, especially for highly 

eccentric body-uterus geometries and severe noise contamination. We also tested the SP 

method on a realistic geometry and current dipole models and found that the SP-

reconstructed electrograms were more accurate (higher CC and lower RE values) than those 

reconstructed with the L-Curve or CRESO methods. We conclude that the SP method, which 

captures the unique spatial information of each uterine site, significantly improves the 

accuracy for reconstructing uterine electrograms. The SP method would be advantageous in 

clinical applications, as a hospital environment contains multiple electrical noise sources, 

and body-uterus geometry is severely eccentric in pregnant women. Moreover, because 

uterine electrograms are the foundation of constructing activation sequences, the SP method 

should enhance the clinical application of EMMI.

We argue that our simulation method is appropriate for three main reasons. First, the 

electrical signals measured on the body surface or uterine surface are the integral of the 

underlying action potentials across the myometrial cell membranes [8, 36]. A detailed 

electrical source model, such as the bidomain model, can simulate body surface potentials 

based on ion channel dynamics and spatial microstructure [23, 39, 40]. However, several 

studies have shown that a simplified electrical source model, such as the current dipole we 

used here, is sufficient to simulate electrostatic fields and assess the accuracy of 

electrophysiological imaging [4, 6, 16, 24, 26]. Second, because the body-uterine volume 

conductor has no significant inductive effect, the biophysical model is quasi-static. This 

suggests that the inverse computation can be conducted for each potential map 

independently. Therefore, the waveform of the electrical source does not affect the inverse 

computation. Finally, for simplicity, we used several bipolar current sources at 5 Hz. This 

value simulates the electrical activity of uterine contractions, which occur in the range of 

0.34 to 1.0 Hz [14, 29].

Although we developed the SP method for EMMI, it can be readily applied to improve the 

accuracy of other electrical imaging modalities such as ECGI [7, 35]. For example, Oster 

and Rudy showed that accurate ECG imaging of cardiac arrhythmia requires a spatial-

dependent regularization parameter [26].

We recognize that this study has several limitations. First, we used the boundary element 

method (BEM) to discretize the Laplacian equation underlying EMMI. Our results 

demonstrated that the SP method significantly improved the inversion accuracy of a BEM-

derived transfer matrix. However, the BEM is less able to handle anisotropic properties and 

imbrication volumes than volume-based numerical methods such as the finite element 

method (FEM) [20] and the method of fundamental solution (MFS) [35, 37]. Thus, future 
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work will be necessary to test the SP method with FEM and MFS. Second, we used generic 

sinusoidal waves to assess the performance of the SP method. More complicated and 

realistic electrophysiological waves should be incorporated for further evaluation. Third, we 

used the level threshold function, which is empirical and linear and may be sub-optimal for 

EMMI reconstruction of complicated uterine contraction patterns. Future work will focus on 

refining the level threshold function to better reflect complex uterine contractions and 

validate the method with human data.

6. Conclusions

EMMI is the first modality enabling noninvasive, high-resolution mapping of uterine 

activation in three dimensions. Clinically, EMMI may prove useful for managing patients 

with preterm contractions. Here, we demonstrated that the solution of the inverse problem 

underlying EMMI can be significantly improved by optimizing the regularization parameter 

(λ) for each uterine site by using a spatial-dependent (SP) method. We employed two 

simulation models to show that the SP method is superior to other available regularization 

methods in reconstructing both electrograms and potential maps. The SP method can be 

readily integrated into the EMMI inverse computation and significantly improve EMMI 

reconstructions of electrograms and potential maps. Thus, the SP method holds great 

promise in facilitating clinical use of EMMI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic of EMMI system.
Top left, a patient-specific body-uterus geometry is obtained and segmented from an MRI 

scan while the patient is wearing up to 256 MRI-compatible markers. Lower left, body 

surface potentials are recorded from up to 256 pin-type unipolar electrode patches placed in 

positions corresponding to the MRI-compatible markers. Middle, EMMI software combines 

the two data sets to reconstruct uterine surface (top right) electrograms (electrical 

waveforms over time at each uterine site) and (middle right) potential maps (electrical 

activity across the uterus at a single time point). (Lower right) Activation times can be 

derived from the electrograms to construct isochrone maps. EMMI software is an in-house 

developed MATLAB package able to solve the inverse problem.
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Fig.2. Flowchart of the derivation of λSP.
Body-uterus geometry (G) and body surface potentials (ϕB) are shown in the blue boxes at 

the top left. Transfer matrix A and its singular value decompositions are shown in the grey 

boxes at the top right. The eccentricity (e) and signal-to-noise-ratio (SNR) are defined and 

shown in the yellow boxes. M, N, m, n, and Z are defined in the key. The procedure to 

calculate λSP by minimizing a cost function is shown in the orange boxes. The level 

threshold function p(a) as a function of unknown variable a is described in equation (a). jk(a) 

represents the maximum index t of singular basis corresponding to variable a, where 

∑v = 1
t Xkv ≤ pk in equation (b). g(a) is derived by applying a moving average filter to j, and 

this process is denoted by S(j) in equation (c). The under-curve ratio r(a) is defined as the 

ratio between the area under the curve of g(a) and the total area (= NZ) of cumulative X in 

equation (d). r = q [e, SNR, 1]. By minimizing the difference between r(a) and r, an 

optimized a can be computed, which can be used compute p, g, λk, and λSP.
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Fig. 3. Geometry and physics settings of bioelectric simulation.
a, three-layer spherical geometry. Arrows represent the three orthogonal dipole directions: 

normal direction (green arrow), and two horizontal directions (red and blue). b, three-layer 

RPI geometry. c, schematic of bio-electricity simulation setting with three volume 

conductors, ΩUB, ΩAU, and ΩA. OB and OU represent the centers of the body surface and 

uterine surface, respectively. RB, RU, and RA represent the radius of the three spherical 

geometries. A dipole was placed on the intrauterine surface, ΓA. The body surface point C is 

nearest to uterine point A. All images are right lateral views.
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Fig. 4. Reconstruction accuracy of electrograms and potential maps for spherical geometry.
a, a representative body surface potential map, where warm colors indicate positive potential 

and cool colors indicate negative potential. Black mesh inside the color map is the uterine 

surface geometry. b, Distribution of the optimal site-specific λ. Blue dots are discrete points 

on the simulated body surface. a and b both show right lateral views. c, reconstructed 

electrogram correlation coefficient (CC). d, reconstructed potential map CC. e, reconstructed 

electrogram relative error (RE). f, reconstructed potential map RE. In c, d, e, and f, red 

indicates optimal λ, blue indicates mean CRESO λ, and green indicates L-Curve λ. Uterine 

sites with index of 1~300 are located at the posterior, and sites with index of 601~900 are 

located at the anterior. Potential maps with index of 1~900 are correlated with posterior 

current dipole source, and index 1801~2700 are correlated with anterior current dipole 

source. The average peak-to-peak white Gaussian noise is 44 microvolts, which is 15% of 

the signal.
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Fig. 5. Reconstruction accuracy of electrograms and potential maps using different 
regularization methods for multiple spherical geometry settings and noise levels.
a – d, CC and RE values of electrograms and potential maps generated by the mean CRESO 

method subtracted from the CC and RE values of electrograms and potential maps generated 

by the SP method. e - h, CC and RE values of electrograms and potential maps generated by 

the L-Curve method subtracted from the CC and RE values of electrograms and potential 

maps generated by the SP method. In all graphs, warm colors represent positive differences 

and cold colors represent negative differences. X-axis, index of datasets; Y-axis, index of 

uterine site or potential map; Z-axis, difference in values. The datasets were sorted by 

geometry eccentricity and noise level, and a large index means large eccentricity and high 

noise level (See data file S2).
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Fig. 6. Comparison of reconstruction accuracy of three regularization methods under RPI 
Geometry with single current dipole.
a. reconstructed electrogram accuracy of λSP, mean CRESO λ, and L-Curve λ. b, 

reconstructed potential map accuracy of λSP, mean CRESO λ, and L-Curve λ. Cross boxes 

indicate CC values and striped boxes indicate RE values. Blue, orange, and pink represent 

mean CRESO method, SP method, and L-Curve method, respectively. n.s., not significant, * 

P < 0.05, ** P < 10−2, *** P < 10−3, **** P < 10−4, compared to SP method.
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Fig.7. Comparison of reconstructed uterine surface electrograms using three regularization 
methods.
Simulated and reconstructed electrograms (0 to 10 s) from the indicated sites A to D. CC 

and RE values are labeled on the top of each electrogram panel. The average noise level of 

the BSPMs used is 15%.
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Fig.8. Evaluation of reconstruction accuracy of three regularization methods under RPI 
Geometry with multiple current dipoles.
a, a body surface potential map with RPI geometry setting shown in right and anterior views. 

Black mesh represents RPI uterine surface. Black arrows represent dipole locations and 

directions. b, Reconstructed electrogram accuracy of λSP, mean CRESO λ, and L-Curve λ. 

The electrogram accuracy of L-Curve λ was too small to show. c, Reconstructed potential 

map accuracy of λSP, mean CRESO λ, and L-Curve λ. Cross-hatched boxes indicate CC 

values, and striped boxes indicate RE values. Blue, orange, and pink represent mean CRESO 

method, SP method, and L-Curve method, respectively, n.s., not significant, * P < 0.05, ** P 
< 10−2, *** P < 10−3, **** P < 10−4, compared to SP method.
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Figure 9. Reconstruction accuracy of SP method with 1400 vs. 256 body-surface sites.
a, RPI body-uterus geometry. The blue dots represent the 256 body surface sites. b, 

reconstruction accuracies with 1400 (black) vs. 256 (red) body surface sites. The median, 

first quartile, and third quartile of CC and RE values are shown by error bars.
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Table 1.

Bio-electricity Simulation Parameters [41]

Parameter Value

Geometry Setting

Radius

RA 13 cm

RU 16 cm

RB 27 cm

dis(OU, OB) 9 cm

Mesh

Number of uterine surface sites, N 900

Number of uterine surface triangles 1796

Number of body surface sites, M 1400

Number of body surface triangles 2800

Number of tetrahedrons in COMSOL 73890

Conductivity Setting Conductivity

σΩA 0.5 S/m

σΩAU 1.74 S/m

σΩUB 0.2 S/m
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Table 2.

Bio-electricity Simulation Equations

Current conservation

∇ · J = Qj,ν

J = σE + Je, ΩA,ΩUB,ΩAU

E = −∇V

Electrical insulation n · J = 0, ΓB

Single current dipole

Magnitude p = 10−5 A · m

Direction Normal, horizontals (2)

Position Each site on intrauterine surface

Multiple current dipoles

Magnitude p = 10−5sin(2πft) A · m

Frequency f = 0.5 Hz

Sampling rate Fs = 10 Hz

Direction Random horizontal

Position Radom site on intrauterine surface
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Table 3.

P-values of one-tail Wilcoxon rank-sum test

Noise level 15% 22% 30% 37%

Figure 6

Electrogram CC
SP - CRESO 1.2 * 10−34 6.7 * 10−35 2.7 * 10−44 2.3 * 10−65

SP – L-Curve 1.4 * 10−13 4.5 * 10−7 3.3 * 10−4 0.0052

Electrogram RE
SP - CRESO 6.6 * 10−32 1.4 * 10−33 2.5 * 10−44 5.4 * 10−69

SP – L-Curve 5.1 * 10−11 7.6 * 10−6 0.0012 0.0078

Potential map CC
SP - CRESO 2.0 * 10−58 4.1 * 10−58 1.5 * 10−81 1.3 * 10−140

SP – L-Curve 1.7 * 10−12 6.8 * 10−5 0.0122 0.051

Potential map RE
SP - CRESO 6.7 * 10−60 9.7 * 10−60 2.5 * 10−88 3.9 * 10−165

SP – L-Curve 1.1 * 10−10 0.0014 0.069 0.147

Figure 8

Electrogram CC SP - CRESO 4.9 * 10−35 6.4 * 10−38 9.1 * 10−47 2.1 * 10−56

Electrogram RE SP - CRESO 6.4 * 10−18 2.9 * 10−21 1.2 * 27 9.3 * 10−35

Potential map CC
SP - CRESO 0.97 0.87 0.57 0.47

SP – L-Curve 0.0048 0.35 0.8 0.9

Potential map RE
SP - CRESO 0.99 0.97 0.92 0.86

SP – L-Curve 0.46 0.17 0.008 0.003
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