
Neuronal Networks in Hypertension: Recent Advances

Patrice G. Guyenet1, Ruth L. Stornetta1, George M.P.R. Souza1, Stephen B.G. Abbott1, 
Virginia L. Brooks2

1University of Virginia, Department of Pharmacology, Charlottesville, VA, USA

2Oregon Health & Sciences University, Department of Chemical Physiology and Biochemistry, 
Portland, OR, USA

Abstract

Neurogenic hypertension is associated with excessive sympathetic nerve activity (SNA) to the 

kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause 

heightened SNA in animal models of neurogenic hypertension and we discuss the triggers 

responsible for the changes in neuronal activity within these regions. We highlight the limitations 

of the evidence and, whenever possible, we briefly address the pertinence of the findings to human 

hypertension.

The arterial baroreflex reduces BP variability and contributes to the BP set-point. This set-point 

can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated 

sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla 

oblongata (RVLM PSNs) and both are plausible causes of neurogenic hypertension. Sensory 

afferent dysfunction (reduced baroreceptor activity, increased renal or carotid body afferent) 

contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result 

from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, 

AngII) or sodium. Leptin raises blood vessel SNA by activating the carotid bodies and subsets of 

arcuate neurons. AngII works in the lamina terminalis and probably throughout the brainstem and 

hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the 

excess SNA is mediated to some extent by activation of presympathetic neurons (PSNs) located in 

the rostral ventrolateral medulla (RVLM) or the paraventricular nucleus of the hypothalamus. 

Increased activity of the orexinergic neurons also contributes to hypertension in selected models.

Neurogenic hypertension refers to a chronic increase in arterial blood pressure (BP) that is 

associated with and presumably driven by excessive sympathetic nerve activity (SNA) to the 

kidneys and various parts of the cardiovascular system1–4. We will not discuss here how a 

global or regional increase in SNA causes or maintains the hypertensive state5–7. Instead, we 

focus on two specific aspects of neurogenic hypertension research: the brain regions 

responsible for heightened SNA in animal models and the triggers responsible for the 

changes in neuronal activity within these regions (e.g. sensory afferent dysfunction, brain 

hypoperfusion, gliotransmission, excess circulating hormones, hypernatremia, etc.). The 
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topic is vast and the space limited. Despite their importance, oxidative stress and 

inflammation are not discussed.

The ventrolateral medulla and hypertension

The rostral ventrolateral medulla (RVLM) is a major node of the BP regulating neural 

network8, 9. Silencing RVLM neurons indiscriminately produces large reductions of BP and 

SNA in anesthetized or conscious rodents9–11. These effects are attributed to the inhibition 

of excitatory neurons with monosynaptic projections to sympathetic preganglionic neurons, 

a.k.a. RVLM presympathetic neurons (PSNs). Many RVLM PSNs (C1 cells) synthesize 

catecholamines inclusive of epinephrine, the rest do not (non-C1)12–14. Estimates of the ratio 

between non-C1 and C1 PSNs varies widely (33 to 300%)12, 13, 15, 16. C1 and non-C1 PSNs 

are glutamatergic and express varying levels of neuropeptides (PACAP, NPY, substance P, 

enkephalins)9.

The degree to which the C1 and other RVLM neurons contribute to resting BP in an intact 

unstressed and unanesthetized mammal is unsettled. Extensive lesions of the C1 neurons 

(>85%) compromise BP stability during hypoxic or hypotensive stresses but cause very little 

hypotension at rest (<10 mmHg in rats)17, 18 suggesting that the contribution of these 

neurons to BP is small under resting conditions. Consistent with this view, in freely 

behaving rats at rest, bilateral optogenetic C1 cell inhibition (with the proton pump 

archaerhodopsin) also reduced BP very little (~5mmHg)19. Yet, a more substantial BP drop 

(−27 mmHg) was observed using a pharmacogenetic approach (allatostatin receptor)20. The 

same type of vector (lentivirus with a Phox2b-enhanced promoter, PRSx8) was used in both 

studies. This vector does not transduce catecholaminergic neurons with total selectivity. The 

allatostatin receptor is a G-protein coupled receptor and, as such, presumably needs a much 

lower level of membrane expression than the proton pump to be an effective actuator, thus 

increasing the probability of off-target effects21. Conversely, archaerhodopsin requires a 

high level of expression for efficacy; its use could have led to the underestimation of the 

contribution of the C1 neurons to resting BP. Finally, the autonomic effects caused by a 

purely psychological stress may not be mediated via the RVLM22.

SNA to various organs or tissues is differentially regulated (e.g.23, 24). This point is notable 

because hypertension may be caused by preferential activation of SNA to the heart, 

resistance vessels or splanchnic capacitance25. The differential control of regional SNA may 

occur via differential recruitment of subsets of RVLM premotor neurons that control 

sympathetic efferents to particular vascular beds (e.g. splanchnic vs. muscle or capacitance 

vs. resistance) and different regions of the kidneys or the myocardium( Figure 1)9, 26–28. 

However, the RVLM also contains highly collateralized PSNs, e.g. C1 cells, that can activate 

multiple sympathetic efferent pathways simultaneously29, 30.

RVLM PSNs, C1 included, innervate many brain regions implicated in BP control besides 

the spinal cord including the solitary tract nucleus (NTS), parabrachial region, locus 

coeruleus, periaqueductal gray matter and raphe pallidus (Figure 2)9, 31. Non-bulbospinal 

RVLM neurons, including C1 neurons, also target hypothalamic nuclei of prime importance 

to cardiovascular control, notably orexin neurons and the PVN31, 32. In brief, the notion that 
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RVLM controls SNA exclusively via its spinal projections to preganglionic neurons has not 

been tested rigorously and seems a priori inconsistent with the available anatomical data.

Many factors (synaptic, intrinsic or paracrine) determine the discharge rate of the PSNs. 

Conventional excitatory and inhibitory synaptic inputs clearly play a role18. The neurons 

antecedent to RVLM PSNs reside within the lower brainstem reticular formation, with fewer 

neurons located in the dorsal vagal complex, dorsolateral pons, midbrain and 

hypothalamus33, 34. The inhibition of RVLM PSNs elicited by arterial baroreceptor 

activation is mediated by GABAergic interneurons located in the caudal VLM (CVLM; 

Figure 1); these interneurons are also strongly respiratory modulated and therefore must 

contribute to the respiratory modulation of RVLM PSNs and, ultimately, SNA8, 13, 35–38. 

The CVLM region, in turn, receives extensive input from the dorsal vagal complex and the 

hypothalamus39.

The activity of C1 and other RVLM PSNs is also partly independent of conventional 

ionotropic synaptic transmission40, 41. This activity relies on intrinsic properties (auto-

depolarization) and local factors such as hypoxia, oxidative stress, circulating hormones and 

paracrine signals released by the surrounding vasculature or glia (ATP, lactate, PGE2, 

NO)42–47.

The RVLM contributes to several forms of neurogenic hypertension48–51. Somewhat higher 

c-Fos expression has been reported in the RVLM of SH rats52. Inhibiting RVLM neurons 

indiscriminately produces a greater BP drop in hypertensive than normotensive control 

strains (e.g. SH vs. Wistar-Kyoto) or in a given strain after it has been subjected to a 

treatment that produces hypertension (salt, overfeeding)48–51. The favored interpretation of 

such results is that the discharge rate of the PSNs is higher in hypertensive animals but there 

other possibilities exist. RVLM unit activity could be unchanged or only marginally 

increased but downstream efferent connections, e.g. SPGNs, could be hyper-responsive to 

their input; RVLM unit activity and SNA could both be virtually unchanged but vascular 

reactivity could be enhanced by sympathetic hyper-innervation and arteriolar 

hypertrophy53, 54 or via sensitized neuroeffector coupling25. Finally, the RVLM could raise 

BP via projections elsewhere than the spinal cord (e.g. the hypothalamus). These alternative 

possibilities have been minimally tested50 and never in conscious animals. What is generally 

underappreciated is that the discharge rate of RVLM PSNs depends to an extreme degree on 

the resting BP and the degree of impairment of the baroreflex, both of which are highly 

affected by the preparation and the type and depth of anesthesia. In halothane-anesthetized 

rats, no difference was found between SH and Wistar-Kyoto except a resetting of the 

baroreflex55. In neonatal brainstem spinal preparations, RVLM bulbospinal (putative PSNs) 

neurons discharged at higher rates (e.g.56) and in the arterially perfused SH rat the only 

difference was an increased respiratory modulation of the PSNs57, 58 which, as discussed 

later, could be related to excess accumulation of metabolically produced CO2 in preparations 

with higher vascular resistance. Finally, preferential C1 cell inhibition produced the same BP 

reduction in control rats as in rats rendered hypertensive by chronic intermittent hypoxia20. 

This result could mean that the C1 neurons are not hyperactive after CIH and that the 

postulated heightened SNA might have another cause59.
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In sum, the RVLM contributes somehow to the elevated BP present in most hypertensive 

animal models. PSN hyperactivity is a plausible explanation in need of further evidence.

Cardiorespiratory coupling and hypertension

This topic has been recently reviewed9 and will only be briefly updated. SNA exhibits 

respiratory-synchronous fluctuations for two reasons. First, cardiopulmonary receptors 

(including baroreceptors) discharge in phase with chest movements and these periodic 

fluctuations are transmitted to the network that generates SNA without obligatory relay 

through the respiratory pattern generator. Secondly the network that generates the SNA, for 

example CVLM neurons and RVLM PSNs receive inputs from the respiratory pattern 

generator8, 13, 57. In this section, we discuss whether these inputs are abnormally strong in 

two animal models of neurogenic hypertension, the SH rat and rats subjected to CIH.

Arterially perfused preparations of SH rats have a higher central respiratory pattern activity 

than control Wistar rats; this is manifested by narrow, non-ramping, phrenic nerve 

discharges and by the presence of late expiratory activity in abdominal nerves58. In this 

model, enhanced respiratory modulation of SNA and RVLM PSNs has been observed in all 

three phases of the respiratory cycle (inspiration, post-inspiration and late expiration) with 

qualitative differences between individual RVLM PSNs, between sympathetic nerves and 

according to the animals’ age57, 58, 60. Similar observations have been made in rats subjected 

to CIH except that SNA appears enhanced predominantly during the inspiratory or late-

expiratory phases, depending on the animals’ sex13, 61. The exaggerated respiratory phasic 

components of SNA have been attributed to enhanced central respiratory-sympathetic 

coupling13, 57. However, the enhanced respiratory fluctuations of SNA may be the normal 

consequence of an increase in central chemoreceptor activity because the abnormal pattern 

of the hypertensive animals is normalized by lowering perfusate PCO2
58, 62. This 

explanation has been rejected by some authors because they could not find any difference in 

the respiratory chemoreflex of the SH rat60. Yet, hypertensive strains have an elevated 

cerebrovascular resistance60, 63. If flow is limited, metabolically produced CO2 will 

inevitably accumulate to a higher level and overstimulate the brain chemoreceptors, 

ultimately enhancing fictive breathing and the respiratory modulation of SNA64–66.

Unlike in a perfused rodent preparation, breathing at rest is the same in intact unanesthetized 

SH and WKY rats67 and neither breathing nor the respiratory fluctuations of SNA differ 

noticeably between normotensive humans and individuals with essential hypertension68. 

One study did report the presence of active expiration in a few awake rats subjected to CIH 

but these rats were equally hypertensive during sleep despite the absence of active 

expiration69. Finally, although daytime SNA is indeed elevated in patients with OSA, resting 

breathing and SNA respiratory fluctuations seem normal70. That breathing is unaffected in 

the awake resting state might appear counterintuitive given the well-documented 

hyperactivity of the carotid bodies (see next section); the powerful countervailing effect of 

the central chemoreceptors on breathing is one explanation71.
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Sensory afferent dysfunction and hypertension

Renal afferents, most of which are unmyelinated, contribute to hypertension and cause a 

widespread increase in SNA in the DOCA-salt and the 2K-1C (2-kidney-1 clip) models72, 73. 

Renal inflammation is the suspected trigger. Unmyelinated afferents typically terminate in 

the dorsal-most laminae of the spinal cord. This region projects in turn to the 

intermediolateral cell column, the NTS, the parabrachial nucleus and the rostral medulla, all 

of which could contribute to raise SNA74.

The arterial baroreflex is critically important to BP. Sinoaortic denervation (SAD) causes BP 

lability. Baroreflex modulation elicited by CNS inputs to the NTS, the CVLM and 

elsewhere, is likely required for BP to rise or fall appropriately during various behaviors 

(Figure 1)75. The arterial baroreflex is down-regulated by carotid body afferents, which 

contributes to various forms of neurogenic hypertension76. Incomplete resetting of the 

baroreceptor afferents may also cause hypertension even though SAD produces very small 

BP increases (<10 mmHg)6, 19, 77, 78. Silencing baroreceptors in mice by deleting both Piezo 

channels from vagal afferents (Phox2bCre+;Piezo1f/fPiezo2f/f) produces hypertension (~15 

mmHg) and a modest but significant increase of BP lability79. This genetic approach has 

limitations (gene knock-out from early developmental stage; gene excision not limited to 

baroreceptor afferents, etc.) but it suggests that a chronic reduction of the activity of 

baroreceptor afferents and, by extension incomplete baroreceptor resetting, may indeed 

cause hypertension.

Why SAD does not cause hypertension remains unexplained. SNA and the activity of the C1 

PSNs are greatly elevated immediately after SAD in rats but return to control within a few 

days19. Accordingly, whatever mechanism restores SNA and BP to control after SAD likely 

resides within or upstream from the RVLM (NTS, CVLM). This adaptation could result 

from some form of intrinsic neuron homeostasis80, enhanced synaptic inhibition driven by 

sensory afferents other than the arterial baroreceptors or an enhancement of the cerebral 

blood flow-mediated regulation of RVLM neuronal activity81. Interestingly, chronic 

baroreceptor stimulation produces a reduction in SNA and BP that persists for weeks with 

very little adaptation6. This remarkable property justifies the use of arterial baroreceptor 

stimulation to chronically reduce BP in individuals with drug-resistant hypertension82.

Carotid body hyperactivity is another trigger of hypertension. These sensory organs are 

activated by arterial hypoxia in a pH-dependent manner; they also respond to hypoglycemia, 

temperature, hormones (angiotensin, leptin) and low blood flow83–86. Carotid body sensory 

afferents innervate the NTS via the glossopharyngeal nerve and respond primarily to ATP 

and acetylcholine, transmitters released by the oxygen sensing Type-I glomus cells. Acutely, 

carotid body stimulation can activate RVLM PSNs via at least four mechanisms whose 

relative importance to neurogenic hypertension is unsettled: direct excitatory inputs from the 

NTS to the RVLM, enhanced cardiorespiratory coupling, arterial baroreflex down-regulation 

and, if the stimulus is intense enough, general arousal87–89. The carotid bodies contribute to 

the elevated BP of SH rats76, leptin-treated mice90, 2K-1C hypertensive rat91, rats subjected 

to a hypercaloric diet92 or rodents exposed to chronic intermittent hypoxia (CIH)93, 94. In 

rodents, the arterial baroreflex is down-regulated when the carotid bodies are activated76. 
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Carotid body denervation in juvenile SH rats also delays the development of 

hypertension76, 95. In every model, the principal evidence is that bilateral carotid body 

excision or denervation attenuates the hypertension.

In several of these models (SH rats, CIH) carotid body afferents develop a heightened 

responsiveness to stimuli (cyanide, hypoxia) and “tonicity”, defined as an increased 

discharge at rest96–98. In the SH rat, this hyperexcitability is attributed to the upregulation of 

channels expressed by carotid body afferents such as ASIC3, TASK1 (Kcnk3) or 

P2X376, 96, 99. In CIH, it is attributed to excessive ROS production by type-I glomus 

cells100. In mice, hyperleptinemia activates the carotid bodies by activating leptin receptors 

that are coupled to Trpm7 channels90. Carotid body hyperplasia may also contribute to the 

outsized influence of these organs on the sympathetic outflow in hypertension85, 101, 102. 

Finally, the carotid bodies receive a dense sympathetic innervation from the superior cervical 

ganglion. CIH hypertension is greatly attenuated by both sympathectomy and angiotensin II 

(AngII) receptor blockade85, 93 suggesting that carotid body hyperactivity could be driven by 

SNA in a feed-forward loop involving AngII, blood flow restriction via catecholamine-

mediated vasoconstriction or a proinflammatory action85.

Unilateral carotid body ablation produced transient BP reductions in a few individuals with 

essential hypertension103. The potentially deleterious effects of bilateral glomectomy (loss 

of hypoxic ventilatory reflex, hypoventilation during sleep, breathing difficulties at altitude 

including in commercial air planes, effects during and after general anesthesia)85 and the 

possibility of surgical mishaps reduce the translational potential of this intervention but a 

pharmacological approach based on the use of P2X3 receptor antagonists is promising96.

The hypothalamic paraventricular nucleus (PVN)

Besides the circulation, the parvocellular portion of the PVN controls food intake, appetitive 

responses to sodium deficiency, gastric, pancreatic and esophageal function, glucose 

counter-regulation, ventilation, the protection of the cornea and various mucosal tissues and 

the regulation of cerebral blood flow and possibly body temperature39, 104, 105. Based on 

their projections, PVN neurons have the potential to elicit cardiovascular stimulation (e.g. 

via their direct projections to the SPGNs, the caudal pressor area, the C1 neurons), or 

depression (via sympathoinhibition and parasympathetic bradycardia)39, 106 or the 

differential regulation of regional SNA107. The PVN undoubtedly regulates SNA and BP but 

we still do not know whether a subset of PVN neurons is dedicated to regulating the 

cardiovascular system or whether every PVN neuron influences the cardiovascular system in 

a unique manner that is best suited to the particular behavior to which this subset of neurons 

contribute (feeding, drinking, arousal, etc.).

The PVN has been implicated in countless hypertension models and in other conditions 

associated with increased SNA such as heart failure108. The following section focuses on the 

SH rat. The contribution of PVN to obesity or salt-dependent hypertension is examined later.

Silencing PVN neurons produces a larger BP drop in the SH rat than in Wistar normotensive 

controls, anesthetized or conscious109, 110 suggesting that PVN neurons could be 
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“hyperactive”. This interpretation is subject to similar caveats as those evoked for the 

RVLM. PVN neuron discharge rate was not directly monitored, PVN is a very small nucleus 

that cannot be selectively manipulated except in mice lines in which Cre recombinase is 

restricted to this nucleus111 or to subsets of its neurons112. The BP reduction evoked by 

inhibiting PVN in a hypertensive animal could be larger, not because these neurons are more 

active, but because of increased vascular reactivity to SNA, increased excitability of the 

downstream circuits engaged by PVN stimulation, increased or decreased expression of 

secondary transmitters by PVN neurons, etc. Finally, assuming that PVN activity is indeed 

elevated, the cause is still speculative e.g. enhanced input from orexin neurons, the VLM, the 

carotid bodies, direct effects of local inflammation, neuroplasticity and perhaps a difference 

in gut microbiota32, 108, 113, 114.

The arcuate nucleus (ARC) and obesity-related hypertension

Obesity and a high-fat diet cause a mild hypertension typically associated with elevated 

muscle SNA in humans and animals115, 116. Hyperleptinemia, hyperinsulinemia, AngII, or 

even hypoxia caused by hypoventilation are suspected triggers.

The ARC is the primary CNS target of leptin and insulin, blood-borne hormones that control 

appetite and weight gain (Figure 3)117. ARC neurons elicit behaviors and sensations 

required for energy homeostasis (appetitive, hedonic, motor), and regulate metabolism and 

BP via the autonomic nervous system117. Global activation of the ARC can raise or lower 

BP via changes in SNA and activates brown adipose tissue (BAT) SNA118, 119. ARC lightly 

innervates the SPGNs and the RVLM120–122 but it probably exerts its effects on SNA 

predominantly via hypothalamic relays (paraventricular, dorsomedial, and ventromedial 

nuclei)121, 123, 124.

Microinjection of leptin into the ARC increases BP and SNA to the kidneys, the lumbar 

chain, and thermogenic BAT117, 125. Deletion of the leptin receptor from the ARC eliminates 

the effect of systemic leptin administration on BP but leptin may also act elsewhere in the 

hypothalamus126. Insulin, on the other hand, probably acts solely in the ARC to increase 

SNA127, 128. Leptin90, contrary to insulin129, can also increase SNA by activating the carotid 

bodies (Figure 3). After binding to receptors in the ARC, leptin and insulin regulate SNA via 

projections from both POMC and AgRP neurons to the PVN (Figure 3). The POMC neurons 

release α–melanocyte-stimulating hormone (α-MSH) that binds to MC4R and AgRP 

neurons release neuropeptide Y (NPY) that binds to Y1R. In short, leptin and insulin cause 

sympathoexcitation by enhancing the excitatory effect of POMC neurons and by reducing 

the inhibitory effect of NPY neurons in the PVN130.

Hypothalamic sites shown to support basal SNA in diet-induced obese animals include the 

ARC via leptin126 and insulin131 stimulation, the PVN via α-MSH and glutamatergic 

stimulation131 and via loss of tonic NPY inhibition132, and the VMH, driven by leptin and 

α-MSH133. Actions of leptin in the DMH may also support increased BP in mice134 but this 

point is controversial131, 133.
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Leptin has received much attention as the link between increased adiposity and 

sympathoexcitation and hypertension, yet obese Zucker rats, lacking a functional leptin 

receptor, also exhibit elevated SNA135. Excessive but leptin-independent activation of 

MC3/4R may underlie the hypertension136 and CNS mediators other than leptin also 

contribute to hypertension in this obesity model. Candidates include AngII in the RVLM51 

and orexin in the PVN137.

ARC neurons can generate complex patterns of autonomic responses, including a rise in BP, 

depending on which cell type is recruited. Activation of ARC POMC neurons by leptin and 

insulin increases BP and SNA to resistance vessels117. This effect is mediated by the release 

of α-MSH in the PVN and perhaps elsewhere (VMH). One may surmise that in lean and 

healthy animals, the BP changes elicited by ARC neurons are transient and adapted to 

periods of food seeking and consumption. Overfeeding may exacerbate and prolong the 

sympathetic stimulation elicited by ARC under the combined effect of hyperleptinemia, 

hyperinsulinemia and local tissue inflammation138.

Orexin and hypertension

The orexin neurons reside in the perifornical and lateral hypothalamic region; they are 

implicated in brain functions as diverse as the control of food intake and energy expenditure, 

breathing and blood pressure, motivation, circadian rhythm of sleep and wake, memory, 

cognitive functions, and the cardiovascular, thermoregulatory and respiratory effects of 

various stresses (including transient hypercapnia)139–143. The orexin neurons are active 

during waking, when postural muscle tone is high, less active during quiet waking in the 

absence of movement, and virtually cease firing during sleep144. These neurons are probably 

further activated by any form of stress including hypercapnia or hypoxia, and they clearly 

activate breathing and BP143, 145, 146.

The orexin system contributes to hypertension in the SH rat, the Schlager BPH/2J mouse 

and the obese Zucker rat114, 145, 147. The principal evidence is that systemic administration 

of a broad-spectrum orexin receptor antagonist, almorexant, reduces BP and plasma 

catecholamines147–149. This evidence is predicated on two assumptions: the selectivity of 

almorexant and the belief that orexin does not have pertinent peripheral effects. Also, the 

brain of the SH rat contains greater numbers of detectably orexin-immunoreactive neurons, 

increased orexin-A mRNA and denser brainstem orexinergic projections than normotensive 

controls149–151. In addition, the RVLM seems hyper-responsive to orexin in this strain150. 

Finally, the orexin system may also contribute to hypertension in the Dahl salt-sensitive 

(Dahl-S) rat by enhancing vasopressin synthesis in the PVN114, 152.

The SH rat and the BPH/2J mice are also models of behavioral hyperactivity and orexin 

neuron firing is highly correlated with locomotor activity144. Orexin neurons regulate 

spontaneous physical activity, non-exercise thermogenesis, the effects of psychological 

stress and their autonomic correlates (hyperpnea and elevated BP)153. The BP of the SH rat 

and the BPH/2J mice is partially normalized by amygdala lesions148, 154, 155 implying that a 

limbic forebrain dysfunction could be driving the orexin system in these rodents. The 

autonomic effects of increased orexinergic neuron activity are probably relayed through 
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several hypothalamic and brainstem nuclei142, 156. Almorexant reduces CSF noradrenaline 

dramatically in rats157, possibly because this drug nullifies the excitatory effect of orexin on 

the locus coeruleus, a major waking-promoting structure158, 159. Orexin also excites the 

dorsal raphe160. By reducing noradrenaline and serotonin release, orexin receptor 

antagonists such as almorexant reduce the ability of rodents to wake up from sleep and likely 

produce sedation161, 162. Accordingly, the sympathoinhibition and hypotension elicited in 

animal models by orexin receptor antagonists could largely result from a reduction in 

locomotor activity and, during rest, from interference with wake-promoting systems and 

circuits (noradrenaline, serotonin)148.

There is no clear indication that the orexin system contributes to hypertension in humans163. 

Orexin-receptor antagonists could conceivably be effective antihypertensive agents in 

humans but their current therapeutic use is as sedative-hypnotic drugs164. From past 

experience, sympatholytic drugs with notable sedative effects (e.g. alpha-2 adrenergic 

receptor agonists) have fared poorly as anti-hypertensive agents.

The OVLT-PVN connection and hypertension

The lamina terminalis (anterior wall of the 3rd ventricle) includes the median preoptic 

nucleus (MnPO) and two circumventricular organs, the subfornical organ (SFO) and the 

organum vasculosum lamina terminalis (OVLT)24, 165, 166. SFO and OVLT detect circulating 

and brain AngII, [Na+], osmolality and cytokines via receptors expressed by principal 

neurons, astrocytes and ependymal cells (Figure 4)167–169. The SFO and OVLT have 

significant reciprocal connections with the MnPO which serves as an integrative hub for 

signaling from multiple subcortical structures that regulate neuroendocrine and autonomic 

function and behavior165. The interoceptive function of the SFO and OVLT, like that of the 

arcuate nucleus170, is regulated by synaptic inputs from regions implicated in drinking and 

food consumption, thermoregulation, circadian and diurnal patterns, and cardiovascular 

reflexes166, 171. Sodium sensing by the OVLT and SFO is attributed to several mechanisms. 

Na(x), a sodium channel encoded by the Scn7a gene and expressed by astrocytes and 

ependymal cells may be the primary sensing mechanism (Figure 4)167. Other candidates 

include an N-terminal variant of the transient receptor potential cation channel subfamily V 

member 1 (TRPV1) and the epithelial sodium channel (ENaC)7.

Components of the lamina terminalis (SFO or OVLT or MnPO) contribute to BP elevation in 

several hypertension models: DOCA-salt172, AngII infusion168, chronic intermittent 

hypoxia59 and high-salt diet7, 167. The sympathetic component of the hypertension probably 

occurs via an MnPO-PVN connection and PVN projections to SPGNs (direct and indirect 

via the RVLM; Figure 4)7, 39, 59, 167, 173.

Other brain regions potentially involved in hypertension

SNA is regulated at some level by the entire brain174. Important regions that are little 

explored from a hypertension perspective include the periaqueductal gray matter, the dorsal 

colliculi and the cerebellum, dorsomedial hypothalamic nucleus (DMH) and the midline 

medulla175–178. The DMH relays the cardiovascular response to stress179 and could 
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therefore play a role in stress-induced hypertension. Stimulation of the ventral 

periaqueductal gray matter may relieve hypertension associated with chronic pain in 

humans180. The midline medulla oblongata contains the majority of the PSNs identified 

using the retrograde transport of pseudorabies virus30, 181 and regulates cutaneous flow, the 

cardiac output and the sympathetic innervation of the brown adipose fat in the context of 

thermoregulation and body weight homeostasis182, 183.

Hypertension: role of brainstem hypoperfusion and hypoxia

Recent work has reinvigorated the theory that hypertension could be an adaptive mechanism 

to maintain cerebral blood flow when cerebrovascular resistance increases81, 184–186. A 

relatively moderate (7–20 mmHg) rise in cerebral pressure increases BP and SNA in 

unanesthetized sheep and humans186, 187. In anesthetized rats, the BP rise requires the 

exocytotic release of ATP by RVLM astrocytes81 and ATP may directly activate the PSNs 

(Figure 5)188. This enticing theory is predicated on the assumption that there is no off-target 

expression of dnSNARE (in neurons, vessels, etc.) when adeno-associated vectors 

engineered with an artificial GFAP promoter are used to transduce astrocytes81. Also, 

whether this glial mechanism can cause hypertension or merely mediates the transient 

effects of severe brainstem hypoxia or brain hypoperfusion on BP merits additional scrutiny. 

Finally, BP also rises when blood flow is reduced through the NTS only189, therefore 

astrocytes may contribute to SNA regulation there too.

The physiological variable detected by astrocytes when cerebral blood flow is limited could 

be hypoxia, acidification, mechanical stretch of astrocytic end-feet or chemical signals from 

the vasculature43, 81. In the absence of baroreceptors, this CBF-dependent pathway could 

conceivably mediate BP homeostasis190.

This astrocyte-mediated homeostatic mechanism evidently does not prevent the substantial 

hypotension elicited by chronic baroreceptor activation (>25 mmHg; 3 weeks)6. Maybe, 

baroreceptor activation elicits a countervailing cerebrovascular response that maintains 

brainstem blood flow despite the hypotension. Alternately, the capacity of astrocytes to 

depolarize the RVLM PSNs may be limited and may be overridden by the powerful GABA-

mediated hyperpolarization elicited by baroreceptor activation (Figure 5). Also unknown is 

whether excessive flow through the medulla produces the opposite effect, namely 

sympathoinhibition, and whether this could explain the return to normotension following 

baroreceptor denervation19.

Conclusions

Myriad brain regions and sensory afferents have now been implicated in various forms of 

neurogenic hypertension. Progress is constrained by the difficulty to record SNA or brain 

neurons in conscious animals for long periods and to compare the data between animals. 

Progress is also limited by our imperfect knowledge of the network that controls SNA and 

BP. Powerful methods to interrogate the CNS connectome have been recently developed191. 

They should be more intensively applied to the neural control of BP.
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Neurogenic hypertension is typically, and plausibly, attributed to an increase in the activity 

of RVLM PSNs. However, the supportive evidence has largely consisted of showing that 

silencing the RVLM (with drugs or vector-delivered actuators), modifying the RVLM redox 

state or manipulating the RVLM glia produces a larger BP drop in hypertensive rodents. 

What is actually being measured by these manipulations is the “neurogenic pressor 

potential” of this brain region, which depends not only on the discharge rate of RVLM 

neurons but also on a long series of integrative processes that occur between these neurons 

and vascular smooth muscle and cardiac contraction192. The primacy of the RVLM in BP 

control is a notion that derives primarily from experiments conducted under anesthesia when 

the PSNs are disinhibited and sympathetic tone is extremely elevated. SPGNs receive direct 

input from many sources besides the RVLM e.g. spinal cord, hypothalamus and several 

brainstem regions193. Most likely, every type of PSN contributes to the differential 

regulation of regional SNA, albeit in distinct physiological contexts. Brainstem regions such 

as the NTS and CVLM are clearly as important as the RVLM to BP control and deserve far 

more attention in the context of hypertension.

Lesions that attenuate hypertension typically enhance the baroreflex (carotid bodies or PVN 

in SH rats, renal nerves in the 2K-1C model)76, 109, 194 suggesting that baroreflex down-

regulation could be a major contributing factor to hypertension. This calls for further 

investigations of the role of the CVLM and the NTS in hypertension.

The SH rats have been the subjects of most studies. Countless factors are described as 

playing a “critical” role in the elevated BP of the SH rat (orexin: −33mmHg157, carotid 

bodies: −17 mmHg95, PVN: −26 mmHg109 or −61 mmHg110; intestinal dysbiosis, −38 

mmHg113, amygdala −15 mmHg155, RVLM: −40 mmHg11). This is paradoxical. The 

homeostasis principle would predict that large and, especially, persistent hypotension should 

require interfering with multiple pathways simultaneously. Perhaps, at rest, the orexin 

system, PVN, carotid bodies, amygdala etc. contribute to a roughly comparable extent to the 

excitatory drive of SPGNs and most of the input summation occurs below action potential 

threshold in these neurons. If so, the removal of any one of the various inputs could 

dramatically reduce their firing rate, giving the impression that each is “essential”.

Carotid body hyperactivity contributes to several forms of hypertension but is generally not 

the predominant factor except when the hypertension results from chronic intermittent 

hypoxia94. This type of hypertension is also eliminated by adrenal demedullation, 

sympathetic blockade, AT1 receptor blockade and lesions of the AV3V region59, 93. It is 

difficult to conceptualize why each of these manipulations would eliminate rather than 

merely attenuate the effect of carotid body hyperactivity.

SNA elevation and neurogenic hypertension can be caused by excessive levels of circulating 

hormones (leptin, insulin, AngII). Leptin raises blood vessel SNA by activating the carotid 

bodies and subsets of ARC neurons but other sites of action may exist195. AngII works in 

the lamina terminalis and probably throughout the brainstem and hypothalamus via its 

proinflammatory activity and by reducing the blood brain barrier. Its neurogenic action 

probably also includes the facilitation of noradrenaline release by sympathetic 
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postganglionic neurons. Sodium works in part via astrocytes and ependymal cells located in 

the circumventricular organs (OVLT, SFO).

One would also like to know which of the many detected abnormalities have a common 

origin. Perhaps, all organs with a high metabolic demand (brain, kidneys and the carotid 

bodies), regulate their blood flow at the expense of systemic BP by eliciting 

sympathoexcitatory reflexes and the root cause of these neural reflexes is a cerebral or 

peripheral vascular abnormality. Is hypoxia, oxidative stress or inflammation the trigger in 

both carotid bodies and brainstem? Are the astrocytes located in the RVLM fundamentally 

different from those located elsewhere in the brainstem or from type II glomus cells? Finally, 

the SH rat also highlights the importance of environmental factors (gut microbiome) in 

hypertension even in this most genetic of models.
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Abbreviations:

A1, A2, A5 pontomedullary noradrenergic nuclei

AgRP agouti-related peptide

AngII angiotensin II

ARC arcuate nucleus

AV3V region see lamina terminalis

BP arterial blood pressure

C1 RVLM adrenergic/glutamatergic neuron

CBF cerebral blood flow

CIH chronic intermittent hypoxia

CSF cerebrospinal fluid

CVLM caudal ventrolateral medulla

DMH dorsomedial hypothalamic nucleus

DOCA di-hydroxy corticosterone acetate

ECF extracellular fluid

Guyenet et al. Page 12

Hypertension. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2K-1C two-kidney one clip

LC locus coeruleus

MCR melanocortin receptor

MnPO median preoptic nucleus

αMSH melanocyte-stimulating hormone

Na(x) sodium channel encoded by Scn7a

NPY neuropeptide Y

NTS solitary tract nucleus

Orx orexin

OSA obstructive sleep apnea

OVLT organum vasculosum lamina terminalis

PAG periaqueductal gray matter

PBL lateral parabrachial nucleus

POMC proopiomelanocortin

PSN presympathetic neuron

PVN paraventricular nucleus of hypothalamus

ROS radical oxygen species

RPa raphe pallidus

RVLM rostral ventrolateral medulla

SAD sinoaortic denervation

SFO subfornical organ

SGN sympathetic (post) ganglionic neuron

SH rat spontaneously hypertensive rat

SNA sympathetic nerve activity

SNS sympathetic nervous system

SPGN sympathetic pre-ganglionic neuron

VMH ventromedial hypothalamic nucleus
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Figure 1: 
Differential control of regional SNA with or without neurogenic hypertension, a hypothesis. 

Organ-specific SNA regulation operates via selective recruitment of RVLM presympathetic 

neurons and/or preganglionic neurons by inputs from a variety of CNS nodes (PVN, midline 

medulla, DMH, ARC, etc.; only one is represented). A) differential recruitment of regional 

SNA produces very little BP change if the baroreflex (NTS + CVLM; box) is unaffected. B) 

differential recruitment of regional SNA is associated with a rise in BP (potentially causing 

hypertension) if the baroreflex (NTS + CVLM; box) is simultaneously down-regulated.
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Figure 2: 
The C1 neurons innervate many nuclei implicated in circulatory control besides the 

sympathetic preganglionic neurons (see list of abbreviations). The projections of the rostral 

C1 cells are shown on the left; the projections of the caudal C1 neurons are shown on the 

right. Note that that both populations target many of the same nuclei.
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Figure 3: 
leptin and insulin raise BP by activating POMC neurons and inhibiting AgRP neurons in the 

arcuate nucleus. POMC neurons activate PVN neurons by releasing α-MSH. AgRP neurons 

inhibit PVN by releasing NPY. Leptin also raises BP by stimulating the carotid bodies. 

Dashed lines, minor projections of POMC neurons plausibly involved in SNS control.
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Figure 4: 
Selected nuclei and pathways that contribute to salt or angiotensin-induced hypertension. 

Inset: mechanism of action of Na in the OVLT (after167). Sodium present in the CSF and 

ECF binds to and opens Na(x) channels, elicits the release of protons from astrocytes and 

ependymal cells. [H+] activates OVLT neurons via acid-sensing ion channel-1a (ASIC). 

Other types of sodium sensing mechanisms have also been proposed7 . Other abbrs: see list.
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Figure 5: 
BP regulation via arterial baroreceptors and brainstem perfusion: a hypothesis. A reduction 

in cerebral blood flow within the RVLM (box) is detected by astrocytes via hypoxia, 

acidification or end-feet mechanosensitivity elicited by changes in vascular diameter, the 

latter symbolized by double arrows. The flow-mediated reflex (slow pathway) and the 

conventional baroreflex (fast pathway, at right of diagram) converge on RVLM PSNs.
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