
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11307  | https://doi.org/10.1038/s41598-020-67529-x

www.nature.com/scientificreports

Object detection based 
on an adaptive attention 
mechanism
Wei Li  , Kai Liu*, Lizhe Zhang   & Fei Cheng

Object detection is an important component of computer vision. Most of the recent successful object 
detection methods are based on convolutional neural networks (CNNs). To improve the performance 
of these networks, researchers have designed many different architectures. They found that the CNN 
performance benefits from carefully increasing the depth and width of their structures with respect to 
the spatial dimension. Some researchers have exploited the cardinality dimension. Others have found 
that skip and dense connections were also of benefit to performance. Recently, attention mechanisms 
on the channel dimension have gained popularity with researchers. Global average pooling is used in 
SENet to generate the input feature vector of the channel-wise attention unit. In this work, we argue 
that channel-wise attention can benefit from both global average pooling and global max pooling. We 
designed three novel attention units, namely, an adaptive channel-wise attention unit, an adaptive 
spatial-wise attention unit and an adaptive domain attention unit, to improve the performance of a 
CNN. Instead of concatenating the output of the two attention vectors generated by the two channel-
wise attention sub-units, we weight the two attention vectors based on the output data of the two 
channel-wise attention sub-units. We integrated the proposed mechanism with the YOLOv3 and 
MobileNetv2 framework and tested the proposed network on the KITTI and Pascal VOC datasets. The 
experimental results show that YOLOv3 with the proposed attention mechanism outperforms the 
original YOLOv3 by mAP values of 2.9 and 1.2% on the KITTI and Pascal VOC datasets, respectively. 
MobileNetv2 with the proposed attention mechanism outperforms the original MobileNetv2 by a mAP 
value of 1.7% on the Pascal VOC dataset.

Object detection is a basic task in computer vision. Many other computer vision tasks, such as object tracking 
and image segmentation, can benefit from fast and accurate object detection results. Over the past few decades, 
many object detection methods have been proposed. Early methods mainly deployed handcrafted features and 
shallow machine learning models. These methods were vulnerable to overfitting and often included a large 
amount of calculations. Recently, convolutional neural networks have been used to learn feature representations 
from images automatically and are the dominant approach for object detection.

Convolutional neural networks (CNNs) progressively extract semantic information from input images 
through convolution layers and discards pixels on the feature maps that are less informative, forcing the atten-
tion of the CNNs to focus on the more informative pixels within the spatial dimension.

Learning from previous works, the performance of CNNs can be boosted through strengthening the rep-
resentative ability of different dimensions. VGG1 and ResNet2 have more layers than previous CNNs such as 
AlexNet3. They encode higher-dimensional features so that the classifier can differentiate positive and negative 
samples more easily. DenseNet4 uses dense connections to integrate information from different layers which 
also boosts the performance. ResNeXt5 and Xception6 also lift the performance effectively by expanding the 
cardinality dimension. Some works7–9 exploit an attention mechanism on the channel dimension or/and spatial 
dimension to improve the performance of CNNs.

Apart from the design schemes of CNNs mentioned above, we aim to improve their representative ability by 
strengthening other dimensions, namely, channel-wise attention, spatial-wise attention and domain attention in 
a fully data-driven manner. Channel-wise attention performs feature recalibration with respect to the channel 
dimension. On the one hand, we obtain channel-wise attention tensors from both global max pooling and global 
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average pooling the input feature maps. On the other hand, we obtain spatial-wise attention tensors from fully 
convolutional layers. Because the proposed attention units are fully data drived, we call them adaptive attention 
units. Through adaptive attention, a CNN learns to use global and local information to selectively emphasize 
informative features and suppress less useful ones.

Previous works10,11 have proposed ’adaptive attention’. Lu et al.10 proposed a novel adaptive attention model 
(AAM) with a visual sentinel for image captioning. Recent neural models for image captioning usually employ an 
encoder–decoder framework with an attention mechanism. In such frameworks, a CNN-based image encoder is 
used to extract feature vectors for an input image, and an RNN-based caption decoder is used to generate caption 
words recurrently. In contrast to the attention based encoder–decoder framework that relies on only a visual 
signal or the a language model, the AAM can automatically decide when to look at an image (visual signal) and 
when to rely on the language model. Based on the AAM, their methods significantly outperform other state-of-
the-art approaches on COCO and Flickr30k. Lun Huang11 etc. proposed an attention model, namely, adaptive 
attention time (AAT), to automatically align the source and the target for image captioning. As opposed to the 
attention mechanism that assumes the one-to-one or one-to-fixed-number of steps to map from source image 
regions and target caption words, which is never possible, AAT allows the framework to learn how many attention 
steps to take to output a caption word at each decoding step (one-to-many mapping). Experiments also show 
that the proposed AAT outperforms previously published image captioning models. In the current paper, we 
proposed an adaptive domain attention unit. It automatically weights the two kinds of channel-wise attentions 
generated by the two-branch structure without predefined parameters. Because the domain attention generated 
by the domain attention unit and the output channel attention only depend on the features of the input data, we 
call the output of the proposed module the adaptive channel-wise attention.

YOLOv312 is a kind of CNN with a high inference speed and detection accuracy performance that uses Dark-
Net53 as a backbone network. It contains many 1× 1 kernels to extract important information and strengthen 
the nonlinear representation ability. It also utilizes residual connections and multi-scale detectors that greatly 
improve its performance. MobileNetv213 is built upon depth inverted residual modules(IRMs). Each IRM con-
tains depth-separable convolution, point-wise convolution, and an inverted residual connection. Detection mod-
els built upon MobileNetv2 can run extremely fast. In this work, we test the proposed mechanisms on YOLOv3 
and MobileNetv2.

The contributions of our work are as follows:
1. We designed three novel adaptive attention units: an adaptive channel-wise attention unit, an adaptive 

spatial-wise attention unit and an adaptive domain attention unit.
2. The proposed adaptive attention mechanism is fully data driven, lightweight and easy to apply.
3. We applied an adaptive attention mechanism to YOLOv3 and MobileNetv2. Experiments are performed on 

the KITTI and Pascal VOC datasets that show that the proposed model achieves a better performance compared 
to the original YOLOv3 and MobileNetv2 implementation.

Related works
Many CNNs are applied to object detection tasks. These CNNs can be roughly divided into two-stage methods 
and single-stage methods. Two-stage methods consist of a stage for region proposal generation and another stage 
for positive sample classification and localization. Single-stage methods treat the background as the (c + 1) th class 
(c is the number of positive classes) and resolve the object detection task as a regression problem. Single-stage 
methods outperform two-stage methods in terms of inference speed by a large margin.

Ross et al. proposed the R-CNN14. The R-CNN divides the object detection task into two stages. In the first 
stage, a selective search method is used to generate thousands of region proposals. In the second stage, the 
classification task and bounding box regression task on these region proposals are finished simultaneously. The 
R-CNN is the first work that uses a CNN to solve the object detection task. Despite the pioneering aspects of 
R-CNNs, they are time consuming because they process each region proposal independently. The Fast R-CNN15 
remedies this by shared convolution computing. It processes each input image as a whole and obtains the feature 
maps of each input. ROI pooling is used to obtain the same sized feature maps of each proposal so that they can 
fit into subsequent fully connected layers. Running Fast R-CNN is 9 times and 213 times faster than R-CNN 
during training and testing stages, respectively. Faster R-CNN16 improves the the performance of Fast R-CNN by 
replacing the selective search module with a region proposal network (RPN). The RPN generates anchor boxes 
of different sizes and aspect ratios. They provide the initial position and scale of the predicted bounding boxes. 
The RPN outputs the regressed anchor boxes and a tag indicating if it is a positive sample. These outputs are fed 
into subsequent networks that act as a multi-class classifier and a bounding box regressor. Faster R-CNN can 
be trained end-to-end and has a better performance than its predecessors. Many two-stage methods have been 
proposed after Faster R-CNN, such as MS-CNN17, cascading R-CNN18, and so on. Many of them are based on 
the aforementioned models.

SSD19, YOLOv120 and their derived versions are the representative works of single-stage detectors. SSD is a 
fully convolutional network. VGG16 is applied as its backbone network for feature extraction, and it deploys 
multi-scale features for object detection. It can be trained end-to-end and had a great impact on the succeeding 
works. YOLOv1 divides the input images into 7× 7 grades. If the centre of an object falls into one of the grades, 
that grade is responsible for the detection of the object. This means that if the centre of two objects falls into 
the same grade, only one object can be correctly detected. Furthermore, the last two layers of YOLOv1 are fully 
connected layers. As a result, the inputs of YOLOv1 should be resized to the same scale, making YOLOv1 less 
flexible. YOLOv221 remedies these defects through constructing a fully convolutional network and introducing 
the anchor mechanism. YOLOv2 also exploit the K-means algorithm to select initial sizes and aspect ratios of 
anchor boxes. While it is still fast, the detection precision and performance on small object detection remain to 
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be improved. YOLOv3 integrated many advantageous design concepts of the CNN, such as residual connections, 
1× 1 convolution kernels, and detectors with multi-scale features which balance the performance between pre-
cision and speed. Many single-stage methods have been proposed after SSD, YOLO and their derived versions, 
such as DSSD, RSSD, Tiny YOLO with improved performance in accuracy or inference speed. MobileNets13,22,23 
run extremely fast with a slight accuracy decrease. Apart from these good design concepts, we improve YOLOv3 
through a novel fully data-driven attention mechanism.

Jie et al. proposed squeeze-and-excitation module (SE module)7. It is a light plug-in module that allows 
the network to perform feature recalibration through which the network learns to use global information to 
selectively emphasize informative features and suppress less useful ones. In their work, global information is 
obtained by a global average pooling operation. Sanghyun et al. proposed the convolutional block attention 
module (CBAM)8. They gather global information through both global average pooling and global max pooling 
because global max pooling gathers finer channel-wise attention. Moreover, they also devised a spatial attention 
module through an inter-spatial relationship of features. Different from channel-wise attention that focuses on 
‘what’ to attend to, the spatial attention focuses on ‘where’ as an informative part. CBAM gathers channel-wise 
attention and spatial-wise attention in a sequential manner. Jongchan et al. also exploited both channel and spa-
tial attention and proposed the bottleneck attention module (BAM)9. In their work, BAM gathers channel-wise 
attention and spatial-wise attention in a parallel manner.

Despite the good design concepts of10,11, they weight global average pooling and global max pooling equally. 
Given an input feature map, global average pooling tends to identify discriminative regions of an object, while 
small object can be more beneficial from global max pooling that identifies global max values. Given a set of 
input images, the distribution of objects size may not be uniform; thus, equally weighting the global average 
pooling and global max pooling may have a negative impact on the detection performance of objects, both large 
and small. Based on the above analysis, three novel and fully data-driven attention units, namely, a channel-wise 
attention unit, a domain attention unit, and a space-wise attention unit, are proposed. The proposed domain 
attention unit adaptively weights the two attention tensors obtained by the adaptive channel-wise attention units. 
For adaptive space-wise attention, because lower layers of a network contain abundant positional information 
but less semantic information, and higher layers contain abundant semantic information but less positional 
information, we only apply spatial attention to several lower layers of a detection network and apply channel 
attention to several higher layers of a detection network. The key novelty of our methods lies in the domain 
attention unit. Notably, our domain attention is different from other models with the same name. Our domain 
attention inherits the merits of both global average pooling and global max pooling. The inputs of our domain 
attention unit are the outputs of the two sibling squeeze-and-excitation modules. The domain attention in24 is 
used for domain adaptation and consists of a fully connected layer and a nonlinear layer. Its input is the feature 
vector produced by a global average pooling layer. The feature vector is also fed into the SE unit in their work.

Method description
In this section, first, the proposed network structure is introduced. Then, the adaptive channel-wise attention, 
adaptive domain attention and spatial-wise attention are described. As shown in Fig. 1, the above modules are 
integrated into YOLOv3. Spatial attention modules reside after the first ‘Res’ block in ‘ARes*N’ blocks as these 
lower layers contain abundant positional information but less semantic information. Channel attention units 
and domain attention units separately reside after the remaining seven ‘Res’ blocks. Channel attention units and 
domain attention units also reside in each ‘ACBL’ module after each ‘CBL’ module as these higher layers contain 
more semantic information but less positional information. Note that domain attention units reside in channel 
attention units. The detailed structure of the adaptive channel attention units is shown in Fig. 2.

Adaptive channel‑wise attention.  We obtain adaptive channel-wise attention by the squeeze-and-exci-
tation structure and a domain attention unit that acts as a calibrator of the outputs of the adaptive channel-wise 
attention units. Different from SENet, which only considered global average pooling when designing SEBlock, 
we consider that both global average pooling and global max pooling are useful. The basic intuition behind this 
is that given an input feature map, global average pooling tends to identify the object extent. On the other hand, 
the global max point identified by global max pooling indicates that the position contains the feature of an object 
that can be used for the detection task. Global max pooling is more useful when the object is small and when 
the scale of feature map shrinks considerably with respect to the spatial dimension during forward propagation.

Although several works have used both global average pooling and global max pooling for channel-wise atten-
tion, they weight the two kinds of attentions equally. In some cases, that is sub-optimal because the two kinds of 
attentions emphasize different aspects of a feature map. For example, the KITTI dataset contains many objects 
of various sizes. Weighting the two kinds of attentions equally may have a negative impact on other objects.

The key novelty of our methods lies in the domain attention unit. For designing the domain attention unit, 
several preconditions need to be met. 1. It should be fully data driven. Its intermediate values and output can 
adapt to the input data. 2. It is sufficiently powerful to weight raw attention vectors. 3. It should be as light as 
possible to minimize the computational overhead. As a result, it is natural to consider feature-based attention 
mechanisms for weighting the raw attention tensors. Furthermore, the SE module that accounts for the channel-
wise attention is constructed by fully connected layers with only one hidden layer. Other works have also proven 
its effectiveness and efficiency10,11. Hence, we use a simple method to construct the domain attention module 
that consists of three fully connected layers.

The structure of domain attention module is shown in Fig. 3. It outputs a domain-sensitive weight tensor 
(domain attention) that is used to recalibrate the raw channel-wise attention obtained from the two SE units. 
The domain attention vector is generated by the following formula:
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Figure 1.   Flowchart of YOLOv3 architecture with adaptive attention.
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where Xraw is the input of the domain attention unit. FCn s are fully connected layers, Relu is a nonlinear acti-
vation function. Softmax is the normalized exponential function that maps the output of FC2 to a probability 
distribution.

As shown in Fig. 2, adaptive channel-wise attention units use feature maps in the CNN architecture as their 
inputs, and their outputs are channel-wise attention tensors. We use the squeeze-and-excitation structure and 
both global max pooling and global average pooling to generate two kinds of attention tensors. They are concat-
enated within the channel dimension for subsequent usage. We call the concatenated tensor the ‘raw attention 
tensor’. Formally, suppose the input of the adaptive channel-wise attention module is X; then, the raw attention 
tensor is generated by the following formula:

(2)XDA = softmax(FC2(Relu(FC1(Xraw)))),

Figure 2.   Adaptive channel-wise attention units. r and s are compression ratios.

Figure 3.   Flowchart of the domain attention unit. s is the compression ratio.
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where the SEmax and SEavg are used to generate the channel-wise attention tensor based on global max pooling 
and global average pooling, respectively. They are concatenated to generate raw attention tensors of dimension 
2c ∗ 1.

Then, we use the domain attention and raw attention tensor to generate the adaptive channel-wise attention:

where Xweighted is the adaptive channel attention. Scale is matrix multiplication operation used to weight the raw 
attention tensor Xraw by the domain attention XDA.

Spatial attention.  Different layers of the CNN contain spatial features of objects of different dimensions. 
Low layers of the CNN mainly contain edge and corner features. As the layers deepen, they contain higher-
dimensional features of objects, such as features of objects parts or the whole objects. As a result, it is important 
to focus the computational resources on the most informative positions with respect to spatial dimensions. 
Generally, channel-wise attention resolves what to focus on; spatial attention resolves where to focus on. We 
designed a spatial-wise attention module to improve the performance of YOLOv3. The proposed spatial atten-
tion module is also lightweight and fully data driven.

Different from9, which generated spatial-wise attention though both global max pooling and global average 
pooling across the channel dimension, we generate spatial-wise attention through fully convolutional layers in 
a learning manner. The proposed spatial attention module is shown in Fig. 4. It produces a spatial attention map 
to recalibrate the features in different spatial locations. Because the spatial attention unit is composed of a 1× 1 
convolution layer and a 3× 3 convolution layer, the relative position and receptive field of pixels on the spatial 
attention map are the same as the output of the backbone layers. As a result, the pixels on spatial attention map 
only weight the pixels of the same locations of the output feature maps. The 1× 1 convolution layers are used to 
squeeze the feature map across the channel dimension. It also prevents the direct influence of backpropagation 
on the backbone network. The 3× 3 convolution layers are used to excite a local area response to amplify their 
efficiency. The spatial-wise attention is generated by the following formula:

where f1 and f3 are the 1× 1 and 3× 3 convolution layers with nonlinear functions, respectively.

Integrating the attention modules with YOLOv3.  YOLOv3 integrated many advantageous design 
concepts of the CNN such as residual connections, 1× 1 convolution kernels, and detectors with multi-scale 
features. We improve the performance of YOLOv3 by integrating YOLOv3 with the adaptive channel-wise atten-
tion, domain attention and spatial-wise attention proposed in the previous two subsections.

The proposed attention modules are easily implemented in a plug-in manner. We only apply spatial atten-
tion to lower layers of several modules of YOLOv3 as the spatial dimension of higher layers is small; thus, they 
contain little positional information. On the other hand, we only apply channel attention to higher layers as the 
channel dimension of lower layers is also small; thus, they contain little semantic information. Furthermore, 
modern CNN-based detectors rely largely on transport learning. We do not modify the first few layers so that 

(1)Xraw = Concat(SEmax(X)), SEavg (X)),

(3)Xweighted = Scale(Xraw ,XDA),

(4)Xsp = f3(f1(X))

Figure 4.   Flowchart of the spatial attention unit. t is the compression ratio.
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we can make use of pre-trained DarkNet53 model to initialize the first few layers of the proposed network dur-
ing the training stage.

According to the above analysis, we designed a novel network based on the YOLOv3 model. It is shown 
in Fig. 1. As shown in the figure, adaptive channel-wise attention modules reside in both ‘ACBL’ modules and 
‘ARes*N’ blocks. On the other hand, spatial-wise attention modules reside only in ‘ARes*N’ blocks. The detailed 
intro-block connections of ‘ACBL’ and ‘ARes*N’ are shown in Fig.  5. In the next section, we will introduce how 
to train and evaluate the proposed model in detail.

Experimental results and analysis
The performance of the proposed improved YOLOv3 model was evaluated on the KITTI dataset25 and PASCAL 
VOC 2007 dataset26. We carried out experiments with single NVIDIA 1080 Ti GPU with 8 GB of main memory 
and a Core i7 processor (3.2 GHz) on the Ubuntu 16.04 operating system. The code was implemented in Ten-
sorFlow and compiled with cuDNN. The compression ratios r, s, and t, respectively, in Figs. 2, 3 and  4 are set to 
16, 16 and 32, in both experiments on the KITTI and Pascal VOC datasets.

Figure 5.   Detailed intro-block connections of ‘ACBL’ and ‘ARes*N’.
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Experiment on KITTI dataset.  The KITTI object detection dataset contains 7381 training images with 
ground truth labels. It contains 3 categories of objects: vehicles, people and cyclists. The objects to be detected 
are of various sizes and contain many small samples which make it a challenging task. The labels of the KITTI 
testing set are not publicly available, so we split the training images in half into a training set and a validation set. 
In all the experiments, the training dataset was used for training, and the validation dataset was used for testing. 
For a fair comparison, we used the same training set and validation set for all experiments.

For the experiment on the KITTI dataset, the training is divided into two stages. In the first stage, the back-
bone network is frozen, and the weights of the network are only updated after the conv 52 layer. In the second 
stage, whole network is updated. The Adam optimizer with a default learning rate of 0.001 at the beginning is 
used and is re-initialised after the first stage is finished. Both the first stage and the second stage are trained for 
40 epochs. We scale the input image size into various sizes, such as 320× 320 and 352× 352 , in the training 
stage. In the evaluation stage, the input image size is scaled into 544 × 544 to achieve a better performance. We 
randomly split the 7381 training images in half into a training set and a validation set. The mean average preci-
sion (mAP) results are evaluated on the validation set. The batch size is 6. The weights of backbone layers of the 
model are initialized by the DarkNet53 model pre-trained on ImageNet. We stop training after the 200th epoch. 
Data augmentation techniques such as random cropping and flipping are adopted to avoid overfitting. The model 
was pre-trained on the COCO dataset27 and fine-tuned on the Pascal VOC dataset.

The performances of the models are evaluated based on mAP, inference time, model size and Gflops. We re-
evaluated YOLOv3 and YOLOv3 with SE units for a fair comparison. Other studies are trained using the default 
settings in the official code of each algorithm. We compared the performance of our proposed model with the 
original YOLOv3, YOLOv3 with SE modules, and our proposed model. To test the effect of each part, we con-
duct a control experiment. First, we test the original YOLOv3 model on the KITTI dataset. Second, we use only 
the global average pooling scheme or only the global average pooling strategy to test the effects of each branch. 
Third, we test the two-branch structure. We do not use adaptive domain attention in this experiment. This is a 
special case of adaptive domain attention that equivalently weights the output of each branch of the two-branch 
structure. Fourth, we test YOLOv3 with the proposed adaptive channel-wise attention module. Last, we test 
YOLOv3 with both the adaptive channel-wise attention module and adaptive spatial-wise attention module. 
The performance for each configuration is shown in Table 1.

As shown in the table, both branch structures and the adaptive channel-wise attention have positive effects on 
the original YOLOv3 model, and the proposed adaptive attention module achieves better performance than the 
other methods in the table. The proposed model improves the mAP value by 2.9%, while YOLOv3 with the SE 
unit improves the mAP value by 1.4%. The proposed model outperforms the other ones with a small increase in 
inference time. Besides, we compare the number of trainable parameters and GFLOPs of the models in Table 2. 
GFLOPs for each model are measured with input images of size 544× 544 . From the table, the proposed model 
achieves better performance with a small model size and computational complexity increase. We believe the 
performance improvement is mainly due to the innovative architecture.

We compare the proposed model with recent works (Gaussian YOLOv328, RefineDet29, RFBNet30) and a 
two-stage detection model (MS-CNN)31 in Table 2.

Table 1.   Comparison of the proposed model with recent works on KITTI dataset.

Method Car Pedestrian Cyclist mAP Inference time (ms) Model size (M) Gflops

YOLOv3 (original) 91.1 74.6 79.0 81.6 47 246.3 112.6

YOLOv3+SE (GMP) 91.4 75.1 81.6 82.7 49 251.6 115.3

YOLOv3+SE (GAP) 91.2 75.5 82.2 83.0 49 251.6 115.3

YOLOv3+SE (GAP and GMP) 91.7 75.6 82.8 83.4 50 257.0 117.2

YOLOv3+ACA (ours) 92.3 77.0 83.4 84.2 50 262.3 119.9

YOLOv3+ACA+ASA (ours) 92.6 77.4 83.6 84.5 51 262.5 120.0

Table 2.   Evaluation results on KITTI dataset.

Method Car Pedestrian Cyclist mAP Inference time (ms)

Gaussian YOLOv328 87.3 79.9 83.6 83.6 47

RefineDet29 92.7 78.5 83.6 81.9 72

SSD19 85.1 48.1 50.7 61.3 69

RFBNet30 86.4 61.6 71.7 73.4 51

SqueezeDet+32 85.5 73.7 82.0 80.4 31

MS-CNN31 87.4 80.4 86.3 84.7 246

YOLOv3+adaptive attention (ours) 91.2 75.0 81.3 84.5 51
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As shown in the table, the proposed model achieves better performance than most of the other models in 
the table. MS-CNN achieves a similar performance to the proposed model, but it runs much slower than the 
proposed model.

Experiment on the Pascal VOC dataset.  The Pascal VOC dataset contains three computer vision tasks: 
classification, detection and segmentation. For the object detection task, it has 20 different classes to be detected 
such as people, birds, and cats. The VOC 07+12 train and val sets are employed for training, and the VOC 07 test 
set is employed for evaluation. In this experiment, the models were pre-trained on the COCO dataset and fine-
tuned on the Pascal VOC dataset, which needs only a few epochs to make the training converge.

The training is divided into two stages. In the first stage, the backbone network is frozen, and the weights of 
the network are only updated after the conv 52 layer. In the second stage, the whole network is updated. Both 
the first stage and the second stage are trained for 20 epochs. We scale the input image size into various sizes, 
such as 320× 320 and 352× 352 , in the training stage. In the evaluation stage, the input image size is scaled into 
544× 544 . The loss curve for each model is shown in Fig. 6. The curves with red colour and blue colour depict the 
training loss of the proposed model and the original YOLOv3 model, respectively. Figure 6a shows the total loss 
curve, which is the summation of the other three losses. As shown in Fig. 6b, the red curve and blue curve almost 
coincide with each other, denoting that the proposed method does not affect the foreground and background 
classification much. Given a set of anchors with a positive tag, Fig. 6c and d show that the initial prob_loss and 
giou_loss of the proposed model are larger than that of the original YOLOv3. This is because adaptive attention 
units added new weights to the model. However, as the training goes on, the red curves descend faster than do 
the blue curves. Thus, the adaptive attention weights towards more informative weights and is the reason that 
YOLOv3 with the adaptive attention mechanism achieved better performance. For each class, the PR-curves are 
shown in Fig. 7. As shown in the sub-figures, in most cases, the performance of the original YOLOv3 is worse 
than that of the proposed model. Finally, we list the mAP and inference time of the original YOLOv3 and the 
proposed model in Table 3.

As shown in the table, the proposed model with adaptive attention modules achieves a better performance 
than YOLOv3 with a small increase in inference time. This research sheds new light on the design of attention 
mechanism modules.

Experiment on MobileNetv2 with modified SSD detector.  We evaluate the proposed adaptive 
attention over MobileNetv2 with a modified SSD detector (Fig. 8). MobileNetv2 is built upon inverted residual 
modules(IRMs) (Fig. 9). We added four additional convolution blocks behind the truncated MobileNetv2 back-

Figure 6.   Loss curves.
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bone network. Each of the four additional convolution blocks is built upon two sequential IRMs. The modified 
SSD detector heads are connected behind the IRM5_3, the last IRM of the truncated MobileNet, and each of 
the four additional convolution blocks. There are six detector heads in total. We apply the adaptive spatial-wise 
attention module in the last IRM of the truncated MobileNetv2 backbone that has large feature maps in the spa-
tial dimension (orange cube in Fig. 8), and apply the adaptive channel-wise attention module to the following 
four IRMs that have more feature map channels (blue cube in Fig. 8). In the experiment, the adaptive attention 

Figure 7.   AP curves for each class.

Table 3.   Evaluation results on the PASCAL VOC dataset.

Method mAP Inference time (ms)

YOLOv3 81.0 49

YOLOv3+adaptive attention (ours) 82.2 54
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module is used to recalibrate the feature maps generated by the point-wise convolution layer within the IRM 
module (Fig. 9).

We test the original model and the model with the adaptive attention modules on the PASCAL VOC dataset. 
The experimental results are shown in Table 4. We use mAP to evaluate both models. As shown in the table, the 
mAP value of the proposed model is 1.7 times higher than the original model.

Conclusion
In this paper, a novel adaptive attention mechanism was proposed to build up attention units that are fully 
date driven. Based on this principle, three kinds of attention units, namely, an adaptive channel-wise attention 
unit, an adaptive domain attention unit and an adaptive spatial-wise attention unit, were proposed. They were 
both lightweight and easy to apply. We applied these adaptive attention units to the YOLOv3 and MobileNetv2 
architecture in a plug-in manner. The proposed model was evaluated on the KITTI and Pascal VOC datasets. 
The experimental results show that the performance was improved with a small increase in inference time com-
pared with the original YOLOv3 and MobileNetv2 architecture. We believe the performance improvements are 
mainly due to the innovative architecture. Thus, the issues mentioned in the introduction section were resolved.

In the future, our challenge is to apply the proposed method to other computer vision tasks, such as semantic 
segmentation, and serve this function better.

Figure 8.   MobileNetv2 with modified SSD detector model. ASA is adaptive spatial-wise attention. ACA is 
adaptive channel-wise attention.

Figure 9.   Inverted residual module. ASA or ACA is used to recalibrate the feature maps (blue cube) generated 
by the point-wise convolution layer within the IRM module.

Table 4.   MobileNetv2 with modified SSD detector evaluation results on the PASCAL VOC dataset.

Method mAP Inference time (ms)

MobileNetv2 with modified SSD detector 68.4 3.66

MobileNetv2 with modified SSD detector + adaptive attention 70.1 3.92
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